1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
|
# Copyright 2020 The Matrix.org Foundation C.I.C.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import calendar
import logging
import time
from typing import TYPE_CHECKING, Dict
from synapse.metrics import GaugeBucketCollector
from synapse.metrics.background_process_metrics import wrap_as_background_process
from synapse.storage._base import SQLBaseStore
from synapse.storage.database import DatabasePool, LoggingDatabaseConnection
from synapse.storage.databases.main.event_push_actions import (
EventPushActionsWorkerStore,
)
if TYPE_CHECKING:
from synapse.server import HomeServer
logger = logging.getLogger(__name__)
# Collect metrics on the number of forward extremities that exist.
_extremities_collecter = GaugeBucketCollector(
"synapse_forward_extremities",
"Number of rooms on the server with the given number of forward extremities"
" or fewer",
buckets=[1, 2, 3, 5, 7, 10, 15, 20, 50, 100, 200, 500],
)
# we also expose metrics on the "number of excess extremity events", which is
# (E-1)*N, where E is the number of extremities and N is the number of state
# events in the room. This is an approximation to the number of state events
# we could remove from state resolution by reducing the graph to a single
# forward extremity.
_excess_state_events_collecter = GaugeBucketCollector(
"synapse_excess_extremity_events",
"Number of rooms on the server with the given number of excess extremity "
"events, or fewer",
buckets=[0] + [1 << n for n in range(12)],
)
class ServerMetricsStore(EventPushActionsWorkerStore, SQLBaseStore):
"""Functions to pull various metrics from the DB, for e.g. phone home
stats and prometheus metrics.
"""
def __init__(
self,
database: DatabasePool,
db_conn: LoggingDatabaseConnection,
hs: "HomeServer",
):
super().__init__(database, db_conn, hs)
# Read the extrems every 60 minutes
if hs.config.worker.run_background_tasks:
self._clock.looping_call(self._read_forward_extremities, 60 * 60 * 1000)
# Used in _generate_user_daily_visits to keep track of progress
self._last_user_visit_update = self._get_start_of_day()
@wrap_as_background_process("read_forward_extremities")
async def _read_forward_extremities(self):
def fetch(txn):
txn.execute(
"""
SELECT t1.c, t2.c
FROM (
SELECT room_id, COUNT(*) c FROM event_forward_extremities
GROUP BY room_id
) t1 LEFT JOIN (
SELECT room_id, COUNT(*) c FROM current_state_events
GROUP BY room_id
) t2 ON t1.room_id = t2.room_id
"""
)
return txn.fetchall()
res = await self.db_pool.runInteraction("read_forward_extremities", fetch)
_extremities_collecter.update_data(x[0] for x in res)
_excess_state_events_collecter.update_data(
(x[0] - 1) * x[1] for x in res if x[1]
)
async def count_daily_e2ee_messages(self):
"""
Returns an estimate of the number of messages sent in the last day.
If it has been significantly less or more than one day since the last
call to this function, it will return None.
"""
def _count_messages(txn):
sql = """
SELECT COUNT(*) FROM events
WHERE type = 'm.room.encrypted'
AND stream_ordering > ?
"""
txn.execute(sql, (self.stream_ordering_day_ago,))
(count,) = txn.fetchone()
return count
return await self.db_pool.runInteraction("count_e2ee_messages", _count_messages)
async def count_daily_sent_e2ee_messages(self):
def _count_messages(txn):
# This is good enough as if you have silly characters in your own
# hostname then that's your own fault.
like_clause = "%:" + self.hs.hostname
sql = """
SELECT COUNT(*) FROM events
WHERE type = 'm.room.encrypted'
AND sender LIKE ?
AND stream_ordering > ?
"""
txn.execute(sql, (like_clause, self.stream_ordering_day_ago))
(count,) = txn.fetchone()
return count
return await self.db_pool.runInteraction(
"count_daily_sent_e2ee_messages", _count_messages
)
async def count_daily_active_e2ee_rooms(self):
def _count(txn):
sql = """
SELECT COUNT(DISTINCT room_id) FROM events
WHERE type = 'm.room.encrypted'
AND stream_ordering > ?
"""
txn.execute(sql, (self.stream_ordering_day_ago,))
(count,) = txn.fetchone()
return count
return await self.db_pool.runInteraction(
"count_daily_active_e2ee_rooms", _count
)
async def count_daily_messages(self):
"""
Returns an estimate of the number of messages sent in the last day.
If it has been significantly less or more than one day since the last
call to this function, it will return None.
"""
def _count_messages(txn):
sql = """
SELECT COUNT(*) FROM events
WHERE type = 'm.room.message'
AND stream_ordering > ?
"""
txn.execute(sql, (self.stream_ordering_day_ago,))
(count,) = txn.fetchone()
return count
return await self.db_pool.runInteraction("count_messages", _count_messages)
async def count_daily_sent_messages(self):
def _count_messages(txn):
# This is good enough as if you have silly characters in your own
# hostname then that's your own fault.
like_clause = "%:" + self.hs.hostname
sql = """
SELECT COUNT(*) FROM events
WHERE type = 'm.room.message'
AND sender LIKE ?
