diff --git a/crypto/src/pqc/crypto/falcon/FPREngine.cs b/crypto/src/pqc/crypto/falcon/FPREngine.cs
new file mode 100644
index 000000000..d92c23235
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FPREngine.cs
@@ -0,0 +1,1311 @@
+using System;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ class FPREngine
+ {
+ internal FalconFPR FPR(double v)
+ {
+ return new FalconFPR(v);
+ }
+
+ /*
+ * License from the reference C code (the code was copied then modified
+ * to function in C#):
+ * ==========================(LICENSE BEGIN)============================
+ *
+ * Copyright (c) 2017-2019 Falcon Project
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * ===========================(LICENSE END)=============================
+ */
+
+ internal FalconFPR fpr_of(long i)
+ {
+ return FPR((double)i);
+ }
+
+
+
+ internal long fpr_rint(FalconFPR x)
+ {
+ /*
+ * We do not want to use llrint() since it might be not
+ * constant-time.
+ *
+ * Suppose that x >= 0. If x >= 2^52, then it is already an
+ * integer. Otherwise, if x < 2^52, then computing x+2^52 will
+ * yield a value that will be rounded to the nearest integer
+ * with exactly the right rules (round-to-nearest-even).
+ *
+ * In order to have constant-time processing, we must do the
+ * computation for both x >= 0 and x < 0 cases, and use a
+ * cast to an integer to access the sign and select the proper
+ * value. Such casts also allow us to find out if |x| < 2^52.
+ */
+ long sx, tx, rp, rn, m;
+ uint ub;
+
+ sx = (long)(x.v - 1.0);
+ tx = (long)x.v;
+ rp = (long)(x.v + 4503599627370496.0) - 4503599627370496;
+ rn = (long)(x.v - 4503599627370496.0) + 4503599627370496;
+
+ /*
+ * If tx >= 2^52 or tx < -2^52, then result is tx.
+ * Otherwise, if sx >= 0, then result is rp.
+ * Otherwise, result is rn. We use the fact that when x is
+ * close to 0 (|x| <= 0.25) then both rp and rn are correct;
+ * and if x is not close to 0, then trunc(x-1.0) yields the
+ * appropriate sign.
+ */
+
+ /*
+ * Clamp rp to zero if tx < 0.
+ * Clamp rn to zero if tx >= 0.
+ */
+ m = sx >> 63;
+ rn &= m;
+ rp &= ~m;
+
+ /*
+ * Get the 12 upper bits of tx; if they are not all zeros or
+ * all ones, then tx >= 2^52 or tx < -2^52, and we clamp both
+ * rp and rn to zero. Otherwise, we clamp tx to zero.
+ */
+ ub = (uint)((ulong)tx >> 52);
+ m = -(long)((((ub + 1) & 0xFFF) - 2) >> 31);
+ rp &= m;
+ rn &= m;
+ tx &= ~m;
+
+ /*
+ * Only one of tx, rn or rp (at most) can be non-zero at this
+ * point.
+ */
+ return tx | rn | rp;
+ }
+
+ internal long fpr_floor(FalconFPR x)
+ {
+ long r;
+
+ /*
+ * The cast performs a trunc() (rounding toward 0) and thus is
+ * wrong by 1 for most negative values. The correction below is
+ * constant-time as long as the compiler turns the
+ * floating-point conversion result into a 0/1 integer without a
+ * conditional branch or another non-constant-time construction.
+ * This should hold on all modern architectures with an FPU (and
+ * if it is false on a given arch, then chances are that the FPU
+ * itself is not constant-time, making the point moot).
