diff --git a/Crypto/src/crypto/engines/RC532Engine.cs b/Crypto/src/crypto/engines/RC532Engine.cs
new file mode 100644
index 000000000..1661707ef
--- /dev/null
+++ b/Crypto/src/crypto/engines/RC532Engine.cs
@@ -0,0 +1,294 @@
+using System;
+
+using Org.BouncyCastle.Crypto.Parameters;
+
+namespace Org.BouncyCastle.Crypto.Engines
+{
+ /**
+ * The specification for RC5 came from the <code>RC5 Encryption Algorithm</code>
+ * publication in RSA CryptoBytes, Spring of 1995.
+ * <em>http://www.rsasecurity.com/rsalabs/cryptobytes</em>.
+ * <p>
+ * This implementation has a word size of 32 bits.</p>
+ */
+ public class RC532Engine
+ : IBlockCipher
+ {
+ /*
+ * the number of rounds to perform
+ */
+ private int _noRounds;
+
+ /*
+ * the expanded key array of size 2*(rounds + 1)
+ */
+ private int [] _S;
+
+ /*
+ * our "magic constants" for 32 32
+ *
+ * Pw = Odd((e-2) * 2^wordsize)
+ * Qw = Odd((o-2) * 2^wordsize)
+ *
+ * where e is the base of natural logarithms (2.718281828...)
+ * and o is the golden ratio (1.61803398...)
+ */
+ private static readonly int P32 = unchecked((int) 0xb7e15163);
+ private static readonly int Q32 = unchecked((int) 0x9e3779b9);
+
+ private bool forEncryption;
+
+ /**
+ * Create an instance of the RC5 encryption algorithm
+ * and set some defaults
+ */
+ public RC532Engine()
+ {
+ _noRounds = 12; // the default
+// _S = null;
+ }
+
+ public string AlgorithmName
+ {
+ get { return "RC5-32"; }
+ }
+
+ public bool IsPartialBlockOkay
+ {
+ get { return false; }
+ }
+
+ public int GetBlockSize()
+ {
+ return 2 * 4;
+ }
+
+ /**
+ * initialise a RC5-32 cipher.
+ *
+ * @param forEncryption whether or not we are for encryption.
+ * @param parameters the parameters required to set up the cipher.
+ * @exception ArgumentException if the parameters argument is
+ * inappropriate.
+ */
+ public void Init(
+ bool forEncryption,
+ ICipherParameters parameters)
+ {
+ if (typeof(RC5Parameters).IsInstanceOfType(parameters))
+ {
+ RC5Parameters p = (RC5Parameters)parameters;
+
+ _noRounds = p.Rounds;
+
+ SetKey(p.GetKey());
+ }
+ else if (typeof(KeyParameter).IsInstanceOfType(parameters))
+ {
+ KeyParameter p = (KeyParameter)parameters;
+
+ SetKey(p.GetKey());
+ }
+ else
+ {
+ throw new ArgumentException("invalid parameter passed to RC532 init - " + parameters.GetType().ToString());
+ }
+
+ this.forEncryption = forEncryption;
+ }
+
+ public int ProcessBlock(
+ byte[] input,
+ int inOff,
+ byte[] output,
+ int outOff)
+ {
+ return (forEncryption)
+ ? EncryptBlock(input, inOff, output, outOff)
+ : DecryptBlock(input, inOff, output, outOff);
+ }
+
+ public void Reset()
+ {
+ }
+
+ /**
+ * Re-key the cipher.
+ *
+ * @param key the key to be used
+ */
+ private void SetKey(
+ byte[] key)
+ {
+ //
+ // KEY EXPANSION:
+ //
+ // There are 3 phases to the key expansion.
+ //
+ // Phase 1:
+ // Copy the secret key K[0...b-1] into an array L[0..c-1] of
+ // c = ceil(b/u), where u = 32/8 in little-endian order.
+ // In other words, we fill up L using u consecutive key bytes
+ // of K. Any unfilled byte positions in L are zeroed. In the
+ // case that b = c = 0, set c = 1 and L[0] = 0.
+ //
+ int[] L = new int[(key.Length + (4 - 1)) / 4];
+
+ for (int i = 0; i != key.Length; i++)
+ {
+ L[i / 4] += (key[i] & 0xff) << (8 * (i % 4));
+ }
+
+ //
+ // Phase 2:
+ // Initialize S to a particular fixed pseudo-random bit pattern
+ // using an arithmetic progression modulo 2^wordsize determined
+ // by the magic numbers, Pw & Qw.
