diff options
Diffstat (limited to 'Crypto/bzip2/src/CBZip2OutputStream.cs')
-rw-r--r-- | Crypto/bzip2/src/CBZip2OutputStream.cs | 1696 |
1 files changed, 1696 insertions, 0 deletions
diff --git a/Crypto/bzip2/src/CBZip2OutputStream.cs b/Crypto/bzip2/src/CBZip2OutputStream.cs new file mode 100644 index 000000000..2c6bed1df --- /dev/null +++ b/Crypto/bzip2/src/CBZip2OutputStream.cs @@ -0,0 +1,1696 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * + */ + +/* + * This package is based on the work done by Keiron Liddle, Aftex Software + * <keiron@aftexsw.com> to whom the Ant project is very grateful for his + * great code. + */ + +using System; +using System.IO; + +namespace Org.BouncyCastle.Apache.Bzip2 +{ + /** + * An output stream that compresses into the BZip2 format (with the file + * header chars) into another stream. + * + * @author <a href="mailto:keiron@aftexsw.com">Keiron Liddle</a> + * + * TODO: Update to BZip2 1.0.1 + * <b>NB:</b> note this class has been modified to add a leading BZ to the + * start of the BZIP2 stream to make it compatible with other PGP programs. + */ + public class CBZip2OutputStream : Stream + { + protected const int SETMASK = (1 << 21); + protected const int CLEARMASK = (~SETMASK); + protected const int GREATER_ICOST = 15; + protected const int LESSER_ICOST = 0; + protected const int SMALL_THRESH = 20; + protected const int DEPTH_THRESH = 10; + + /* + If you are ever unlucky/improbable enough + to get a stack overflow whilst sorting, + increase the following constant and try + again. In practice I have never seen the + stack go above 27 elems, so the following + limit seems very generous. + */ + protected const int QSORT_STACK_SIZE = 1000; + private bool finished; + + private static void Panic() { + //System.out.Println("panic"); + //throw new CError(); + } + + private void MakeMaps() { + int i; + nInUse = 0; + for (i = 0; i < 256; i++) { + if (inUse[i]) { + seqToUnseq[nInUse] = (char) i; + unseqToSeq[i] = (char) nInUse; + nInUse++; + } + } + } + + protected static void HbMakeCodeLengths(char[] len, int[] freq, + int alphaSize, int maxLen) { + /* + Nodes and heap entries run from 1. Entry 0 + for both the heap and nodes is a sentinel. + */ + int nNodes, nHeap, n1, n2, i, j, k; + bool tooLong; + + int[] heap = new int[BZip2Constants.MAX_ALPHA_SIZE + 2]; + int[] weight = new int[BZip2Constants.MAX_ALPHA_SIZE * 2]; + int[] parent = new int[BZip2Constants.MAX_ALPHA_SIZE * 2]; + + for (i = 0; i < alphaSize; i++) { + weight[i + 1] = (freq[i] == 0 ? 1 : freq[i]) << 8; + } + + while (true) { + nNodes = alphaSize; + nHeap = 0; + + heap[0] = 0; + weight[0] = 0; + parent[0] = -2; + + for (i = 1; i <= alphaSize; i++) { + parent[i] = -1; + nHeap++; + heap[nHeap] = i; + { + int zz, tmp; + zz = nHeap; + tmp = heap[zz]; + while (weight[tmp] < weight[heap[zz >> 1]]) { + heap[zz] = heap[zz >> 1]; + zz >>= 1; + } + heap[zz] = tmp; + } + } + if (!(nHeap < (BZip2Constants.MAX_ALPHA_SIZE + 2))) { + Panic(); + } + + while (nHeap > 1) { + n1 = heap[1]; + heap[1] = heap[nHeap]; + nHeap--; + { + int zz = 0, yy = 0, tmp = 0; + zz = 1; + tmp = heap[zz]; + while (true) { + yy = zz << 1; + if (yy > nHeap) { + break; + } + if (yy < nHeap + && weight[heap[yy + 1]] < weight[heap[yy]]) { + yy++; + } + if (weight[tmp] < weight[heap[yy]]) { + break; + } + heap[zz] = heap[yy]; + zz = yy; + } + heap[zz] = tmp; + } + n2 = heap[1]; + heap[1] = heap[nHeap]; + nHeap--; + { + int zz = 0, yy = 0, tmp = 0; + zz = 1; + tmp = heap[zz]; + while (true) { + yy = zz << 1; + if (yy > nHeap) { + break; + } + if (yy < nHeap + && weight[heap[yy + 1]] < weight[heap[yy]]) { + yy++; + } + if (weight[tmp] < weight[heap[yy]]) { + break; + } + heap[zz] = heap[yy]; + zz = yy; + } + heap[zz] = tmp; + } + nNodes++; + parent[n1] = parent[n2] = nNodes; + + weight[nNodes] = (int)((uint)((weight[n1] & 0xffffff00) + + (weight[n2] & 0xffffff00)) + | (uint)(1 + (((weight[n1] & 0x000000ff) > + (weight[n2] & 0x000000ff)) ? + (weight[n1] & 0x000000ff) : + (weight[n2] & 0x000000ff)))); + + parent[nNodes] = -1; + nHeap++; + heap[nHeap] = nNodes; + { + int zz = 0, tmp = 0; + zz = nHeap; + tmp = heap[zz]; + while (weight[tmp] < weight[heap[zz >> 1]]) { + heap[zz] = heap[zz >> 1]; + zz >>= 1; + } + heap[zz] = tmp; + } + } + if (!