summary refs log tree commit diff
path: root/tests/util/test_itertools.py
blob: 7a593cc6834caf628218d185e351d8aad2198082 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#
# This file is licensed under the Affero General Public License (AGPL) version 3.
#
# Copyright 2020 The Matrix.org Foundation C.I.C.
# Copyright (C) 2023 New Vector, Ltd
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# See the GNU Affero General Public License for more details:
# <https://www.gnu.org/licenses/agpl-3.0.html>.
#
# Originally licensed under the Apache License, Version 2.0:
# <http://www.apache.org/licenses/LICENSE-2.0>.
#
# [This file includes modifications made by New Vector Limited]
#
#
from typing import Dict, Iterable, List, Sequence

from synapse.util.iterutils import (
    chunk_seq,
    sorted_topologically,
    sorted_topologically_batched,
)

from tests.unittest import TestCase


class ChunkSeqTests(TestCase):
    def test_short_seq(self) -> None:
        parts = chunk_seq("123", 8)

        self.assertEqual(
            list(parts),
            ["123"],
        )

    def test_long_seq(self) -> None:
        parts = chunk_seq("abcdefghijklmnop", 8)

        self.assertEqual(
            list(parts),
            ["abcdefgh", "ijklmnop"],
        )

    def test_uneven_parts(self) -> None:
        parts = chunk_seq("abcdefghijklmnop", 5)

        self.assertEqual(
            list(parts),
            ["abcde", "fghij", "klmno", "p"],
        )

    def test_empty_input(self) -> None:
        parts: Iterable[Sequence] = chunk_seq([], 5)

        self.assertEqual(
            list(parts),
            [],
        )


class SortTopologically(TestCase):
    def test_empty(self) -> None:
        "Test that an empty graph works correctly"

        graph: Dict[int, List[int]] = {}
        self.assertEqual(list(sorted_topologically([], graph)), [])

    def test_handle_empty_graph(self) -> None:
        "Test that a graph where a node doesn't have an entry is treated as empty"

        graph: Dict[int, List[int]] = {}

        # For disconnected nodes the output is simply sorted.
        self.assertEqual(list(sorted_topologically([1, 2], graph)), [1, 2])

    def test_disconnected(self) -> None:
        "Test that a graph with no edges work"

        graph: Dict[int, List[int]] = {1: [], 2: []}

        # For disconnected nodes the output is simply sorted.
        self.assertEqual(list(sorted_topologically([1, 2], graph)), [1, 2])

    def test_linear(self) -> None:
        "Test that a simple `4 -> 3 -> 2 -> 1` graph works"

        graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3]}

        self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])

    def test_subset(self) -> None:
        "Test that only sorting a subset of the graph works"
        graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3]}

        self.assertEqual(list(sorted_topologically([4, 3], graph)), [3, 4])

    def test_fork(self) -> None:
        "Test that a forked graph works"
        graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [1], 4: [2, 3]}

        # Valid orderings are `[1, 3, 2, 4]` or `[1, 2, 3, 4]`, but we should
        # always get the same one.
        self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])

    def test_duplicates(self) -> None:
        "Test that a graph with duplicate edges work"
        graph: Dict[int, List[int]] = {1: [], 2: [1, 1], 3: [2, 2], 4: [3]}

        self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])

    def test_multiple_paths(self) -> None:
        "Test that a graph with multiple paths between two nodes work"
        graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3, 2, 1]}

        self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])


class SortTopologicallyBatched(TestCase):
    "Test cases for `sorted_topologically_batched`"

    def test_empty(self) -> None:
        "Test that an empty graph works correctly"

        graph: Dict[int, List[int]] = {}
        self.assertEqual(list(sorted_topologically_batched([], graph)), [])

    def test_handle_empty_graph(self) -> None:
        "Test that a graph where a node doesn't have an entry is treated as empty"

        graph: Dict[int, List[int]] = {}

        # For disconnected nodes the output is simply sorted.
        self.assertEqual(list(sorted_topologically_batched([1, 2], graph)), [[1, 2]])

    def test_disconnected(self) -> None:
        "Test that a graph with no edges work"

        graph: Dict[int, List[int]] = {1: [], 2: []}

        # For disconnected nodes the output is simply sorted.
        self.assertEqual(list(sorted_topologically_batched([1, 2], graph)), [[1, 2]])

    def test_linear(self) -> None:
        "Test that a simple `4 -> 3 -> 2 -> 1` graph works"

        graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3]}

        self.assertEqual(
            list(sorted_topologically_batched([4, 3, 2, 1], graph)),
            [[1], [2], [3], [4]],
        )

    def test_subset(self) -> None:
        "Test that only sorting a subset of the graph works"
        graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3]}

        self.assertEqual(list(sorted_topologically_batched([4, 3], graph)), [[3], [4]])

    def test_fork(self) -> None:
        "Test that a forked graph works"
        graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [1], 4: [2, 3]}

        # Valid orderings are `[1, 3, 2, 4]` or `[1, 2, 3, 4]`, but we should
        # always get the same one.
        self.assertEqual(
            list(sorted_topologically_batched([4, 3, 2, 1], graph)), [[1], [2, 3], [4]]
        )

    def test_duplicates(self) -> None:
        "Test that a graph with duplicate edges work"
        graph: Dict[int, List[int]] = {1: [], 2: [1, 1], 3: [2, 2], 4: [3]}

        self.assertEqual(
            list(sorted_topologically_batched([4, 3, 2, 1], graph)),
            [[1], [2], [3], [4]],
        )

    def test_multiple_paths(self) -> None:
        "Test that a graph with multiple paths between two nodes work"
        graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3, 2, 1]}

        self.assertEqual(
            list(sorted_topologically_batched([4, 3, 2, 1], graph)),
            [[1], [2], [3], [4]],
        )