+ */
+ r = (long)x.v;
+ return r - ((x.v < (double)r) ? 1 : 0);
+ }
+
+ internal long fpr_trunc(FalconFPR x)
+ {
+ return (long)x.v;
+ }
+
+ internal FalconFPR fpr_add(FalconFPR x, FalconFPR y)
+ {
+ return FPR(x.v + y.v);
+ }
+
+ internal FalconFPR fpr_sub(FalconFPR x, FalconFPR y)
+ {
+ return FPR(x.v - y.v);
+ }
+
+ internal FalconFPR fpr_neg(FalconFPR x)
+ {
+ return FPR(-x.v);
+ }
+
+ internal FalconFPR fpr_half(FalconFPR x)
+ {
+ return FPR(x.v * 0.5);
+ }
+
+ internal FalconFPR fpr_double(FalconFPR x)
+ {
+ return FPR(x.v + x.v);
+ }
+
+ internal FalconFPR fpr_mul(FalconFPR x, FalconFPR y)
+ {
+ return FPR(x.v * y.v);
+ }
+
+ internal FalconFPR fpr_sqr(FalconFPR x)
+ {
+ return FPR(x.v * x.v);
+ }
+
+ internal FalconFPR fpr_inv(FalconFPR x)
+ {
+ return FPR(1.0 / x.v);
+ }
+
+ internal FalconFPR fpr_div(FalconFPR x, FalconFPR y)
+ {
+ return FPR(x.v / y.v);
+ }
+
+
+ internal FalconFPR fpr_sqrt(FalconFPR x)
+ {
+ return FPR(System.Math.Sqrt(x.v));
+ }
+
+ internal bool fpr_lt(FalconFPR x, FalconFPR y)
+ {
+ return x.v < y.v;
+ }
+
+ internal ulong fpr_expm_p63(FalconFPR x, FalconFPR ccs)
+ {
+ /*
+ * Polynomial approximation of exp(-x) is taken from FACCT:
+ * https://eprint.iacr.org/2018/1234
+ * Specifically, values are extracted from the implementation
+ * referenced from the FACCT article, and available at:
+ * https://github.com/raykzhao/gaussian
+ * Tests over more than 24 billions of random inputs in the
+ * 0..log(2) range have never shown a deviation larger than
+ * 2^(-50) from the true mathematical value.
+ */
+
+
+ /*
+ * Normal implementation uses Horner's method, which minimizes
+ * the number of operations.
+ */
+
+ double d, y;
+
+ d = x.v;
+ y = 0.000000002073772366009083061987;
+ y = 0.000000025299506379442070029551 - y * d;
+ y = 0.000000275607356160477811864927 - y * d;
+ y = 0.000002755586350219122514855659 - y * d;
+ y = 0.000024801566833585381209939524 - y * d;
+ y = 0.000198412739277311890541063977 - y * d;
+ y = 0.001388888894063186997887560103 - y * d;
+ y = 0.008333333327800835146903501993 - y * d;
+ y = 0.041666666666110491190622155955 - y * d;
+ y = 0.166666666666984014666397229121 - y * d;
+ y = 0.500000000000019206858326015208 - y * d;
+ y = 0.999999999999994892974086724280 - y * d;
+ y = 1.000000000000000000000000000000 - y * d;
+ y *= ccs.v;
+ return (ulong)(y * fpr_ptwo63.v);
+
+ }
+
+ internal FalconFPR[] fpr_gm_tab = {
+ new FalconFPR(0), new FalconFPR(0), /* unused */
+ new FalconFPR(-0.000000000000000000000000000), new FalconFPR( 1.000000000000000000000000000),
+ new FalconFPR( 0.707106781186547524400844362), new FalconFPR( 0.707106781186547524400844362),
+ new FalconFPR(-0.707106781186547524400844362), new FalconFPR( 0.707106781186547524400844362),
+ new FalconFPR( 0.923879532511286756128183189), new FalconFPR( 0.382683432365089771728459984),
+ new FalconFPR(-0.382683432365089771728459984), new FalconFPR( 0.923879532511286756128183189),
+ new FalconFPR( 0.382683432365089771728459984), new FalconFPR( 0.923879532511286756128183189),
+ new FalconFPR(-0.923879532511286756128183189), new FalconFPR( 0.382683432365089771728459984),
+ new FalconFPR( 0.980785280403230449126182236), new FalconFPR( 0.195090322016128267848284868),
+ new FalconFPR(-0.195090322016128267848284868), new FalconFPR( 0.980785280403230449126182236),
+ new FalconFPR( 0.555570233019602224742830814), new FalconFPR( 0.831469612302545237078788378),
+ new FalconFPR(-0.831469612302545237078788378), new FalconFPR( 0.555570233019602224742830814),
+ new FalconFPR( 0.831469612302545237078788378), new FalconFPR( 0.555570233019602224742830814),
+ new FalconFPR(-0.555570233019602224742830814), new FalconFPR( 0.831469612302545237078788378),
+ new FalconFPR( 0.195090322016128267848284868), new FalconFPR( 0.980785280403230449126182236),