(nNodes < (BZip2Constants.MAX_ALPHA_SIZE * 2))) { + Panic(); + } + + tooLong = false; + for (i = 1; i <= alphaSize; i++) { + j = 0; + k = i; + while (parent[k] >= 0) { + k = parent[k]; + j++; + } + len[i - 1] = (char) j; + if (j > maxLen) { + tooLong = true; + } + } + + if (!tooLong) { + break; + } + + for (i = 1; i < alphaSize; i++) { + j = weight[i] >> 8; + j = 1 + (j / 2); + weight[i] = j << 8; + } + } + } + + /* + index of the last char in the block, so + the block size == last + 1. + */ + int last; + + /* + index in zptr[] of original string after sorting. + */ + int origPtr; + + /* + always: in the range 0 .. 9. + The current block size is 100000 * this number. + */ + int blockSize100k; + + bool blockRandomised; + + int bytesOut; + int bsBuff; + int bsLive; + CRC mCrc = new CRC(); + + private bool[] inUse = new bool[256]; + private int nInUse; + + private char[] seqToUnseq = new char[256]; + private char[] unseqToSeq = new char[256]; + + private char[] selector = new char[BZip2Constants.MAX_SELECTORS]; + private char[] selectorMtf = new char[BZip2Constants.MAX_SELECTORS]; + + private char[] block; + private int[] quadrant; + private int[] zptr; + private short[] szptr; + private int[] ftab; + + private int nMTF; + + private int[] mtfFreq = new int[BZip2Constants.MAX_ALPHA_SIZE]; + + /* + * Used when sorting. If too many long comparisons + * happen, we stop sorting, randomise the block + * slightly, and try again. + */ + private int workFactor; + private int workDone; + private int workLimit; + private bool firstAttempt; + private int nBlocksRandomised; + + private int currentChar = -1; + private int runLength = 0; + + public CBZip2OutputStream(Stream inStream) : this(inStream, 9) { + } + + public CBZip2OutputStream(Stream inStream, int inBlockSize) + { + block = null; + quadrant = null; + zptr = null; + ftab = null; + + inStream.WriteByte((byte)'B'); + inStream.WriteByte((byte)'Z'); + + BsSetStream(inStream); + + workFactor = 50; + if (inBlockSize > 9) { + inBlockSize = 9; + } + if (inBlockSize < 1) { + inBlockSize = 1; + } + blockSize100k = inBlockSize; + AllocateCompressStructures(); + Initialize(); + InitBlock(); + } + + /** + * + * modified by Oliver Merkel, 010128 + * + */ + public override void WriteByte(byte bv) { + int b = (256 + bv) % 256; + if (currentChar != -1) { + if (currentChar == b) { + runLength++; + if (runLength > 254) { + WriteRun(); + currentChar = -1; + runLength = 0; + } + } else { + WriteRun(); + runLength = 1; + currentChar = b; + } + } else { + currentChar = b; + runLength++; + } + } + + private void WriteRun() { + if (last < allowableBlockSize) { + inUse[currentChar] = true; + for (int i = 0; i < runLength; i++) { + mCrc.UpdateCRC((char) currentChar); + } + switch (runLength) { + case 1: + last++; + block[last + 1] = (char) currentChar; + break; + case 2: + last++; + block[last + 1] = (char) currentChar; + last++; + block[last + 1] = (char) currentChar; + break; + case 3: + last++; + block[last + 1] = (char) currentChar; + last++; + block[last + 1] = (char) currentChar; + last++; + block[last + 1] = (char) currentChar; + break; + default: + inUse[runLength - 4] = true; + last++; + block[last + 1] = (char) currentChar; + last++; + block[last + 1] = (char) currentChar; + last++; + block[last + 1] = (char) currentChar; + last++; + block[last + 1] = (char) currentChar; + last++; + block[last + 1] = (char) (runLength - 4); + break; + } + } else { + EndBlock(); + InitBlock(); + WriteRun(); + } + } + + bool closed = false; + +// protected void Finalize() { +// Close(); +// } + + protected override void Dispose(bool disposing) + { + if (disposing) + { + if (closed) + { + return; + } + + Finish(); + + closed = true; + base.Dispose(disposing); + bsStream.Dispose(); + } + } + + public void Finish() { + if (finished) { + return; + } + + if (runLength > 0) { + WriteRun(); + } + currentChar = -1; + EndBlock(); + EndCompression(); + finished = true; + Flush(); + } + + public override void Flush() { + bsStream.Flush(); + } + + private int blockCRC, combinedCRC; + + private void Initialize() { + bytesOut = 0; + nBlocksRandomised = 0; + + /* Write `magic' bytes h indicating file-format == huffmanised, + followed by a digit indicating blockSize100k. + */ + BsPutUChar('h'); + BsPutUChar('0' + blockSize100k); + + combinedCRC = 0; + } + + private int allowableBlockSize; + + private void InitBlock() { + // blockNo++; + mCrc.InitialiseCRC(); + last = -1; + // ch = 0; + + for (int i = 0; i < 256; i++) { + inUse[i] = false; + } + + /* 20 is just a paranoia constant */ + allowableBlockSize = BZip2Constants.baseBlockSize * blockSize100k - 20; + } + + private void EndBlock() { + blockCRC = mCrc.GetFinalCRC(); + combinedCRC = (combinedCRC << 1) | (int)(((uint)combinedCRC) >> 31); + combinedCRC ^= blockCRC; + + /* sort the block and establish posn of original string */ + DoReversibleTransformation(); + + /* + A 6-byte block header, the value chosen arbitrarily + as 0x314159265359 :-). A 32 bit value does not really + give a strong enough guarantee that the value will not + appear by chance in the compressed datastream. Worst-case + probability of this event, for a 900k block, is about + 2.0e-3 for 32 bits, 1.0e-5 for 40 bits and 4.0e-8 for 48 bits. + For a compressed file of size 100Gb -- about 100000 blocks -- + only a 48-bit marker will do. NB: normal compression/ + decompression do *not* rely on these statistical properties. + They are only important when trying to recover blocks from + damaged files. + */ + BsPutUChar(0x31); + BsPutUChar(0x41); + BsPutUChar(0x59); + BsPutUChar(0x26); + BsPutUChar(0x53); + BsPutUChar(0x59); + + /* Now the block's CRC, so it is in a known place. */ + BsPutint(blockCRC); + + /* Now a single bit indicating randomisation. */ + if (blockRandomised) { + BsW(1, 1); + nBlocksRandomised++; + } else { + BsW(1, 0); + } + + /* Finally, block's contents proper. */ + MoveToFrontCodeAndSend(); + } + + private void EndCompression() { + /* + Now another magic 48-bit number, 0x177245385090, to + indicate the end of the last block. (Sqrt(pi), if + you want to know. I did want to use e, but it contains + too much repetition -- 27 18 28 18 28 46 -- for me + to feel statistically comfortable. Call me paranoid.) + */ + BsPutUChar(0x17); + BsPutUChar(0x72); + BsPutUChar(0x45); + BsPutUChar(0x38); + BsPutUChar(0x50); + BsPutUChar(0x90); + + BsPutint(combinedCRC); + + BsFinishedWithStream(); + } + + private void HbAssignCodes(int[] code, char[] length, int minLen, + int maxLen, int alphaSize) { + int n, vec, i; + + vec = 0; + for (n = minLen; n <= maxLen; n++) { + for (i = 0; i < alphaSize; i++) { + if (length[i] == n) { + code[i] = vec; + vec++; + } + }; + vec <<= 1; + } + } + + private void BsSetStream(Stream f) { + bsStream = f; + bsLive = 0; + bsBuff = 0; + bytesOut = 0; + } + + private void BsFinishedWithStream() { + while (bsLive > 0) { + int ch = (bsBuff >> 24); + try { + bsStream.WriteByte((byte)ch); // write 8-bit + } catch (IOException e) { + throw e; + } + bsBuff <<= 8; + bsLive -= 8; + bytesOut++; + } + } + + private void BsW(int n, int v) { + while (bsLive >= 8) { + int ch = (bsBuff >> 24); + try { + bsStream.WriteByte((byte)ch); // write 8-bit + } catch (IOException e) { + throw e; + } + bsBuff <<= 8; + bsLive -= 8; + bytesOut++; + } + bsBuff |= (v << (32 - bsLive - n)); + bsLive += n; + } + + private void BsPutUChar(int c) { + BsW(8, c); + } + + private void BsPutint(int u) { + BsW(8, (u >> 24) & 0xff); + BsW(8, (u >> 16) & 0xff); + BsW(8, (u >> 8) & 0xff); + BsW(8, u & 0xff); + } + + private void BsPutIntVS(int numBits, int