summary refs log tree commit diff
path: root/Crypto/src/openpgp/PgpSecretKey.cs
blob: 9d87f49c8dadcd29dcd7c9a720a7df9a062ab13b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
using System;
using System.Collections;
using System.IO;

using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Security;

namespace Org.BouncyCastle.Bcpg.OpenPgp
{
	/// <remarks>General class to handle a PGP secret key object.</remarks>
    public class PgpSecretKey
    {
        private readonly SecretKeyPacket	secret;
        private readonly PgpPublicKey		pub;

		internal PgpSecretKey(
			SecretKeyPacket	secret,
			PgpPublicKey	pub)
		{
			this.secret = secret;
			this.pub = pub;
		}

		internal PgpSecretKey(
			PgpPrivateKey				privKey,
			PgpPublicKey				pubKey,
			SymmetricKeyAlgorithmTag	encAlgorithm,
			char[]						passPhrase,
			bool						useSha1,
			SecureRandom				rand)
			: this(privKey, pubKey, encAlgorithm, passPhrase, useSha1, rand, false)
		{
		}

		internal PgpSecretKey(
			PgpPrivateKey				privKey,
			PgpPublicKey				pubKey,
			SymmetricKeyAlgorithmTag	encAlgorithm,
            char[]						passPhrase,
			bool						useSha1,
			SecureRandom				rand,
			bool						isMasterKey)
        {
			BcpgObject secKey;

			this.pub = pubKey;

			switch (pubKey.Algorithm)
            {
				case PublicKeyAlgorithmTag.RsaEncrypt:
				case PublicKeyAlgorithmTag.RsaSign:
				case PublicKeyAlgorithmTag.RsaGeneral:
					RsaPrivateCrtKeyParameters rsK = (RsaPrivateCrtKeyParameters) privKey.Key;
					secKey = new RsaSecretBcpgKey(rsK.Exponent, rsK.P, rsK.Q);
					break;
				case PublicKeyAlgorithmTag.Dsa:
					DsaPrivateKeyParameters dsK = (DsaPrivateKeyParameters) privKey.Key;
					secKey = new DsaSecretBcpgKey(dsK.X);
					break;
				case PublicKeyAlgorithmTag.ElGamalEncrypt:
				case PublicKeyAlgorithmTag.ElGamalGeneral:
					ElGamalPrivateKeyParameters esK = (ElGamalPrivateKeyParameters) privKey.Key;
					secKey = new ElGamalSecretBcpgKey(esK.X);
					break;
				default:
					throw new PgpException("unknown key class");
            }

			try
            {
                MemoryStream bOut = new MemoryStream();
                BcpgOutputStream pOut = new BcpgOutputStream(bOut);

				pOut.WriteObject(secKey);

				byte[] keyData = bOut.ToArray();
				byte[] checksumBytes = Checksum(useSha1, keyData, keyData.Length);

				pOut.Write(checksumBytes);

				byte[] bOutData = bOut.ToArray();

				if (encAlgorithm == SymmetricKeyAlgorithmTag.Null)
				{
					if (isMasterKey)
					{
						this.secret = new SecretKeyPacket(pub.publicPk, encAlgorithm, null, null, bOutData);
					}
					else
					{
						this.secret = new SecretSubkeyPacket(pub.publicPk, encAlgorithm, null, null, bOutData);
					}
				}
				else
                {
					S2k s2k;
					byte[] iv;
					byte[] encData = EncryptKeyData(bOutData, encAlgorithm, passPhrase, rand, out s2k, out iv);

					int s2kUsage = useSha1
						?	SecretKeyPacket.UsageSha1
						:	SecretKeyPacket.UsageChecksum;

					if (isMasterKey)
					{
						this.secret = new SecretKeyPacket(pub.publicPk, encAlgorithm, s2kUsage, s2k, iv, encData);
					}
					else
					{
						this.secret = new SecretSubkeyPacket(pub.publicPk, encAlgorithm, s2kUsage, s2k, iv, encData);
					}
				}
            }
            catch (PgpException e)
            {
                throw e;
            }
            catch (Exception e)
            {
                throw new PgpException("Exception encrypting key", e);
            }
        }

		public PgpSecretKey(
            int							certificationLevel,
            PgpKeyPair					keyPair,
            string						id,
            SymmetricKeyAlgorithmTag	encAlgorithm,
            char[]						passPhrase,
            PgpSignatureSubpacketVector	hashedPackets,
            PgpSignatureSubpacketVector	unhashedPackets,
            SecureRandom				rand)
			: this(certificationLevel, keyPair, id, encAlgorithm, passPhrase, false, hashedPackets, unhashedPackets, rand)
		{
		}