+ new FalconFPR(-0.980785280403230449126182236), new FalconFPR( 0.195090322016128267848284868),
+ new FalconFPR( 0.995184726672196886244836953), new FalconFPR( 0.098017140329560601994195564),
+ new FalconFPR(-0.098017140329560601994195564), new FalconFPR( 0.995184726672196886244836953),
+ new FalconFPR( 0.634393284163645498215171613), new FalconFPR( 0.773010453362736960810906610),
+ new FalconFPR(-0.773010453362736960810906610), new FalconFPR( 0.634393284163645498215171613),
+ new FalconFPR( 0.881921264348355029712756864), new FalconFPR( 0.471396736825997648556387626),
+ new FalconFPR(-0.471396736825997648556387626), new FalconFPR( 0.881921264348355029712756864),
+ new FalconFPR( 0.290284677254462367636192376), new FalconFPR( 0.956940335732208864935797887),
+ new FalconFPR(-0.956940335732208864935797887), new FalconFPR( 0.290284677254462367636192376),
+ new FalconFPR( 0.956940335732208864935797887), new FalconFPR( 0.290284677254462367636192376),
+ new FalconFPR(-0.290284677254462367636192376), new FalconFPR( 0.956940335732208864935797887),
+ new FalconFPR( 0.471396736825997648556387626), new FalconFPR( 0.881921264348355029712756864),
+ new FalconFPR(-0.881921264348355029712756864), new FalconFPR( 0.471396736825997648556387626),
+ new FalconFPR( 0.773010453362736960810906610), new FalconFPR( 0.634393284163645498215171613),
+ new FalconFPR(-0.634393284163645498215171613), new FalconFPR( 0.773010453362736960810906610),
+ new FalconFPR( 0.098017140329560601994195564), new FalconFPR( 0.995184726672196886244836953),
+ new FalconFPR(-0.995184726672196886244836953), new FalconFPR( 0.098017140329560601994195564),
+ new FalconFPR( 0.998795456205172392714771605), new FalconFPR( 0.049067674327418014254954977),
+ new FalconFPR(-0.049067674327418014254954977), new FalconFPR( 0.998795456205172392714771605),
+ new FalconFPR( 0.671558954847018400625376850), new FalconFPR( 0.740951125354959091175616897),
+ new FalconFPR(-0.740951125354959091175616897), new FalconFPR( 0.671558954847018400625376850),
+ new FalconFPR( 0.903989293123443331586200297), new FalconFPR( 0.427555093430282094320966857),
+ new FalconFPR(-0.427555093430282094320966857), new FalconFPR( 0.903989293123443331586200297),
+ new FalconFPR( 0.336889853392220050689253213), new FalconFPR( 0.941544065183020778412509403),
+ new FalconFPR(-0.941544065183020778412509403), new FalconFPR( 0.336889853392220050689253213),
+ new FalconFPR( 0.970031253194543992603984207), new FalconFPR( 0.242980179903263889948274162),
+ new FalconFPR(-0.242980179903263889948274162), new FalconFPR( 0.970031253194543992603984207),
+ new FalconFPR( 0.514102744193221726593693839), new FalconFPR( 0.857728610000272069902269984),
+ new FalconFPR(-0.857728610000272069902269984), new FalconFPR( 0.514102744193221726593693839),
+ new FalconFPR( 0.803207531480644909806676513), new FalconFPR( 0.595699304492433343467036529),
+ new FalconFPR(-0.595699304492433343467036529), new FalconFPR( 0.803207531480644909806676513),
+ new FalconFPR( 0.146730474455361751658850130), new FalconFPR( 0.989176509964780973451673738),
+ new FalconFPR(-0.989176509964780973451673738), new FalconFPR( 0.146730474455361751658850130),
+ new FalconFPR( 0.989176509964780973451673738), new FalconFPR( 0.146730474455361751658850130),
+ new FalconFPR(-0.146730474455361751658850130), new FalconFPR( 0.989176509964780973451673738),
+ new FalconFPR( 0.595699304492433343467036529), new FalconFPR( 0.803207531480644909806676513),
+ new FalconFPR(-0.803207531480644909806676513), new FalconFPR( 0.595699304492433343467036529),
+ new FalconFPR( 0.857728610000272069902269984), new FalconFPR( 0.514102744193221726593693839),
+ new FalconFPR(-0.514102744193221726593693839), new FalconFPR( 0.857728610000272069902269984),