c) { + BsW(numBits, c); + } + + private void SendMTFValues() { + char[][] len = CBZip2InputStream.InitCharArray(BZip2Constants.N_GROUPS, BZip2Constants.MAX_ALPHA_SIZE); + + int v, t, i, j, gs, ge, totc, bt, bc, iter; + int nSelectors = 0, alphaSize, minLen, maxLen, selCtr; + int nGroups; + + alphaSize = nInUse + 2; + for (t = 0; t < BZip2Constants.N_GROUPS; t++) { + for (v = 0; v < alphaSize; v++) { + len[t][v] = (char) GREATER_ICOST; + } + } + + /* Decide how many coding tables to use */ + if (nMTF <= 0) { + Panic(); + } + + if (nMTF < 200) { + nGroups = 2; + } else if (nMTF < 600) { + nGroups = 3; + } else if (nMTF < 1200) { + nGroups = 4; + } else if (nMTF < 2400) { + nGroups = 5; + } else { + nGroups = 6; + } + + /* Generate an initial set of coding tables */ { + int nPart, remF, tFreq, aFreq; + + nPart = nGroups; + remF = nMTF; + gs = 0; + while (nPart > 0) { + tFreq = remF / nPart; + ge = gs - 1; + aFreq = 0; + while (aFreq < tFreq && ge < alphaSize - 1) { + ge++; + aFreq += mtfFreq[ge]; + } + + if (ge > gs && nPart != nGroups && nPart != 1 + && ((nGroups - nPart) % 2 == 1)) { + aFreq -= mtfFreq[ge]; + ge--; + } + + for (v = 0; v < alphaSize; v++) { + if (v >= gs && v <= ge) { + len[nPart - 1][v] = (char) LESSER_ICOST; + } else { + len[nPart - 1][v] = (char) GREATER_ICOST; + } + } + + nPart--; + gs = ge + 1; + remF -= aFreq; + } + } + + int[][] rfreq = CBZip2InputStream.InitIntArray(BZip2Constants.N_GROUPS, BZip2Constants.MAX_ALPHA_SIZE); + int[] fave = new int[BZip2Constants.N_GROUPS]; + short[] cost = new short[BZip2Constants.N_GROUPS]; + /* + Iterate up to N_ITERS times to improve the tables. + */ + for (iter = 0; iter < BZip2Constants.N_ITERS; iter++) { + for (t = 0; t < nGroups; t++) { + fave[t] = 0; + } + + for (t = 0; t < nGroups; t++) { + for (v = 0; v < alphaSize; v++) { + rfreq[t][v] = 0; + } + } + + nSelectors = 0; + totc = 0; + gs = 0; + while (true) { + + /* Set group start & end marks. */ + if (gs >= nMTF) { + break; + } + ge = gs + BZip2Constants.G_SIZE - 1; + if (ge >= nMTF) { + ge = nMTF - 1; + } + + /* + Calculate the cost of this group as coded + by each of the coding tables. + */ + for (t = 0; t < nGroups; t++) { + cost[t] = 0; + } + + if (nGroups == 6) { + short cost0, cost1, cost2, cost3, cost4, cost5; + cost0 = cost1 = cost2 = cost3 = cost4 = cost5 = 0; + for (i = gs; i <= ge; i++) { + short icv = szptr[i]; + cost0 += (short)len[0][icv]; + cost1 += (short)len[1][icv]; + cost2 += (short)len[2][icv]; + cost3 += (short)len[3][icv]; + cost4 += (short)len[4][icv]; + cost5 += (short)len[5][icv]; + } + cost[0] = cost0; + cost[1] = cost1; + cost[2] = cost2; + cost[3] = cost3; + cost[4] = cost4; + cost[5] = cost5; + } else { + for (i = gs; i <= ge; i++) { + short icv = szptr[i]; + for (t = 0; t < nGroups; t++) { + cost[t] += (short)len[t][icv]; + } + } + } + + /* + Find the coding table which is best for this group, + and record its identity in the selector table. + */ + bc = 999999999; + bt = -1; + for (t = 0; t < nGroups; t++) { + if (cost[t] < bc) { + bc = cost[t]; + bt = t; + } + }; + totc += bc; + fave[bt]++; + selector[nSelectors] = (char) bt; + nSelectors++; + + /* + Increment the symbol frequencies for the selected table. + */ + for (i = gs; i <= ge; i++) { + rfreq[bt][szptr[i]]++; + } + + gs = ge + 1; + } + + /* + Recompute the tables based on the accumulated frequencies. + */ + for (t = 0; t < nGroups; t++) { + HbMakeCodeLengths(len[t], rfreq[t], alphaSize, 20); + } + } + + rfreq = null; + fave = null; + cost = null; + + if (!(nGroups < 8)) { + Panic(); + } + if (!