		public PgpSecretKey(
			int							certificationLevel,
			PgpKeyPair					keyPair,
			string						id,
			SymmetricKeyAlgorithmTag	encAlgorithm,
			char[]						passPhrase,
			bool						useSha1,
			PgpSignatureSubpacketVector	hashedPackets,
			PgpSignatureSubpacketVector	unhashedPackets,
			SecureRandom				rand)
			: this(keyPair.PrivateKey, certifiedPublicKey(certificationLevel, keyPair, id, hashedPackets, unhashedPackets), encAlgorithm, passPhrase, useSha1, rand, true)
		{
		}

		private static PgpPublicKey certifiedPublicKey(
			int							certificationLevel,
			PgpKeyPair					keyPair,
			string						id,
			PgpSignatureSubpacketVector	hashedPackets,
			PgpSignatureSubpacketVector	unhashedPackets)
		{
			PgpSignatureGenerator sGen;
			try
			{
				sGen = new PgpSignatureGenerator(keyPair.PublicKey.Algorithm, HashAlgorithmTag.Sha1);
			}
			catch (Exception e)
			{
				throw new PgpException("Creating signature generator: " + e.Message, e);
			}

			//
			// Generate the certification
			//
			sGen.InitSign(certificationLevel, keyPair.PrivateKey);

			sGen.SetHashedSubpackets(hashedPackets);
			sGen.SetUnhashedSubpackets(unhashedPackets);

			try
            {
				PgpSignature certification = sGen.GenerateCertification(id, keyPair.PublicKey);
                return PgpPublicKey.AddCertification(keyPair.PublicKey, id, certification);
            }
            catch (Exception e)
            {
				throw new PgpException("Exception doing certification: " + e.Message, e);
			}
        }

		public PgpSecretKey(
            int							certificationLevel,
            PublicKeyAlgorithmTag		algorithm,
            AsymmetricKeyParameter		pubKey,
            AsymmetricKeyParameter		privKey,
            DateTime					time,
            string						id,
            SymmetricKeyAlgorithmTag	encAlgorithm,
            char[]						passPhrase,
            PgpSignatureSubpacketVector	hashedPackets,
            PgpSignatureSubpacketVector	unhashedPackets,
            SecureRandom				rand)
            : this(certificationLevel,
                new PgpKeyPair(algorithm, pubKey, privKey, time),
                id, encAlgorithm, passPhrase, hashedPackets, unhashedPackets, rand)
        {
        }

		public PgpSecretKey(
			int							certificationLevel,
			PublicKeyAlgorithmTag		algorithm,
			AsymmetricKeyParameter		pubKey,
			AsymmetricKeyParameter		privKey,
			DateTime					time,
			string						id,
			SymmetricKeyAlgorithmTag	encAlgorithm,
			char[]						passPhrase,
			bool						useSha1,
			PgpSignatureSubpacketVector	hashedPackets,
			PgpSignatureSubpacketVector	unhashedPackets,
			SecureRandom				rand)
			: this(certificationLevel, new PgpKeyPair(algorithm, pubKey, privKey, time), id, encAlgorithm, passPhrase, useSha1, hashedPackets, unhashedPackets, rand)
		{
		}

		/// <summary>
		/// Check if this key has an algorithm type that makes it suitable to use for signing.
		/// </summary>
		/// <remarks>
		/// Note: with version 4 keys KeyFlags subpackets should also be considered when present for
		/// determining the preferred use of the key.
		/// </remarks>
		/// <returns>
		/// <c>true</c> if this key algorithm is suitable for use with signing.
		/// </returns>
		public bool IsSigningKey
        {
			get
			{
				switch (pub.Algorithm)
				{
					case PublicKeyAlgorithmTag.RsaGeneral:
					case PublicKeyAlgorithmTag.RsaSign:
					case PublicKeyAlgorithmTag.Dsa:
					case PublicKeyAlgorithmTag.ECDsa:
					case PublicKeyAlgorithmTag.ElGamalGeneral:
						return true;
					default:
						return false;
				}
			}
        }

		/// <summary>True, if this is a master key.</summary>
        public bool IsMasterKey
		{
			get { return pub.IsMasterKey; }
        }

		/// <summary>The algorithm the key is encrypted with.</summary>
        public SymmetricKeyAlgorithmTag KeyEncryptionAlgorithm
        {
			get { return secret.EncAlgorithm; }
        }

