1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
|
# Copyright 2016 OpenMarket Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import TYPE_CHECKING, Dict, List, Mapping, Optional, Tuple, Union, cast
from typing_extensions import TypedDict
from synapse.metrics.background_process_metrics import wrap_as_background_process
from synapse.storage._base import SQLBaseStore
from synapse.storage.database import (
DatabasePool,
LoggingDatabaseConnection,
LoggingTransaction,
make_tuple_comparison_clause,
)
from synapse.storage.databases.main.monthly_active_users import (
MonthlyActiveUsersWorkerStore,
)
from synapse.types import JsonDict, UserID
from synapse.util.caches.lrucache import LruCache
if TYPE_CHECKING:
from synapse.server import HomeServer
logger = logging.getLogger(__name__)
# Number of msec of granularity to store the user IP 'last seen' time. Smaller
# times give more inserts into the database even for readonly API hits
# 120 seconds == 2 minutes
LAST_SEEN_GRANULARITY = 10 * 60 * 1000
class DeviceLastConnectionInfo(TypedDict):
"""Metadata for the last connection seen for a user and device combination"""
# These types must match the columns in the `devices` table
user_id: str
device_id: str
ip: Optional[str]
user_agent: Optional[str]
last_seen: Optional[int]
class LastConnectionInfo(TypedDict):
"""Metadata for the last connection seen for an access token and IP combination"""
# These types must match the columns in the `user_ips` table
access_token: str
ip: str
user_agent: str
last_seen: int
class ClientIpBackgroundUpdateStore(SQLBaseStore):
def __init__(
self,
database: DatabasePool,
db_conn: LoggingDatabaseConnection,
hs: "HomeServer",
):
super().__init__(database, db_conn, hs)
self.db_pool.updates.register_background_index_update(
"user_ips_device_index",
index_name="user_ips_device_id",
table="user_ips",
columns=["user_id", "device_id", "last_seen"],
)
self.db_pool.updates.register_background_index_update(
"user_ips_last_seen_index",
index_name="user_ips_last_seen",
table="user_ips",
columns=["user_id", "last_seen"],
)
self.db_pool.updates.register_background_index_update(
"user_ips_last_seen_only_index",
index_name="user_ips_last_seen_only",
table="user_ips",
columns=["last_seen"],
)
self.db_pool.updates.register_background_update_handler(
"user_ips_analyze", self._analyze_user_ip
)
self.db_pool.updates.register_background_update_handler(
"user_ips_remove_dupes", self._remove_user_ip_dupes
)
# Register a unique index
self.db_pool.updates.register_background_index_update(
"user_ips_device_unique_index",
index_name="user_ips_user_token_ip_unique_index",
table="user_ips",
columns=["user_id", "access_token", "ip"],
unique=True,
)
# Drop the old non-unique index
self.db_pool.updates.register_background_update_handler(
"user_ips_drop_nonunique_index", self._remove_user_ip_nonunique
)
# Update the last seen info in devices.
self.db_pool.updates.register_background_update_handler(
"devices_last_seen", self._devices_last_seen_update
)
async def _remove_user_ip_nonunique(
self, progress: JsonDict, batch_size: int
) -> int:
def f(conn: LoggingDatabaseConnection) -> None:
txn = conn.cursor()
txn.execute("DROP INDEX IF EXISTS user_ips_user_ip")
txn.close()
await self.db_pool.runWithConnection(f)
await self.db_pool.updates._end_background_update(
"user_ips_drop_nonunique_index"
)
return 1
async def _analyze_user_ip(self, progress: JsonDict, batch_size: int) -> int:
# Background update to analyze user_ips table before we run the
# deduplication background update. The table may not have been analyzed
# for ages due to the table locks.
#
# This will lock out the naive upserts to user_ips while it happens, but
# the analyze should be quick (28GB table takes ~10s)
def user_ips_analyze(txn: LoggingTransaction) -> None:
txn.execute("ANALYZE user_ips")
await self.db_pool.runInteraction("user_ips_analyze", user_ips_analyze)
await self.db_pool.updates._end_background_update("user_ips_analyze")
return 1
async def _remove_user_ip_dupes(self, progress: JsonDict, batch_size: int) -> int:
# This works function works by scanning the user_ips table in batches
# based on `last_seen`. For each row in a batch it searches the rest of
# the table to see if there are any duplicates, if there are then they
# are removed and replaced with a suitable row.
# Fetch the start of the batch
begin_last_seen: int = progress.get("last_seen", 0)
def get_last_seen(txn: LoggingTransaction) -> Optional[int]:
txn.execute(
"""
SELECT last_seen FROM user_ips
WHERE last_seen > ?