+ new FalconFPR( 0.242980179903263889948274162), new FalconFPR( 0.970031253194543992603984207),
+ new FalconFPR(-0.970031253194543992603984207), new FalconFPR( 0.242980179903263889948274162),
+ new FalconFPR( 0.941544065183020778412509403), new FalconFPR( 0.336889853392220050689253213),
+ new FalconFPR(-0.336889853392220050689253213), new FalconFPR( 0.941544065183020778412509403),
+ new FalconFPR( 0.427555093430282094320966857), new FalconFPR( 0.903989293123443331586200297),
+ new FalconFPR(-0.903989293123443331586200297), new FalconFPR( 0.427555093430282094320966857),
+ new FalconFPR( 0.740951125354959091175616897), new FalconFPR( 0.671558954847018400625376850),
+ new FalconFPR(-0.671558954847018400625376850), new FalconFPR( 0.740951125354959091175616897),
+ new FalconFPR( 0.049067674327418014254954977), new FalconFPR( 0.998795456205172392714771605),
+ new FalconFPR(-0.998795456205172392714771605), new FalconFPR( 0.049067674327418014254954977),
+ new FalconFPR( 0.999698818696204220115765650), new FalconFPR( 0.024541228522912288031734529),
+ new FalconFPR(-0.024541228522912288031734529), new FalconFPR( 0.999698818696204220115765650),
+ new FalconFPR( 0.689540544737066924616730630), new FalconFPR( 0.724247082951466920941069243),
+ new FalconFPR(-0.724247082951466920941069243), new FalconFPR( 0.689540544737066924616730630),
+ new FalconFPR( 0.914209755703530654635014829), new FalconFPR( 0.405241314004989870908481306),
+ new FalconFPR(-0.405241314004989870908481306), new FalconFPR( 0.914209755703530654635014829),
+ new FalconFPR( 0.359895036534988148775104572), new FalconFPR( 0.932992798834738887711660256),
+ new FalconFPR(-0.932992798834738887711660256), new FalconFPR( 0.359895036534988148775104572),
+ new FalconFPR( 0.975702130038528544460395766), new FalconFPR( 0.219101240156869797227737547),
+ new FalconFPR(-0.219101240156869797227737547), new FalconFPR( 0.975702130038528544460395766),
+ new FalconFPR( 0.534997619887097210663076905), new FalconFPR( 0.844853565249707073259571205),
+ new FalconFPR(-0.844853565249707073259571205), new FalconFPR( 0.534997619887097210663076905),
+ new FalconFPR( 0.817584813151583696504920884), new FalconFPR( 0.575808191417845300745972454),
+ new FalconFPR(-0.575808191417845300745972454), new FalconFPR( 0.817584813151583696504920884),
+ new FalconFPR( 0.170961888760301226363642357), new FalconFPR( 0.985277642388941244774018433),
+ new FalconFPR(-0.985277642388941244774018433), new FalconFPR( 0.170961888760301226363642357),
+ new FalconFPR( 0.992479534598709998156767252), new FalconFPR( 0.122410675199216198498704474),
+ new FalconFPR(-0.122410675199216198498704474), new FalconFPR( 0.992479534598709998156767252),
+ new FalconFPR( 0.615231590580626845484913563), new FalconFPR( 0.788346427626606262009164705),
+ new FalconFPR(-0.788346427626606262009164705), new FalconFPR( 0.615231590580626845484913563),
+ new FalconFPR( 0.870086991108711418652292404), new FalconFPR( 0.492898192229784036873026689),
+ new FalconFPR(-0.492898192229784036873026689), new FalconFPR( 0.870086991108711418652292404),
+ new FalconFPR( 0.266712757474898386325286515), new FalconFPR( 0.963776065795439866686464356),
+ new FalconFPR(-0.963776065795439866686464356), new FalconFPR( 0.266712757474898386325286515),
+ new FalconFPR( 0.949528180593036667195936074), new FalconFPR( 0.313681740398891476656478846),
+ new FalconFPR(-0.313681740398891476656478846), new FalconFPR( 0.949528180593036667195936074),
+ new FalconFPR( 0.449611329654606600046294579), new FalconFPR( 0.893224301195515320342416447),
+ new FalconFPR(-0.893224301195515320342416447), new FalconFPR( 0.449611329654606600046294579),
+ new FalconFPR( 0.757208846506484547575464054), new FalconFPR( 0.653172842953776764084203014),