		/// <summary>The key ID of the public key associated with this key.</summary>
        public long KeyId
        {
            get { return pub.KeyId; }
        }

		/// <summary>The public key associated with this key.</summary>
        public PgpPublicKey PublicKey
        {
			get { return pub; }
        }

		/// <summary>Allows enumeration of any user IDs associated with the key.</summary>
		/// <returns>An <c>IEnumerable</c> of <c>string</c> objects.</returns>
        public IEnumerable UserIds
        {
			get { return pub.GetUserIds(); }
        }

		/// <summary>Allows enumeration of any user attribute vectors associated with the key.</summary>
		/// <returns>An <c>IEnumerable</c> of <c>string</c> objects.</returns>
        public IEnumerable UserAttributes
        {
			get { return pub.GetUserAttributes(); }
        }

		private byte[] ExtractKeyData(
            char[] passPhrase)
        {
            SymmetricKeyAlgorithmTag alg = secret.EncAlgorithm;
			byte[] encData = secret.GetSecretKeyData();

			if (alg == SymmetricKeyAlgorithmTag.Null)
				return encData;

			byte[] data;
			IBufferedCipher c = null;
			try
			{
				string cName = PgpUtilities.GetSymmetricCipherName(alg);
				c = CipherUtilities.GetCipher(cName + "/CFB/NoPadding");
			}
			catch (Exception e)
			{
				throw new PgpException("Exception creating cipher", e);
			}

			// TODO Factor this block out as 'encryptData'
			try
            {
				KeyParameter key = PgpUtilities.MakeKeyFromPassPhrase(secret.EncAlgorithm, secret.S2k, passPhrase);
				byte[] iv = secret.GetIV();

				if (secret.PublicKeyPacket.Version == 4)
                {
					c.Init(false, new ParametersWithIV(key, iv));

					data = c.DoFinal(encData);

					bool useSha1 = secret.S2kUsage == SecretKeyPacket.UsageSha1;
					byte[] check = Checksum(useSha1, data, (useSha1) ? data.Length - 20 : data.Length - 2);

					for (int i = 0; i != check.Length; i++)
					{
						if (check[i] != data[data.Length - check.Length + i])
						{
							throw new PgpException("Checksum mismatch at " + i + " of " + check.Length);
						}
					}
				}
                else // version 2 or 3, RSA only.
                {
					data = new byte[encData.Length];

					//
                    // read in the four numbers
                    //
                    int pos = 0;

					for (int i = 0; i != 4; i++)
                    {
                        c.Init(false, new ParametersWithIV(key, iv));

						int encLen = (((encData[pos] << 8) | (encData[pos + 1] & 0xff)) + 7) / 8;

						data[pos] = encData[pos];
						data[pos + 1] = encData[pos + 1];
						pos += 2;

						c.DoFinal(encData, pos, encLen, data, pos);
						pos += encLen;

						if (i != 3)
                        {
                            Array.Copy(encData, pos - iv.Length, iv, 0, iv.Length);
                        }
                    }

					//
                    // verify Checksum
                    //
					int cs = ((encData[pos] << 8) & 0xff00) | (encData[pos + 1] & 0xff);
                    int calcCs = 0;
                    for (int j=0; j < data.Length-2; j++)
                    {
                        calcCs += data[j] & 0xff;
                    }

					calcCs &= 0xffff;
                    if (calcCs != cs)
                    {
                        throw new PgpException("Checksum mismatch: passphrase wrong, expected "
							+ cs.ToString("X")
							+ " found " + calcCs.ToString("X"));
                    }
                }

				return data;
            }
            catch (PgpException e)
            {
                throw e;
            }
            catch (Exception e)
            {
                throw new PgpException("Exception decrypting key", e);
            }
        }

		/// <summary>Extract a <c>PgpPrivateKey</c> from this secret key's encrypted contents.</summary>
        public PgpPrivateKey ExtractPrivateKey(
            char[] passPhrase)
        {
			byte[] secKeyData = secret.GetSecretKeyData();
            if (secKeyData == null || secKeyData.Length < 1)
                return null;