(nSelectors < 32768 && nSelectors <= (2 + (900000 / BZip2Constants.G_SIZE)))) { + Panic(); + } + + + /* Compute MTF values for the selectors. */ + { + char[] pos = new char[BZip2Constants.N_GROUPS]; + char ll_i, tmp2, tmp; + for (i = 0; i < nGroups; i++) { + pos[i] = (char) i; + } + for (i = 0; i < nSelectors; i++) { + ll_i = selector[i]; + j = 0; + tmp = pos[j]; + while (ll_i != tmp) { + j++; + tmp2 = tmp; + tmp = pos[j]; + pos[j] = tmp2; + } + pos[0] = tmp; + selectorMtf[i] = (char) j; + } + } + + int[][] code = CBZip2InputStream.InitIntArray(BZip2Constants.N_GROUPS, BZip2Constants.MAX_ALPHA_SIZE); + + /* Assign actual codes for the tables. */ + for (t = 0; t < nGroups; t++) { + minLen = 32; + maxLen = 0; + for (i = 0; i < alphaSize; i++) { + if (len[t][i] > maxLen) { + maxLen = len[t][i]; + } + if (len[t][i] < minLen) { + minLen = len[t][i]; + } + } + if (maxLen > 20) { + Panic(); + } + if (minLen < 1) { + Panic(); + } + HbAssignCodes(code[t], len[t], minLen, maxLen, alphaSize); + } + + /* Transmit the mapping table. */ + { + bool[] inUse16 = new bool[16]; + for (i = 0; i < 16; i++) { + inUse16[i] = false; + for (j = 0; j < 16; j++) { + if (inUse[i * 16 + j]) { + inUse16[i] = true; + } + } + } + + for (i = 0; i < 16; i++) { + if (inUse16[i]) { + BsW(1, 1); + } else { + BsW(1, 0); + } + } + + for (i = 0; i < 16; i++) { + if (inUse16[i]) { + for (j = 0; j < 16; j++) { + if (inUse[i * 16 + j]) { + BsW(1, 1); + } else { + BsW(1, 0); + } + } + } + } + + } + + /* Now the selectors. */ + BsW(3, nGroups); + BsW(15, nSelectors); + for (i = 0; i < nSelectors; i++) { + for (j = 0; j < selectorMtf[i]; j++) { + BsW(1, 1); + } + BsW(1, 0); + } + + /* Now the coding tables. */ + for (t = 0; t < nGroups; t++) { + int curr = len[t][0]; + BsW(5, curr); + for (i = 0; i < alphaSize; i++) { + while (curr < len[t][i]) { + BsW(2, 2); + curr++; /* 10 */ + } + while (curr > len[t][i]) { + BsW(2, 3); + curr--; /* 11 */ + } + BsW(1, 0); + } + } + + /* And finally, the block data proper */ + selCtr = 0; + gs = 0; + while (true) { + if (gs >= nMTF) { + break; + } + ge = gs + BZip2Constants.G_SIZE - 1; + if (ge >= nMTF) { + ge = nMTF - 1; + } + for (i = gs; i <= ge; i++) { + BsW(len[selector[selCtr]][szptr[i]], + code[selector[selCtr]][szptr[i]]); + } + + gs = ge + 1; + selCtr++; + } + if (!(selCtr == nSelectors)) { + Panic(); + } + } + + private void MoveToFrontCodeAndSend() { + BsPutIntVS(24, origPtr); + GenerateMTFValues(); + SendMTFValues(); + } + + private Stream bsStream; + + private void SimpleSort(int lo, int hi, int d) { + int i, j, h, bigN, hp; + int v; + + bigN = hi - lo + 1; + if (bigN < 2) { + return; + } + + hp = 0; + while (incs[hp] < bigN) { + hp++; + } + hp--; + + for (; hp >= 0; hp--) { + h = incs[hp]; + + i = lo + h; + while (true) { + /* copy 1 */ + if (i > hi) { + break; + } + v = zptr[i]; + j = i; + while (FullGtU(zptr[j - h] + d, v + d)) { + zptr[j] = zptr[j - h]; + j = j - h; + if (j <= (lo + h - 1)) { + break; + } + } + zptr[j] = v; + i++; + + /* copy 2 */ + if (i > hi) { + break; + } + v = zptr[i]; + j = i; + while (FullGtU(zptr[j - h] + d, v + d)) { + zptr[j] = zptr[j - h]; + j = j - h; + if (j <= (lo + h - 1)) { + break; + } + } + zptr[j] = v; + i++; + + /* copy 3 */ + if (i > hi) { + break; + } + v = zptr[i]; + j = i; + while (FullGtU(zptr[j - h] + d, v + d)) { + zptr[j] = zptr[j - h]; + j = j - h; + if (j <= (lo + h - 1)) { + break; + } + } + zptr[j] = v; + i++; + + if (workDone > workLimit && firstAttempt) { + return; + } + } + } + } + + private void Vswap(int p1, int p2, int n) { + int temp = 0; + while (n > 0) { + temp = zptr[p1]; + zptr[p1] = zptr[p2]; + zptr[p2] = temp; + p1++; + p2++; + n--; + } + } + + private char Med3(char a, char b, char c) { + char t; + if (a > b) { + t = a; + a = b; + b = t; + } + if (b > c) { + t = b; + b = c; + c = t; + } + if (a > b) { + b = a; + } + return b; + } + + internal class StackElem { + internal int ll; + internal int hh; + internal int dd; + } + + private void QSort3(int loSt, int hiSt, int dSt) { + int unLo, unHi, ltLo, gtHi, med, n, m; + int sp, lo, hi, d; + StackElem[] stack = new StackElem[QSORT_STACK_SIZE]; + for (int count = 0; count < QSORT_STACK_SIZE; count++) { + stack[count] = new StackElem(); + } + + sp = 0; + + stack[sp].ll = loSt; + stack[sp].hh = hiSt; + stack[sp].dd = dSt; + sp++; + + while (sp > 0) { + if (sp >= QSORT_STACK_SIZE) { + Panic(); + } + + sp--; + lo = stack[sp].ll; + hi = stack[sp].hh; + d = stack[sp].dd; + + if (hi - lo < SMALL_THRESH || d > DEPTH_THRESH) { + SimpleSort(lo, hi, d); + if (workDone > workLimit && firstAttempt) { + return; + } + continue; + } + + med = Med3(block[zptr[lo] + d + 1], + block[zptr[hi ] + d + 1], + block[zptr[(lo + hi) >> 1] + d + 1]); + + unLo = ltLo = lo; + unHi = gtHi = hi; + + while (true) { + while (true) { + if (unLo > unHi) { + break; + } + n = ((int) block[zptr[unLo] + d + 1]) - med; + if (n == 0) { + int temp = 0; + temp = zptr[unLo]; + zptr[unLo] = zptr[ltLo]; + zptr[ltLo] = temp; + ltLo++; + unLo++; + continue; + }; + if (n > 0) { + break; + } + unLo++; + } + while (true) { + if (unLo > unHi) { + break; + } + n = ((int) block[zptr[unHi] + d + 1]) - med; + if (n == 0) { + int temp = 0; + temp = zptr[unHi]; + zptr[unHi] = zptr[gtHi]; + zptr[gtHi] = temp; + gtHi--; + unHi--; + continue; + }; + if (n < 0) { + break; + } + unHi--; + } + if (unLo > unHi) { + break; + } + int tempx = zptr[unLo]; + zptr[unLo] = zptr[unHi]; + zptr[unHi] = tempx; + unLo++; + unHi--; + } + + if (gtHi < ltLo) { + stack[sp].ll = lo; + stack[sp].hh = hi; + stack[sp].dd = d + 1; + sp++; + continue; + } + + n = ((ltLo - lo) < (unLo - ltLo)) ? (ltLo - lo) : (unLo - ltLo); + Vswap(lo, unLo - n, n); + m = ((hi - gtHi) < (gtHi - unHi)) ? (hi - gtHi) : (gtHi - unHi); + Vswap(unLo, hi - m + 1, m); + + n = lo + unLo - ltLo - 1; + m = hi - (gtHi - unHi) + 1; + + stack[sp].ll = lo; + stack[sp].hh = n; + stack[sp].dd = d; + sp++; + + stack[sp].ll = n + 1; + stack[sp].hh = m - 1; + stack[sp].dd = d + 1; + sp++; + + stack[sp].ll = m; + stack[sp].hh = hi; + stack[sp].dd = d; + sp++; + } + } + + private void MainSort() { + int i, j, ss, sb; + int[] runningOrder = new int[256]; + int[] copy = new int[256]; + bool[] bigDone = new bool[256]; + int c1, c2; + int numQSorted; + + /* + In the various block-sized structures, live data runs + from 0 to last+NUM_OVERSHOOT_BYTES inclusive. First, + set up the overshoot area for block. + */ + + // if (verbosity >= 4) fprintf ( stderr, " sort initialise ...\n" ); + for (i = 0; i < BZip2Constants.NUM_OVERSHOOT_BYTES; i++) { + block[last + i + 2] = block[(i % (last + 1)) + 1]; + } + for (i = 0; i <= last + BZip2Constants.NUM_OVERSHOOT_BYTES; i++) { + quadrant[i] = 0; + } + + block[0] = (char) (block[last + 1]); + + if (last < 4000) { + /* + Use SimpleSort(), since the full sorting mechanism + has quite a large constant overhead. + */ + for (i = 0; i <= last; i++) { + zptr[i] = i; + } + firstAttempt = false; + workDone = workLimit = 0; + SimpleSort(0, last, 0); + } else { + numQSorted = 0; + for (i = 0; i <= 255; i++) { + bigDone[i] = false; + } + + for (i = 0; i <= 65536; i++) { + ftab[i] = 0; + } + + c1 = block[0]; + for (i = 0; i <= last; i++) { + c2 = block[i + 1]; + ftab[(c1 << 8) + c2]++; + c1 = c2; + } + + for (i = 1; i <= 65536; i++) { + ftab[i] += ftab[i - 1]; + } + + c1 = block[1]; + for (i = 0; i < last; i++) { + c2 = block[i + 2]; + j = (c1 << 8) + c2; + c1 = c2; + ftab[j]--; + zptr[ftab[j]] = i; + } + + j = ((block[last + 1]) << 8) + (block[1]); + ftab[j]--; + zptr[ftab[j]] = last; + + /* + Now ftab contains the first loc of every small bucket. + Calculate the running order, from smallest to largest + big bucket. + */ + + for (i = 0; i <= 255; i++) { + runningOrder[i] = i; + } + + { + int vv; + int h = 1; + do { + h = 3 * h + 1; + } + while (h <= 256); + do { + h = h / 3; + for (i = h; i <= 255; i++) { + vv = runningOrder[i]; + j = i; + while ((ftab[((runningOrder[j - h]) + 1) << 8] + - ftab[(runningOrder[j - h]) << 8]) > + (ftab[((vv) + 1) << 8] - ftab[(vv) << 8])) { + runningOrder[j] = runningOrder[j - h]; + j = j - h; + if (j <= (h - 1)) { + break; + } + } + runningOrder[j] = vv; + } + } while (h != 1); + } + + /* + The main sorting loop. + */ + for (i = 0; i <= 255; i++) { + + /* + Process big buckets, starting with the least full. + */ + ss = runningOrder[i]; + + /* + Complete the big bucket [ss] by quicksorting + any unsorted small buckets [ss, j]. Hopefully + previous pointer-scanning phases have already + completed many of the small buckets [ss, j], so + we don't have to sort them at all. + */ + for (j = 0; j <= 255; j++) { + sb = (ss << 8) + j; + if (!