AND stream_ordering > ?
"""
txn.execute(sql, (like_clause, self.stream_ordering_day_ago))
(count,) = txn.fetchone()
return count
return await self.db_pool.runInteraction(
"count_daily_sent_messages", _count_messages
)
async def count_daily_active_rooms(self):
def _count(txn):
sql = """
SELECT COUNT(DISTINCT room_id) FROM events
WHERE type = 'm.room.message'
AND stream_ordering > ?
"""
txn.execute(sql, (self.stream_ordering_day_ago,))
(count,) = txn.fetchone()
return count
return await self.db_pool.runInteraction("count_daily_active_rooms", _count)
async def count_daily_users(self) -> int:
"""
Counts the number of users who used this homeserver in the last 24 hours.
"""
yesterday = int(self._clock.time_msec()) - (1000 * 60 * 60 * 24)
return await self.db_pool.runInteraction(
"count_daily_users", self._count_users, yesterday
)
async def count_monthly_users(self) -> int:
"""
Counts the number of users who used this homeserver in the last 30 days.
Note this method is intended for phonehome metrics only and is different
from the mau figure in synapse.storage.monthly_active_users which,
amongst other things, includes a 3 day grace period before a user counts.
"""
thirty_days_ago = int(self._clock.time_msec()) - (1000 * 60 * 60 * 24 * 30)
return await self.db_pool.runInteraction(
"count_monthly_users", self._count_users, thirty_days_ago
)
def _count_users(self, txn, time_from):
"""
Returns number of users seen in the past time_from period
"""
sql = """
SELECT COUNT(*) FROM (
SELECT user_id FROM user_ips
WHERE last_seen > ?
GROUP BY user_id
) u
"""
txn.execute(sql, (time_from,))
(count,) = txn.fetchone()
return count
async def count_r30_users(self) -> Dict[str, int]:
"""
Counts the number of 30 day retained users, defined as:-
* Users who have created their accounts more than 30 days ago
* Where last seen at most 30 days ago
* Where account creation and last_seen are > 30 days apart
Returns:
A mapping of counts globally as well as broken out by platform.
"""
def _count_r30_users(txn):
thirty_days_in_secs = 86400 * 30
now = int(self._clock.time())
thirty_days_ago_in_secs = now - thirty_days_in_secs
sql = """
SELECT platform, COUNT(*) FROM (
SELECT
users.name, platform, users.creation_ts * 1000,
MAX(uip.last_seen)
FROM users
INNER JOIN (
SELECT
user_id,
last_seen,
CASE
WHEN user_agent LIKE '%%Android%%' THEN 'android'
WHEN user_agent LIKE '%%iOS%%' THEN 'ios'
WHEN user_agent LIKE '%%Electron%%' THEN 'electron'
WHEN user_agent LIKE '%%Mozilla%%' THEN 'web'
WHEN user_agent LIKE '%%Gecko%%' THEN 'web'
ELSE 'unknown'
END
AS platform
FROM user_ips
) uip
ON users.name = uip.user_id
AND users.appservice_id is NULL
AND users.creation_ts < ?
AND uip.last_seen/1000 > ?
AND (uip.last_seen/1000) - users.creation_ts > 86400 * 30
GROUP BY users.name, platform, users.creation_ts
) u GROUP BY platform
"""
results = {}
txn.execute(sql, (thirty_days_ago_in_secs, thirty_days_ago_in_secs))
for row in txn:
if row[0] == "unknown":
pass
results[row[0]] = row[1]
sql = """
SELECT COUNT(*) FROM (
SELECT users.name, users.creation_ts * 1000,
MAX(uip.last_seen)
FROM users
INNER JOIN (
SELECT
user_id,
last_seen
FROM user_ips
) uip
ON users.name = uip.user_id
AND appservice_id is NULL
AND users.creation_ts < ?
AND uip.last_seen/1000 > ?
AND (uip.last_seen/1000) - users.creation_ts > 86400 * 30
GROUP BY users.name, users.creation_ts
) u
"""
txn.execute(sql, (thirty_days_ago_in_secs, thirty_days_ago_in_secs))
(count,) = txn.fetchone()
results["all"] = count
return results
return await self.db_pool.runInteraction("count_r30_users", _count_r30_users)
async def count_r30v2_users(self) -> Dict[str, int]:
"""
Counts the number of 30 day retained users, defined as users that:
- Appear more than once in the past 60 days
- Have more than 30 days between the most and least recent appearances that
occurred in the past 60 days.
(This is the second version of this metric, hence R30'v2')
Returns:
A mapping from client type to the number of 30-day retained users for that client.
