1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
using System;
using Org.BouncyCastle.Crypto.Utilities;
namespace Org.BouncyCastle.Crypto.Engines
{
/**
* A class that provides CAST6 key encryption operations,
* such as encoding data and generating keys.
*
* All the algorithms herein are from the Internet RFC
*
* RFC2612 - CAST6 (128bit block, 128-256bit key)
*
* and implement a simplified cryptography interface.
*/
public sealed class Cast6Engine
: Cast5Engine
{
//====================================
// Useful constants
//====================================
private const int ROUNDS = 12;
private const int BLOCK_SIZE = 16; // bytes = 128 bits
/*
* Put the round and mask keys into an array.
* Kr0[i] => _Kr[i*4 + 0]
*/
private int []_Kr = new int[ROUNDS*4]; // the rotating round key(s)
private uint []_Km = new uint[ROUNDS*4]; // the masking round key(s)
/*
* Key setup
*/
private int []_Tr = new int[24 * 8];
private uint []_Tm = new uint[24 * 8];
private uint[] _workingKey = new uint[8];
public Cast6Engine()
{
}
public override string AlgorithmName
{
get { return "CAST6"; }
}
public override void Reset()
{
}
public override int GetBlockSize()
{
return BLOCK_SIZE;
}
//==================================
// Private Implementation
//==================================
/*
* Creates the subkeys using the same nomenclature
* as described in RFC2612.
*
* See section 2.4
*/
internal override void SetKey(
byte[] key)
{
uint Cm = 0x5a827999;
uint Mm = 0x6ed9eba1;
int Cr = 19;
int Mr = 17;
/*
* Determine the key size here, if required
*
* if keysize < 256 bytes, pad with 0
*
* Typical key sizes => 128, 160, 192, 224, 256
*/
for (int i=0; i< 24; i++)
{
for (int j=0; j< 8; j++)
{
_Tm[i*8 + j] = Cm;
Cm += Mm; //mod 2^32;
_Tr[i*8 + j] = Cr;
Cr = (Cr + Mr) & 0x1f; // mod 32
}
}
byte[] tmpKey = new byte[64];
key.CopyTo(tmpKey, 0);
// now create ABCDEFGH
for (int i = 0; i < 8; i++)
{
_workingKey[i] = Pack.BE_To_UInt32(tmpKey, i*4);
}
// Generate the key schedule
for (int i = 0; i < 12; i++)
{
// KAPPA <- W2i(KAPPA)
int i2 = i*2 *8;
_workingKey[6] ^= F1(_workingKey[7], _Tm[i2], _Tr[i2]);
_workingKey[5] ^= F2(_workingKey[6], _Tm[i2+1], _Tr[i2+1]);
_workingKey[4] ^= F3(_workingKey[5], _Tm[i2+2], _Tr[i2+2]);
_workingKey[3] ^= F1(_workingKey[4], _Tm[i2+3], _Tr[i2+3]);
_workingKey[2] ^= F2(_workingKey[3], _Tm[i2+4], _Tr[i2+4]);
_workingKey[1] ^= F3(_workingKey[2], _Tm[i2+5], _Tr[i2+5]);
_workingKey[0] ^= F1(_workingKey[1], _Tm[i2+6], _Tr[i2+6]);
_workingKey[7] ^= F2(_workingKey[0], _Tm[i2+7], _Tr[i2+7]);
// KAPPA <- W2i+1(KAPPA)
i2 = (i*2 + 1)*8;
_workingKey[6] ^= F1(_workingKey[7], _Tm[i2], _Tr[i2]);
_workingKey[5] ^= F2(_workingKey[6], _Tm[i2+1], _Tr[i2+1]);
_workingKey[4] ^= F3(_workingKey[5], _Tm[i2+2], _Tr[i2+2]);
_workingKey[3] ^= F1(_workingKey[4], _Tm[i2+3], _Tr[i2+3]);
_workingKey[2] ^= F2(_workingKey[3], _Tm[i2+4], _Tr[i2+4]);
_workingKey[1] ^= F3(_workingKey[2], _Tm[i2+5], _Tr[i2+5]);
_workingKey[0] ^= F1(_workingKey[1], _Tm[i2+6], _Tr[i2+6]);
_workingKey[7] ^= F2(_workingKey[0], _Tm[i2+7], _Tr[i2+7]);
// Kr_(i) <- KAPPA
_Kr[i*4] = (int)(_workingKey[0] & 0x1f);
_Kr[i*4 + 1] = (int)(_workingKey[2] & 0x1f);
_Kr[i*4 + 2] = (int)(_workingKey[4] & 0x1f);
_Kr[i*4 + 3] = (int)(_workingKey[6] & 0x1f);
// Km_(i) <- KAPPA
_Km[i*4] = _workingKey[7];
_Km[i*4 + 1] = _workingKey[5];
_Km[i*4 + 2] = _workingKey[3];
_Km[i*4 + 3] = _workingKey[1];
}
}
/**
* Encrypt the given input starting at the given offset and place
* the result in the provided buffer starting at the given offset.