((ftab[sb] & SETMASK) == SETMASK)) { + int lo = ftab[sb] & CLEARMASK; + int hi = (ftab[sb + 1] & CLEARMASK) - 1; + if (hi > lo) { + QSort3(lo, hi, 2); + numQSorted += (hi - lo + 1); + if (workDone > workLimit && firstAttempt) { + return; + } + } + ftab[sb] |= SETMASK; + } + } + + /* + The ss big bucket is now done. Record this fact, + and update the quadrant descriptors. Remember to + update quadrants in the overshoot area too, if + necessary. The "if (i < 255)" test merely skips + this updating for the last bucket processed, since + updating for the last bucket is pointless. + */ + bigDone[ss] = true; + + if (i < 255) { + int bbStart = ftab[ss << 8] & CLEARMASK; + int bbSize = (ftab[(ss + 1) << 8] & CLEARMASK) - bbStart; + int shifts = 0; + + while ((bbSize >> shifts) > 65534) { + shifts++; + } + + for (j = 0; j < bbSize; j++) { + int a2update = zptr[bbStart + j]; + int qVal = (j >> shifts); + quadrant[a2update] = qVal; + if (a2update < BZip2Constants.NUM_OVERSHOOT_BYTES) { + quadrant[a2update + last + 1] = qVal; + } + } + + if (!(((bbSize - 1) >> shifts) <= 65535)) { + Panic(); + } + } + + /* + Now scan this big bucket so as to synthesise the + sorted order for small buckets [t, ss] for all t != ss. + */ + for (j = 0; j <= 255; j++) { + copy[j] = ftab[(j << 8) + ss] & CLEARMASK; + } + + for (j = ftab[ss << 8] & CLEARMASK; + j < (ftab[(ss + 1) << 8] & CLEARMASK); j++) { + c1 = block[zptr[j]]; + if (!bigDone[c1]) { + zptr[copy[c1]] = zptr[j] == 0 ? last : zptr[j] - 1; + copy[c1]++; + } + } + + for (j = 0; j <= 255; j++) { + ftab[(j << 8) + ss] |= SETMASK; + } + } + } + } + + private void RandomiseBlock() { + int i; + int rNToGo = 0; + int rTPos = 0; + for (i = 0; i < 256; i++) { + inUse[i] = false; + } + + for (i = 0; i <= last; i++) { + if (rNToGo == 0) { + rNToGo = (char) BZip2Constants.rNums[rTPos]; + rTPos++; + if (rTPos == 512) { + rTPos = 0; + } + } + rNToGo--; + block[i + 1] ^= (char)((rNToGo == 1) ? 1 : 0); + // handle 16 bit signed numbers + block[i + 1] &= (char)0xFF; + + inUse[block[i + 1]] = true; + } + } + + private void DoReversibleTransformation() { + int i; + + workLimit = workFactor * last; + workDone = 0; + blockRandomised = false; + firstAttempt = true; + + MainSort(); + + if (workDone > workLimit && firstAttempt) { + RandomiseBlock(); + workLimit = workDone = 0; + blockRandomised = true; + firstAttempt = false; + MainSort(); + } + + origPtr = -1; + for (i = 0; i <= last; i++) { + if (zptr[i] == 0) { + origPtr = i; + break; + } + }; + + if (origPtr == -1) { + Panic(); + } + } + + private bool FullGtU(int i1, int i2) { + int k; + char c1, c2; + int s1, s2; + + c1 = block[i1 + 1]; + c2 = block[i2 + 1]; + if (c1 != c2) { + return (c1 > c2); + } + i1++; + i2++; + + c1 = block[i1 + 1]; + c2 = block[i2 + 1]; + if (c1 != c2) { + return (c1 > c2); + } + i1++; + i2++; + + c1 = block[i1 + 1]; + c2 = block[i2 + 1]; + if (c1 != c2) { + return (c1 > c2); + } + i1++; + i2++; + + c1 = block[i1 + 1]; + c2 = block[i2 + 1]; + if (c1 != c2) { + return (c1 > c2); + } + i1++; + i2++; + + c1 = block[i1 + 1]; + c2 = block[i2 + 1]; + if (c1 != c2) { + return (c1 > c2); + } + i1++; + i2++; + + c1 = block[i1 + 1]; + c2 = block[i2 + 1]; + if (c1 != c2) { + return (c1 > c2); + } + i1++; + i2++; + + k = last + 1; + + do { + c1 = block[i1 + 1]; + c2 = block[i2 + 1]; + if (c1 != c2) { + return (c1 > c2); + } + s1 = quadrant[i1]; + s2 = quadrant[i2]; + if (s1 != s2) { + return (s1 > s2); + } + i1++; + i2++; + + c1 = block[i1 + 1]; + c2 = block[i2 + 1]; + if (c1 != c2) { + return (c1 > c2); + } + s1 = quadrant[i1]; + s2 = quadrant[i2]; + if (s1 != s2) { + return (s1 > s2); + } + i1++; + i2++; + + c1 = block[i1 + 1]; + c2 = block[i2 + 1]; + if (c1 != c2) { + return (c1 > c2); + } + s1 = quadrant[i1]; + s2 = quadrant[i2]; + if (s1 != s2) { + return (s1 > s2); + } + i1++; + i2++; + + c1 = block[i1 + 1]; + c2 = block[i2 + 1]; + if (c1 != c2) { + return (c1 > c2); + } + s1 = quadrant[i1]; + s2 = quadrant[i2]; + if (s1 != s2) { + return (s1 > s2); + } + i1++; + i2++; + + if (i1 > last) { + i1 -= last; + i1--; + }; + if (i2 > last) { + i2 -= last; + i2--; + }; + + k -= 4; + workDone++; + } while (k >= 0); + + return false; + } + + /* + Knuth's increments seem to work better + than Incerpi-Sedgewick here. Possibly + because the number of elems to sort is + usually small, typically <= 20. + */ + private int[] incs = { 1, 4, 13, 40, 121, 364, 1093, 3280, + 9841, 29524, 88573, 265720, + 797161, 2391484 }; + + private void AllocateCompressStructures() { + int n = BZip2Constants.baseBlockSize * blockSize100k; + block = new char[(n + 1 + BZip2Constants.NUM_OVERSHOOT_BYTES)]; + quadrant = new int[(n + BZip2Constants.NUM_OVERSHOOT_BYTES)]; + zptr = new int[n]; + ftab = new int[65537]; + + if (block == null || quadrant == null || zptr == null + || ftab == null) { + //int totalDraw = (n + 1 + NUM_OVERSHOOT_BYTES) + (n + NUM_OVERSHOOT_BYTES) + n + 65537; + //compressOutOfMemory ( totalDraw, n ); + } + + /* + The back end needs a place to store the MTF values + whilst it calculates the coding tables. We could + put them in the zptr array. However, these values + will fit in a short, so we overlay szptr at the + start of zptr, in the hope of reducing the number + of cache misses induced by the multiple traversals + of the MTF values when calculating coding tables. + Seems to improve compression speed by about 1%. + */ + // szptr = zptr; + + + szptr = new short[2 * n]; + } + + private void GenerateMTFValues() { + char[] yy = new char[256]; + int i, j; + char tmp; + char tmp2; + int zPend; + int wr; + int EOB; + + MakeMaps(); + EOB = nInUse + 1; + + for (i = 0; i <= EOB; i++) { + mtfFreq[i] = 0; + } + + wr = 0; + zPend = 0; + for (i = 0; i < nInUse; i++) { + yy[i] = (char) i; + } + + + for (i = 0; i <= last; i++) { + char ll_i; + + ll_i = unseqToSeq[block[zptr[i]]]; + + j = 0; + tmp = yy[j]; + while (ll_i != tmp) { + j++; + tmp2 = tmp; + tmp = yy[j]; + yy[j] = tmp2; + }; + yy[0] = tmp; + + if (j == 0) { + zPend++; + } else { + if (zPend > 0) { + zPend--; + while (true) { + switch (zPend % 2) { + case 0: + szptr[wr] = (short) BZip2Constants.RUNA; + wr++; + mtfFreq[BZip2Constants.RUNA]++; + break; + case 1: + szptr[wr] = (short) BZip2Constants.RUNB; + wr++; + mtfFreq[BZip2Constants.RUNB]++; + break; + }; + if (zPend < 2) { + break; + } + zPend = (zPend - 2) / 2; + }; + zPend = 0; + } + szptr[wr] = (short) (j + 1); + wr++; + mtfFreq[j + 1]++; + } + } + + if (zPend > 0) { + zPend--; + while (true) { + switch (zPend % 2) { + case 0: + szptr[wr] = (short) BZip2Constants.RUNA; + wr++; + mtfFreq[BZip2Constants.RUNA]++; + break; + case 1: + szptr[wr] = (short) BZip2Constants.RUNB; + wr++; + mtfFreq[BZip2Constants.RUNB]++; + break; + } + if (zPend < 2) { + break; + } + zPend = (zPend - 2) / 2; + } + } + + szptr[wr] = (short) EOB; + wr++; + mtfFreq[EOB]++; + + nMTF = wr; + } + + public override int Read(byte[] buffer, int offset, int count) { + return 0; + } + + public override long Seek(long offset, SeekOrigin origin) { + return 0; + } + + public override void SetLength(long value) { + } + + public override void Write(byte[] buffer, int offset, int count) { + for (int k = 0; k < count; ++k) { + WriteByte(buffer[k + offset]); + } + } + + public override bool CanRead { + get { + return false; + } + } + + public override bool CanSeek { + get { + return false; + } + } + + public override bool CanWrite { + get { + return true; + } + } + + public override long Length { + get { + return 0; + } + } + + public override long Position { + get { + return 0; + } + set { + } + } + } +} \ No newline at end of file |