ORDER BY last_seen
LIMIT 1
OFFSET ?
""",
(begin_last_seen, batch_size),
)
row = cast(Optional[Tuple[int]], txn.fetchone())
if row:
return row[0]
else:
return None
# Get a last seen that has roughly `batch_size` since `begin_last_seen`
end_last_seen = await self.db_pool.runInteraction(
"user_ips_dups_get_last_seen", get_last_seen
)
# If it returns None, then we're processing the last batch
last = end_last_seen is None
logger.info(
"Scanning for duplicate 'user_ips' rows in range: %s <= last_seen < %s",
begin_last_seen,
end_last_seen,
)
def remove(txn: LoggingTransaction) -> None:
# This works by looking at all entries in the given time span, and
# then for each (user_id, access_token, ip) tuple in that range
# checking for any duplicates in the rest of the table (via a join).
# It then only returns entries which have duplicates, and the max
# last_seen across all duplicates, which can the be used to delete
# all other duplicates.
# It is efficient due to the existence of (user_id, access_token,
# ip) and (last_seen) indices.
# Define the search space, which requires handling the last batch in
# a different way
args: Tuple[int, ...]
if last:
clause = "? <= last_seen"
args = (begin_last_seen,)
else:
assert end_last_seen is not None
clause = "? <= last_seen AND last_seen < ?"
args = (begin_last_seen, end_last_seen)
# (Note: The DISTINCT in the inner query is important to ensure that
# the COUNT(*) is accurate, otherwise double counting may happen due
# to the join effectively being a cross product)
txn.execute(
"""
SELECT user_id, access_token, ip,
MAX(device_id), MAX(user_agent), MAX(last_seen),
COUNT(*)
FROM (
SELECT DISTINCT user_id, access_token, ip
FROM user_ips
WHERE {}
) c
INNER JOIN user_ips USING (user_id, access_token, ip)
GROUP BY user_id, access_token, ip
HAVING count(*) > 1
""".format(
clause
),
args,
)
res = cast(
List[Tuple[str, str, str, Optional[str], str, int, int]], txn.fetchall()
)
# We've got some duplicates
for i in res:
user_id, access_token, ip, device_id, user_agent, last_seen, count = i
# We want to delete the duplicates so we end up with only a
# single row.
#
# The naive way of doing this would be just to delete all rows
# and reinsert a constructed row. However, if there are a lot of
# duplicate rows this can cause the table to grow a lot, which
# can be problematic in two ways:
# 1. If user_ips is already large then this can cause the
# table to rapidly grow, potentially filling the disk.
# 2. Reinserting a lot of rows can confuse the table
# statistics for postgres, causing it to not use the
# correct indices for the query above, resulting in a full
# table scan. This is incredibly slow for large tables and
# can kill database performance. (This seems to mainly
# happen for the last query where the clause is simply `? <
# last_seen`)
#
# So instead we want to delete all but *one* of the duplicate
# rows. That is hard to do reliably, so we cheat and do a two
# step process:
# 1. Delete all rows with a last_seen strictly less than the
# max last_seen. This hopefully results in deleting all but
# one row the majority of the time, but there may be
# duplicate last_seen
# 2. If multiple rows remain, we fall back to the naive method
# and simply delete all rows and reinsert.
#
# Note that this relies on no new duplicate rows being inserted,
# but if that is happening then this entire process is futile
# anyway.
# Do step 1:
txn.execute(
"""
DELETE FROM user_ips
WHERE user_id = ? AND access_token = ? AND ip = ? AND last_seen < ?
""",
(user_id, access_token, ip, last_seen),
)
if txn.rowcount == count - 1:
# We deleted all but one of the duplicate rows, i.e. there
# is exactly one remaining and so there is nothing left to
# do.
continue
elif txn.rowcount >= count:
raise Exception(
"We deleted more duplicate rows from 'user_ips' than expected"
)
# The previous step didn't delete enough rows, so we fallback to
# step 2:
# Drop all the duplicates
txn.execute(
"""
DELETE FROM user_ips
WHERE user_id = ? AND access_token = ? AND ip = ?