*
* @param src The plaintext buffer
* @param srcIndex An offset into src
* @param dst The ciphertext buffer
* @param dstIndex An offset into dst
*/
internal override int EncryptBlock(
byte[] src,
int srcIndex,
byte[] dst,
int dstIndex)
{
// process the input block
// batch the units up into 4x32 bit chunks and go for it
uint A = Pack.BE_To_UInt32(src, srcIndex);
uint B = Pack.BE_To_UInt32(src, srcIndex + 4);
uint C = Pack.BE_To_UInt32(src, srcIndex + 8);
uint D = Pack.BE_To_UInt32(src, srcIndex + 12);
uint[] result = new uint[4];
CAST_Encipher(A, B, C, D, result);
// now stuff them into the destination block
Pack.UInt32_To_BE(result[0], dst, dstIndex);
Pack.UInt32_To_BE(result[1], dst, dstIndex + 4);
Pack.UInt32_To_BE(result[2], dst, dstIndex + 8);
Pack.UInt32_To_BE(result[3], dst, dstIndex + 12);
return BLOCK_SIZE;
}
/**
* Decrypt the given input starting at the given offset and place
* the result in the provided buffer starting at the given offset.
*
* @param src The plaintext buffer
* @param srcIndex An offset into src
* @param dst The ciphertext buffer
* @param dstIndex An offset into dst
*/
internal override int DecryptBlock(
byte[] src,
int srcIndex,
byte[] dst,
int dstIndex)
{
// process the input block
// batch the units up into 4x32 bit chunks and go for it
uint A = Pack.BE_To_UInt32(src, srcIndex);
uint B = Pack.BE_To_UInt32(src, srcIndex + 4);
uint C = Pack.BE_To_UInt32(src, srcIndex + 8);
uint D = Pack.BE_To_UInt32(src, srcIndex + 12);
uint[] result = new uint[4];
CAST_Decipher(A, B, C, D, result);
// now stuff them into the destination block
Pack.UInt32_To_BE(result[0], dst, dstIndex);
Pack.UInt32_To_BE(result[1], dst, dstIndex + 4);
Pack.UInt32_To_BE(result[2], dst, dstIndex + 8);
Pack.UInt32_To_BE(result[3], dst, dstIndex + 12);
return BLOCK_SIZE;
}
/**
* Does the 12 quad rounds rounds to encrypt the block.
*
* @param A the 00-31 bits of the plaintext block
* @param B the 32-63 bits of the plaintext block
* @param C the 64-95 bits of the plaintext block
* @param D the 96-127 bits of the plaintext block
* @param result the resulting ciphertext
*/
private void CAST_Encipher(
uint A,
uint B,
uint C,
uint D,
uint[] result)
{
for (int i = 0; i < 6; i++)
{
int x = i*4;
// BETA <- Qi(BETA)
C ^= F1(D, _Km[x], _Kr[x]);
B ^= F2(C, _Km[x + 1], _Kr[x + 1]);
A ^= F3(B, _Km[x + 2], _Kr[x + 2]);
D ^= F1(A, _Km[x + 3], _Kr[x + 3]);
}
for (int i = 6; i < 12; i++)
{
int x = i*4;
// BETA <- QBARi(BETA)
D ^= F1(A, _Km[x + 3], _Kr[x + 3]);
A ^= F3(B, _Km[x + 2], _Kr[x + 2]);
B ^= F2(C, _Km[x + 1], _Kr[x + 1]);
C ^= F1(D, _Km[x], _Kr[x]);
}
result[0] = A;
result[1] = B;
result[2] = C;
result[3] = D;
}
/**
* Does the 12 quad rounds rounds to decrypt the block.
*
* @param A the 00-31 bits of the ciphertext block
* @param B the 32-63 bits of the ciphertext block
* @param C the 64-95 bits of the ciphertext block
* @param D the 96-127 bits of the ciphertext block
* @param result the resulting plaintext
*/
private void CAST_Decipher(
uint A,
uint B,
uint C,
uint D,
uint[] result)
{
for (int i = 0; i < 6; i++)
{
int x = (11-i)*4;
// BETA <- Qi(BETA)
C ^= F1(D, _Km[x], _Kr[x]);
B ^= F2(C, _Km[x + 1], _Kr[x + 1]);
A ^= F3(B, _Km[x + 2], _Kr[x + 2]);
D ^= F1(A, _Km[x + 3], _Kr[x + 3]);
}
for (int i=6; i<12; i++)
{
int x = (11-i)*4;
// BETA <- QBARi(BETA)
D ^= F1(A, _Km[x + 3], _Kr[x + 3]);
A ^= F3(B, _Km[x + 2], _Kr[x + 2]);
B ^= F2(C, _Km[x + 1], _Kr[x + 1]);
C ^= F1(D, _Km[x], _Kr[x]);
}
result[0] = A;
result[1] = B;
result[2] = C;
result[3] = D;
}
}
}
|