+ //
+ _S = new int[2*(_noRounds + 1)];
+
+ _S[0] = P32;
+ for (int i=1; i < _S.Length; i++)
+ {
+ _S[i] = (_S[i-1] + Q32);
+ }
+
+ //
+ // Phase 3:
+ // Mix in the user's secret key in 3 passes over the arrays S & L.
+ // The max of the arrays sizes is used as the loop control
+ //
+ int iter;
+
+ if (L.Length > _S.Length)
+ {
+ iter = 3 * L.Length;
+ }
+ else
+ {
+ iter = 3 * _S.Length;
+ }
+
+ int A = 0, B = 0;
+ int ii = 0, jj = 0;
+
+ for (int k = 0; k < iter; k++)
+ {
+ A = _S[ii] = RotateLeft(_S[ii] + A + B, 3);
+ B = L[jj] = RotateLeft( L[jj] + A + B, A+B);
+ ii = (ii+1) % _S.Length;
+ jj = (jj+1) % L.Length;
+ }
+ }
+
+ /**
+ * Encrypt the given block starting at the given offset and place
+ * the result in the provided buffer starting at the given offset.
+ *
+ * @param in in byte buffer containing data to encrypt
+ * @param inOff offset into src buffer
+ * @param out out buffer where encrypted data is written
+ * @param outOff offset into out buffer
+ */
+ private int EncryptBlock(
+ byte[] input,
+ int inOff,
+ byte[] outBytes,
+ int outOff)
+ {
+ int A = BytesToWord(input, inOff) + _S[0];
+ int B = BytesToWord(input, inOff + 4) + _S[1];
+
+ for (int i = 1; i <= _noRounds; i++)
+ {
+ A = RotateLeft(A ^ B, B) + _S[2*i];
+ B = RotateLeft(B ^ A, A) + _S[2*i+1];
+ }
+
+ WordToBytes(A, outBytes, outOff);
+ WordToBytes(B, outBytes, outOff + 4);
+
+ return 2 * 4;
+ }
+
+ private int DecryptBlock(
+ byte[] input,
+ int inOff,
+ byte[] outBytes,
+ int outOff)
+ {
+ int A = BytesToWord(input, inOff);
+ int B = BytesToWord(input, inOff + 4);
+
+ for (int i = _noRounds; i >= 1; i--)
+ {
+ B = RotateRight(B - _S[2*i+1], A) ^ A;
+ A = RotateRight(A - _S[2*i], B) ^ B;
+ }
+
+ WordToBytes(A - _S[0], outBytes, outOff);
+ WordToBytes(B - _S[1], outBytes, outOff + 4);
+
+ return 2 * 4;
+ }
+
+
+ //////////////////////////////////////////////////////////////
+ //
+ // PRIVATE Helper Methods
+ //
+ //////////////////////////////////////////////////////////////
+
+ /**
+ * Perform a left "spin" of the word. The rotation of the given
+ * word <em>x</em> is rotated left by <em>y</em> bits.
+ * Only the <em>lg(32)</em> low-order bits of <em>y</em>
+ * are used to determine the rotation amount. Here it is
+ * assumed that the wordsize used is a power of 2.
+ *
+ * @param x word to rotate
+ * @param y number of bits to rotate % 32
+ */
+ private int RotateLeft(int x, int y) {
+ return ((int) ( (uint) (x << (y & (32-1))) |
+ ((uint) x >> (32 - (y & (32-1)))) )
+ );
+ }
+
+ /**
+ * Perform a right "spin" of the word. The rotation of the given
+ * word <em>x</em> is rotated left by <em>y</em> bits.
+ * Only the <em>lg(32)</em> low-order bits of <em>y</em>
+ * are used to determine the rotation amount. Here it is
+ * assumed that the wordsize used is a power of 2.
+ *
+ * @param x word to rotate
+ * @param y number of bits to rotate % 32
+ */
+ private int RotateRight(int x, int y) {
+ return ((int) ( ((uint) x >> (y & (32-1))) |
+ (uint) (x << (32 - (y & (32-1)))) )
+ );
+ }
+
+ private int BytesToWord(
+ byte[] src,
+ int srcOff)
+ {
+ return (src[srcOff] & 0xff) | ((src[srcOff + 1] & 0xff) << 8)
+ | ((src[srcOff + 2] & 0xff) << 16) | ((src[srcOff + 3] & 0xff) << 24);
+ }
+
+ private void WordToBytes(
+ int word,
+ byte[] dst,
+ int dstOff)
+ {
+ dst[dstOff] = (byte)word;
+ dst[dstOff + 1] = (byte)(word >> 8);
+ dst[dstOff + 2] = (byte)(word >> 16);
+ dst[dstOff + 3] = (byte)(word >> 24);
+ }
+ }
+
+}
|