The dict keys are:
- "all" (a combined number of users across any and all clients)
- "android" (Element Android)
- "ios" (Element iOS)
- "electron" (Element Desktop)
- "web" (any web application -- it's not possible to distinguish Element Web here)
"""
def _count_r30v2_users(txn):
thirty_days_in_secs = 86400 * 30
now = int(self._clock.time())
sixty_days_ago_in_secs = now - 2 * thirty_days_in_secs
one_day_from_now_in_secs = now + 86400
# This is the 'per-platform' count.
sql = """
SELECT
client_type,
count(client_type)
FROM
(
SELECT
user_id,
CASE
WHEN
LOWER(user_agent) LIKE '%%riot%%' OR
LOWER(user_agent) LIKE '%%element%%'
THEN CASE
WHEN
LOWER(user_agent) LIKE '%%electron%%'
THEN 'electron'
WHEN
LOWER(user_agent) LIKE '%%android%%'
THEN 'android'
WHEN
LOWER(user_agent) LIKE '%%ios%%'
THEN 'ios'
ELSE 'unknown'
END
WHEN
LOWER(user_agent) LIKE '%%mozilla%%' OR
LOWER(user_agent) LIKE '%%gecko%%'
THEN 'web'
ELSE 'unknown'
END as client_type
FROM
user_daily_visits
WHERE
timestamp > ?
AND
timestamp < ?
GROUP BY
user_id,
client_type
HAVING
max(timestamp) - min(timestamp) > ?
) AS temp
GROUP BY
client_type
;
"""
# We initialise all the client types to zero, so we get an explicit
# zero if they don't appear in the query results
results = {"ios": 0, "android": 0, "web": 0, "electron": 0}
txn.execute(
sql,
(
sixty_days_ago_in_secs * 1000,
one_day_from_now_in_secs * 1000,
thirty_days_in_secs * 1000,
),
)
for row in txn:
if row[0] == "unknown":
continue
results[row[0]] = row[1]
# This is the 'all users' count.
sql = """
SELECT COUNT(*) FROM (
SELECT
1
FROM
user_daily_visits
WHERE
timestamp > ?
AND
timestamp < ?
GROUP BY
user_id
HAVING
max(timestamp) - min(timestamp) > ?
) AS r30_users
"""
txn.execute(
sql,
(
sixty_days_ago_in_secs * 1000,
one_day_from_now_in_secs * 1000,
thirty_days_in_secs * 1000,
),
)
row = txn.fetchone()
if row is None:
results["all"] = 0
else:
results["all"] = row[0]
return results
return await self.db_pool.runInteraction(
"count_r30v2_users", _count_r30v2_users
)
def _get_start_of_day(self):
"""
Returns millisecond unixtime for start of UTC day.
"""
now = time.gmtime(self._clock.time())
today_start = calendar.timegm((now.tm_year, now.tm_mon, now.tm_mday, 0, 0, 0))
return today_start * 1000
@wrap_as_background_process("generate_user_daily_visits")
async def generate_user_daily_visits(self) -> None:
"""
Generates daily visit data for use in cohort/ retention analysis
"""
def _generate_user_daily_visits(txn):
logger.info("Calling _generate_user_daily_visits")
today_start = self._get_start_of_day()
a_day_in_milliseconds = 24 * 60 * 60 * 1000
now = self._clock.time_msec()
# A note on user_agent. Technically a given device can have multiple
# user agents, so we need to decide which one to pick. We could have
# handled this in number of ways, but given that we don't care
# _that_ much we have gone for MAX(). For more details of the other
# options considered see
# https://github.com/matrix-org/synapse/pull/8503#discussion_r502306111
sql = """
INSERT INTO user_daily_visits (user_id, device_id, timestamp, user_agent)
SELECT u.user_id, u.device_id, ?, MAX(u.user_agent)
FROM user_ips AS u
LEFT JOIN (
SELECT user_id, device_id, timestamp FROM user_daily_visits
WHERE timestamp = ?
) udv
ON u.user_id = udv.user_id AND u.device_id=udv.device_id
INNER JOIN users ON users.name=u.user_id
WHERE ? <= last_seen AND last_seen < ?
AND udv.timestamp IS NULL AND users.is_guest=0
AND users.appservice_id IS NULL
GROUP BY u.user_id, u.device_id
"""
# This means that the day has rolled over but there could still
# be entries from the previous day. There is an edge case
# where if the user logs in at 23:59 and overwrites their
# last_seen at 00:01 then they will not be counted in the
# previous day's stats - it is important that the query is run
# often to minimise this case.
if today_start > self._last_user_visit_update:
yesterday_start = today_start - a_day_in_milliseconds
txn.execute(
sql,
(
yesterday_start,
yesterday_start,
self._last_user_visit_update,
today_start,
),
)
self._last_user_visit_update = today_start
txn.execute(
sql, (today_start, today_start, self._last_user_visit_update, now)
)
# Update _last_user_visit_update to now. The reason to do this
# rather just clamping to the beginning of the day is to limit
# the size of the join - meaning that the query can be run more
# frequently
self._last_user_visit_update = now
await self.db_pool.runInteraction(
"generate_user_daily_visits", _generate_user_daily_visits
)
|