			PublicKeyPacket pubPk = secret.PublicKeyPacket;
            try
            {
                byte[] data = ExtractKeyData(passPhrase);
                BcpgInputStream bcpgIn = BcpgInputStream.Wrap(new MemoryStream(data, false));
                AsymmetricKeyParameter privateKey;
                switch (pubPk.Algorithm)
                {
                case PublicKeyAlgorithmTag.RsaEncrypt:
                case PublicKeyAlgorithmTag.RsaGeneral:
                case PublicKeyAlgorithmTag.RsaSign:
                    RsaPublicBcpgKey rsaPub = (RsaPublicBcpgKey)pubPk.Key;
                    RsaSecretBcpgKey rsaPriv = new RsaSecretBcpgKey(bcpgIn);
                    RsaPrivateCrtKeyParameters rsaPrivSpec = new RsaPrivateCrtKeyParameters(
                        rsaPriv.Modulus,
                        rsaPub.PublicExponent,
                        rsaPriv.PrivateExponent,
                        rsaPriv.PrimeP,
                        rsaPriv.PrimeQ,
                        rsaPriv.PrimeExponentP,
                        rsaPriv.PrimeExponentQ,
                        rsaPriv.CrtCoefficient);
                    privateKey = rsaPrivSpec;
                    break;
                case PublicKeyAlgorithmTag.Dsa:
                    DsaPublicBcpgKey dsaPub = (DsaPublicBcpgKey)pubPk.Key;
                    DsaSecretBcpgKey dsaPriv = new DsaSecretBcpgKey(bcpgIn);
                    DsaParameters dsaParams = new DsaParameters(dsaPub.P, dsaPub.Q, dsaPub.G);
                    privateKey = new DsaPrivateKeyParameters(dsaPriv.X, dsaParams);
                    break;
                case PublicKeyAlgorithmTag.ElGamalEncrypt:
                case PublicKeyAlgorithmTag.ElGamalGeneral:
                    ElGamalPublicBcpgKey elPub = (ElGamalPublicBcpgKey)pubPk.Key;
                    ElGamalSecretBcpgKey elPriv = new ElGamalSecretBcpgKey(bcpgIn);
                    ElGamalParameters elParams = new ElGamalParameters(elPub.P, elPub.G);
                    privateKey = new ElGamalPrivateKeyParameters(elPriv.X, elParams);
                    break;
                default:
                    throw new PgpException("unknown public key algorithm encountered");
                }

				return new PgpPrivateKey(privateKey, KeyId);
            }
            catch (PgpException e)
            {
                throw e;
            }
            catch (Exception e)
            {
                throw new PgpException("Exception constructing key", e);
            }
        }

		private static byte[] Checksum(
			bool	useSha1,
			byte[]	bytes,
			int		length)
		{
			if (useSha1)
			{
				try
				{
					IDigest dig = DigestUtilities.GetDigest("SHA1");
					dig.BlockUpdate(bytes, 0, length);
					return DigestUtilities.DoFinal(dig);
				}
				//catch (NoSuchAlgorithmException e)
				catch (Exception e)
				{
					throw new PgpException("Can't find SHA-1", e);
				}
			}
			else
			{
				int Checksum = 0;
				for (int i = 0; i != length; i++)
				{
					Checksum += bytes[i];
				}

				return new byte[] { (byte)(Checksum >> 8), (byte)Checksum };
			}
		}

		public byte[] GetEncoded()
        {
            MemoryStream bOut = new MemoryStream();
            Encode(bOut);
            return bOut.ToArray();
        }

		public void Encode(
            Stream outStr)
        {
            BcpgOutputStream bcpgOut = BcpgOutputStream.Wrap(outStr);

			bcpgOut.WritePacket(secret);
            if (pub.trustPk != null)
            {
                bcpgOut.WritePacket(pub.trustPk);
            }

			if (pub.subSigs == null) // is not a sub key
            {
				foreach (PgpSignature keySig in pub.keySigs)
				{
					keySig.Encode(bcpgOut);
                }

				for (int i = 0; i != pub.ids.Count; i++)
                {
					object pubID = pub.ids[i];
                    if (pubID is string)
                    {
                        string id = (string) pubID;
                        bcpgOut.WritePacket(new UserIdPacket(id));
                    }
                    else
                    {
                        PgpUserAttributeSubpacketVector v = (PgpUserAttributeSubpacketVector) pubID;
                        bcpgOut.WritePacket(new UserAttributePacket(v.ToSubpacketArray()));
                    }

					if (pub.idTrusts[i] != null)
                    {
                        bcpgOut.WritePacket((ContainedPacket)pub.idTrusts[i]);
                    }

					foreach (PgpSignature sig in (IList) pub.idSigs[i])
					{
						sig.Encode(bcpgOut);
                    }
                }
            }
            else
            {
				foreach (PgpSignature subSig in pub.subSigs)
				{
					subSig.Encode(bcpgOut);
                }
            }