""",
(user_id, access_token, ip),
)
# Add in one to be the last_seen
txn.execute(
"""
INSERT INTO user_ips
(user_id, access_token, ip, device_id, user_agent, last_seen)
VALUES (?, ?, ?, ?, ?, ?)
""",
(user_id, access_token, ip, device_id, user_agent, last_seen),
)
self.db_pool.updates._background_update_progress_txn(
txn, "user_ips_remove_dupes", {"last_seen": end_last_seen}
)
await self.db_pool.runInteraction("user_ips_dups_remove", remove)
if last:
await self.db_pool.updates._end_background_update("user_ips_remove_dupes")
return batch_size
async def _devices_last_seen_update(
self, progress: JsonDict, batch_size: int
) -> int:
"""Background update to insert last seen info into devices table"""
last_user_id: str = progress.get("last_user_id", "")
last_device_id: str = progress.get("last_device_id", "")
def _devices_last_seen_update_txn(txn: LoggingTransaction) -> int:
# This consists of two queries:
#
# 1. The sub-query searches for the next N devices and joins
# against user_ips to find the max last_seen associated with
# that device.
# 2. The outer query then joins again against user_ips on
# user/device/last_seen. This *should* hopefully only
# return one row, but if it does return more than one then
# we'll just end up updating the same device row multiple
# times, which is fine.
where_args: List[Union[str, int]]
where_clause, where_args = make_tuple_comparison_clause(
[("user_id", last_user_id), ("device_id", last_device_id)],
)
sql = """
SELECT
last_seen, ip, user_agent, user_id, device_id
FROM (
SELECT
user_id, device_id, MAX(u.last_seen) AS last_seen
FROM devices
INNER JOIN user_ips AS u USING (user_id, device_id)
WHERE %(where_clause)s
GROUP BY user_id, device_id
ORDER BY user_id ASC, device_id ASC
LIMIT ?
) c
INNER JOIN user_ips AS u USING (user_id, device_id, last_seen)
""" % {
"where_clause": where_clause
}
txn.execute(sql, where_args + [batch_size])
rows = cast(List[Tuple[int, str, str, str, str]], txn.fetchall())
if not rows:
return 0
sql = """
UPDATE devices
SET last_seen = ?, ip = ?, user_agent = ?
WHERE user_id = ? AND device_id = ?
"""
txn.execute_batch(sql, rows)
_, _, _, user_id, device_id = rows[-1]
self.db_pool.updates._background_update_progress_txn(
txn,
"devices_last_seen",
{"last_user_id": user_id, "last_device_id": device_id},
)
return len(rows)
updated = await self.db_pool.runInteraction(
"_devices_last_seen_update", _devices_last_seen_update_txn
)
if not updated:
await self.db_pool.updates._end_background_update("devices_last_seen")
return updated
class ClientIpWorkerStore(ClientIpBackgroundUpdateStore, MonthlyActiveUsersWorkerStore):
def __init__(
self,
database: DatabasePool,
db_conn: LoggingDatabaseConnection,
hs: "HomeServer",
):
super().__init__(database, db_conn, hs)
if hs.config.redis.redis_enabled:
# If we're using Redis, we can shift this update process off to
# the background worker
self._update_on_this_worker = hs.config.worker.run_background_tasks
else:
# If we're NOT using Redis, this must be handled by the master
self._update_on_this_worker = hs.get_instance_name() == "master"
self.user_ips_max_age = hs.config.server.user_ips_max_age
# (user_id, access_token, ip,) -> last_seen
self.client_ip_last_seen = LruCache[Tuple[str, str, str], int](
cache_name="client_ip_last_seen", max_size=50000
)
if hs.config.worker.run_background_tasks and self.user_ips_max_age:
self._clock.looping_call(self._prune_old_user_ips, 5 * 1000)
if self._update_on_this_worker:
# This is the designated worker that can write to the client IP
# tables.
# (user_id, access_token, ip,) -> (user_agent, device_id, last_seen)
self._batch_row_update: Dict[
Tuple[str, str, str], Tuple[str, Optional[str], int]
] = {}
self._client_ip_looper = self._clock.looping_call(
self._update_client_ips_batch, 5 * 1000
)
self.hs.get_reactor().addSystemEventTrigger(
"before", "shutdown", self._update_client_ips_batch
)
@wrap_as_background_process("prune_old_user_ips")
async def _prune_old_user_ips(self) -> None:
"""Removes entries in user IPs older than the configured period."""
if self.user_ips_max_age is None:
# Nothing to do
return
if not await self.db_pool.updates.has_completed_background_update(
"devices_last_seen"
):
# Only start pruning if we have finished populating the devices
# last seen info.
return
# We do a slightly funky SQL delete to ensure we don't try and delete
# too much at once (as the table may be very large from before we
# started pruning).
#
# This works by finding the max last_seen that is less than the given
# time, but has no more than N rows before it, deleting all rows with
# a lesser last_seen time. (We COALESCE so that the sub-SELECT always
# returns exactly one row).
sql = """
DELETE FROM user_ips
WHERE last_seen <= (
SELECT COALESCE(MAX(last_seen), -1)
FROM (
SELECT last_seen FROM user_ips
WHERE last_seen <= ?
ORDER BY last_seen ASC
LIMIT 5000
) AS u
)
"""
timestamp = self._clock.time_msec() - self.user_ips_max_age
def _prune_old_user_ips_txn(txn: LoggingTransaction) -> None:
txn.execute(sql, (timestamp,))
await self.db_pool.runInteraction(
"_prune_old_user_ips", _prune_old_user_ips_txn
)
async def _get_last_client_ip_by_device_from_database(
self, user_id: str, device_id: Optional[str]
) -> Dict[Tuple[str, str], DeviceLastConnectionInfo]:
"""For each device_id listed, give the user_ip it was last seen on.
The result might be slightly out of date as client IPs are inserted in batches.
Args:
user_id: The user to fetch devices for.
device_id: If None fetches all devices for the user
Returns:
A dictionary mapping a tuple of (user_id, device_id) to dicts, with
keys giving the column names from the devices table.
"""
keyvalues = {"user_id": user_id}
if device_id is not None:
keyvalues["device_id"] = device_id
res = cast(
List[DeviceLastConnectionInfo],
await self.db_pool.simple_select_list(
table="devices",
keyvalues=keyvalues,
retcols=("user_id", "ip", "user_agent", "device_id", "last_seen"),
),
)
return {(d["user_id"], d["device_id"]): d for d in res}
async def _get_user_ip_and_agents_from_database(
self, user: UserID, since_ts: int = 0
) -> List[LastConnectionInfo]:
"""Fetch the IPs and user agents for a user since the given timestamp.
The result might be slightly out of date as client IPs are inserted in batches.
Args:
user: The user for which to fetch IP addresses and user agents.
since_ts: The timestamp after which to fetch IP addresses and user agents,
in milliseconds.
Returns:
A list of dictionaries, each containing:
* `access_token`: The access token used.
* `ip`: The IP address used.
* `user_agent`: The last user agent seen for this access token and IP
address combination.
* `last_seen`: The timestamp at which this access token and IP address
combination was last seen, in milliseconds.
Only the latest user agent for each access token and IP address combination
is available.
"""
user_id = user.to_string()
def get_recent(txn: LoggingTransaction) -> List[Tuple[str, str, str, int]]:
txn.execute(
"""
SELECT access_token, ip, user_agent, last_seen FROM user_ips
WHERE last_seen >= ? AND user_id = ?
ORDER BY last_seen
DESC
""",
(since_ts, user_id),
)
return cast(List[Tuple[str, str, str, int]], txn.fetchall())
rows = await self.db_pool.runInteraction(
desc="get_user_ip_and_agents", func=get_recent
)
return [
{
"access_token": access_token,
"ip": ip,
"user_agent": user_agent,
"last_seen": last_seen,
}
for access_token, ip, user_agent, last_seen in rows
]
async def insert_client_ip(
self,
user_id: str,
access_token: str,
ip: str,
user_agent: str,
device_id: Optional[str],
now: Optional[int] = None,
) -> None:
if not now:
now = int(self._clock.time_msec())
key = (user_id, access_token, ip)
try:
last_seen = self.client_ip_last_seen.get(key)
except KeyError:
last_seen = None
# Rate-limited inserts
if last_seen is not None and (now - last_seen) < LAST_SEEN_GRANULARITY:
return
self.client_ip_last_seen.set(key, now)
if self._update_on_this_worker:
await self.populate_monthly_active_users(user_id)
self._batch_row_update[key] = (user_agent, device_id, now)
else:
# We are not the designated writer-worker, so stream over replication
self.hs.get_replication_command_handler().send_user_ip(
user_id, access_token, ip, user_agent, device_id, now
)
@wrap_as_background_process("update_client_ips")
async def _update_client_ips_batch(self) -> None:
assert (
self._update_on_this_worker
), "This worker is not designated to update client IPs"
# If the DB pool has already terminated, don't try updating
if not self.db_pool.is_running():
return
to_update = self._batch_row_update
self._batch_row_update = {}
if to_update:
await self.db_pool.runInteraction(
"_update_client_ips_batch", self._update_client_ips_batch_txn, to_update
)
def _update_client_ips_batch_txn(
self,
txn: LoggingTransaction,
to_update: Mapping[Tuple[str, str, str], Tuple[str, Optional[str], int]],
) -> None:
assert (
self._update_on_this_worker
), "This worker is not designated to update client IPs"