			// TODO Check that this is right/necessary
			//bcpgOut.Finish();
        }

		/// <summary>
		/// Return a copy of the passed in secret key, encrypted using a new password
		/// and the passed in algorithm.
		/// </summary>
		/// <param name="key">The PgpSecretKey to be copied.</param>
		/// <param name="oldPassPhrase">The current password for the key.</param>
		/// <param name="newPassPhrase">The new password for the key.</param>
		/// <param name="newEncAlgorithm">The algorithm to be used for the encryption.</param>
		/// <param name="rand">Source of randomness.</param>
        public static PgpSecretKey CopyWithNewPassword(
            PgpSecretKey				key,
            char[]						oldPassPhrase,
            char[]						newPassPhrase,
            SymmetricKeyAlgorithmTag	newEncAlgorithm,
            SecureRandom				rand)
        {
            byte[]	rawKeyData = key.ExtractKeyData(oldPassPhrase);
			int		s2kUsage = key.secret.S2kUsage;
			byte[]	iv = null;
            S2k		s2k = null;
            byte[]	keyData;

			if (newEncAlgorithm == SymmetricKeyAlgorithmTag.Null)
            {
				s2kUsage = SecretKeyPacket.UsageNone;
				if (key.secret.S2kUsage == SecretKeyPacket.UsageSha1)   // SHA-1 hash, need to rewrite Checksum
				{
					keyData = new byte[rawKeyData.Length - 18];

					Array.Copy(rawKeyData, 0, keyData, 0, keyData.Length - 2);

					byte[] check = Checksum(false, keyData, keyData.Length - 2);

					keyData[keyData.Length - 2] = check[0];
					keyData[keyData.Length - 1] = check[1];
				}
				else
				{
					keyData = rawKeyData;
				}
			}
            else
            {
                try
                {
					keyData = EncryptKeyData(rawKeyData, newEncAlgorithm, newPassPhrase, rand, out s2k, out iv);
                }
                catch (PgpException e)
                {
                    throw e;
                }
                catch (Exception e)
                {
                    throw new PgpException("Exception encrypting key", e);
                }
            }

			SecretKeyPacket secret;
            if (key.secret is SecretSubkeyPacket)
            {
                secret = new SecretSubkeyPacket(key.secret.PublicKeyPacket,
					newEncAlgorithm, s2kUsage, s2k, iv, keyData);
            }
            else
            {
                secret = new SecretKeyPacket(key.secret.PublicKeyPacket,
	                newEncAlgorithm, s2kUsage, s2k, iv, keyData);
            }

			return new PgpSecretKey(secret, key.pub);
        }

		/// <summary>Replace the passed the public key on the passed in secret key.</summary>
		/// <param name="secretKey">Secret key to change.</param>
		/// <param name="publicKey">New public key.</param>
		/// <returns>A new secret key.</returns>
		/// <exception cref="ArgumentException">If KeyId's do not match.</exception>
		public static PgpSecretKey ReplacePublicKey(
			PgpSecretKey	secretKey,
			PgpPublicKey	publicKey)
		{
			if (publicKey.KeyId != secretKey.KeyId)
				throw new ArgumentException("KeyId's do not match");

			return new PgpSecretKey(secretKey.secret, publicKey);
		}

		private static byte[] EncryptKeyData(
			byte[]						rawKeyData,
			SymmetricKeyAlgorithmTag	encAlgorithm,
			char[]						passPhrase,
			SecureRandom				random,
			out S2k						s2k,
			out byte[]					iv)
		{
			IBufferedCipher c;
			try
			{
				string cName = PgpUtilities.GetSymmetricCipherName(encAlgorithm);
				c = CipherUtilities.GetCipher(cName + "/CFB/NoPadding");
			}
			catch (Exception e)
			{
				throw new PgpException("Exception creating cipher", e);
			}

			byte[] s2kIV = new byte[8];
			random.NextBytes(s2kIV);
			s2k = new S2k(HashAlgorithmTag.Sha1, s2kIV, 0x60);

			KeyParameter kp = PgpUtilities.MakeKeyFromPassPhrase(encAlgorithm, s2k, passPhrase);

			iv = new byte[c.GetBlockSize()];
			random.NextBytes(iv);

			c.Init(true, new ParametersWithRandom(new ParametersWithIV(kp, iv), random));

			return c.DoFinal(rawKeyData);
		}
    }
}