# Keys and values for the `user_ips` upsert.
user_ips_keys = []
user_ips_values = []
# Keys and values for the `devices` update.
devices_keys = []
devices_values = []
for entry in to_update.items():
(user_id, access_token, ip), (user_agent, device_id, last_seen) = entry
user_ips_keys.append((user_id, access_token, ip))
user_ips_values.append((user_agent, device_id, last_seen))
# Technically an access token might not be associated with
# a device so we need to check.
if device_id:
devices_keys.append((user_id, device_id))
devices_values.append((user_agent, last_seen, ip))
self.db_pool.simple_upsert_many_txn(
txn,
table="user_ips",
key_names=("user_id", "access_token", "ip"),
key_values=user_ips_keys,
value_names=("user_agent", "device_id", "last_seen"),
value_values=user_ips_values,
)
if devices_values:
self.db_pool.simple_update_many_txn(
txn,
table="devices",
key_names=("user_id", "device_id"),
key_values=devices_keys,
value_names=("user_agent", "last_seen", "ip"),
value_values=devices_values,
)
async def get_last_client_ip_by_device(
self, user_id: str, device_id: Optional[str]
) -> Dict[Tuple[str, str], DeviceLastConnectionInfo]:
"""For each device_id listed, give the user_ip it was last seen on
Args:
user_id: The user to fetch devices for.
device_id: If None fetches all devices for the user
Returns:
A dictionary mapping a tuple of (user_id, device_id) to dicts, with
keys giving the column names from the devices table.
"""
ret = await self._get_last_client_ip_by_device_from_database(user_id, device_id)
if not self._update_on_this_worker:
# Only the writing-worker has additional in-memory data to enhance
# the result
return ret
# Update what is retrieved from the database with data which is pending
# insertion, as if it has already been stored in the database.
for key in self._batch_row_update:
uid, _access_token, ip = key
if uid == user_id:
user_agent, did, last_seen = self._batch_row_update[key]
if did is None:
# These updates don't make it to the `devices` table
continue
if not device_id or did == device_id:
ret[(user_id, did)] = {
"user_id": user_id,
"ip": ip,
"user_agent": user_agent,
"device_id": did,
"last_seen": last_seen,
}
return ret
async def get_user_ip_and_agents(
self, user: UserID, since_ts: int = 0
) -> List[LastConnectionInfo]:
"""Fetch the IPs and user agents for a user since the given timestamp.
Args:
user: The user for which to fetch IP addresses and user agents.
since_ts: The timestamp after which to fetch IP addresses and user agents,
in milliseconds.
Returns:
A list of dictionaries, each containing:
* `access_token`: The access token used.
* `ip`: The IP address used.
* `user_agent`: The last user agent seen for this access token and IP
address combination.
* `last_seen`: The timestamp at which this access token and IP address
combination was last seen, in milliseconds.
Only the latest user agent for each access token and IP address combination
is available.
"""
rows_from_db = await self._get_user_ip_and_agents_from_database(user, since_ts)
if not self._update_on_this_worker:
# Only the writing-worker has additional in-memory data to enhance
# the result
return rows_from_db
results: Dict[Tuple[str, str], LastConnectionInfo] = {
(connection["access_token"], connection["ip"]): connection
for connection in rows_from_db
}
# Overlay data that is pending insertion on top of the results from the
# database.
user_id = user.to_string()
for key in self._batch_row_update:
uid, access_token, ip = key
if uid == user_id:
user_agent, _, last_seen = self._batch_row_update[key]
if last_seen >= since_ts:
results[(access_token, ip)] = {
"access_token": access_token,
"ip": ip,
"user_agent": user_agent,
"last_seen": last_seen,
}
return list(results.values())
|