+ new FalconFPR(-0.653172842953776764084203014), new FalconFPR( 0.757208846506484547575464054),
+ new FalconFPR( 0.073564563599667423529465622), new FalconFPR( 0.997290456678690216135597140),
+ new FalconFPR(-0.997290456678690216135597140), new FalconFPR( 0.073564563599667423529465622),
+ new FalconFPR( 0.997290456678690216135597140), new FalconFPR( 0.073564563599667423529465622),
+ new FalconFPR(-0.073564563599667423529465622), new FalconFPR( 0.997290456678690216135597140),
+ new FalconFPR( 0.653172842953776764084203014), new FalconFPR( 0.757208846506484547575464054),
+ new FalconFPR(-0.757208846506484547575464054), new FalconFPR( 0.653172842953776764084203014),
+ new FalconFPR( 0.893224301195515320342416447), new FalconFPR( 0.449611329654606600046294579),
+ new FalconFPR(-0.449611329654606600046294579), new FalconFPR( 0.893224301195515320342416447),
+ new FalconFPR( 0.313681740398891476656478846), new FalconFPR( 0.949528180593036667195936074),
+ new FalconFPR(-0.949528180593036667195936074), new FalconFPR( 0.313681740398891476656478846),
+ new FalconFPR( 0.963776065795439866686464356), new FalconFPR( 0.266712757474898386325286515),
+ new FalconFPR(-0.266712757474898386325286515), new FalconFPR( 0.963776065795439866686464356),
+ new FalconFPR( 0.492898192229784036873026689), new FalconFPR( 0.870086991108711418652292404),
+ new FalconFPR(-0.870086991108711418652292404), new FalconFPR( 0.492898192229784036873026689),
+ new FalconFPR( 0.788346427626606262009164705), new FalconFPR( 0.615231590580626845484913563),
+ new FalconFPR(-0.615231590580626845484913563), new FalconFPR( 0.788346427626606262009164705),
+ new FalconFPR( 0.122410675199216198498704474), new FalconFPR( 0.992479534598709998156767252),
+ new FalconFPR(-0.992479534598709998156767252), new FalconFPR( 0.122410675199216198498704474),
+ new FalconFPR( 0.985277642388941244774018433), new FalconFPR( 0.170961888760301226363642357),
+ new FalconFPR(-0.170961888760301226363642357), new FalconFPR( 0.985277642388941244774018433),
+ new FalconFPR( 0.575808191417845300745972454), new FalconFPR( 0.817584813151583696504920884),
+ new FalconFPR(-0.817584813151583696504920884), new FalconFPR( 0.575808191417845300745972454),
+ new FalconFPR( 0.844853565249707073259571205), new FalconFPR( 0.534997619887097210663076905),
+ new FalconFPR(-0.534997619887097210663076905), new FalconFPR( 0.844853565249707073259571205),
+ new FalconFPR( 0.219101240156869797227737547), new FalconFPR( 0.975702130038528544460395766),
+ new FalconFPR(-0.975702130038528544460395766), new FalconFPR( 0.219101240156869797227737547),
+ new FalconFPR( 0.932992798834738887711660256), new FalconFPR( 0.359895036534988148775104572),
+ new FalconFPR(-0.359895036534988148775104572), new FalconFPR( 0.932992798834738887711660256),
+ new FalconFPR( 0.405241314004989870908481306), new FalconFPR( 0.914209755703530654635014829),
+ new FalconFPR(-0.914209755703530654635014829), new FalconFPR( 0.405241314004989870908481306),
+ new FalconFPR( 0.724247082951466920941069243), new FalconFPR( 0.689540544737066924616730630),
+ new FalconFPR(-0.689540544737066924616730630), new FalconFPR( 0.724247082951466920941069243),
+ new FalconFPR( 0.024541228522912288031734529), new FalconFPR( 0.999698818696204220115765650),
+ new FalconFPR(-0.999698818696204220115765650), new FalconFPR( 0.024541228522912288031734529),
+ new FalconFPR( 0.999924701839144540921646491), new FalconFPR( 0.012271538285719926079408262),
+ new FalconFPR(-0.012271538285719926079408262), new FalconFPR( 0.999924701839144540921646491),
+ new FalconFPR( 0.698376249408972853554813503), new FalconFPR( 0.715730825283818654125532623),
+ new FalconFPR(-0.715730825283818654125532623), new FalconFPR( 0.698376249408972853554813503),
+ new FalconFPR( 0.919113851690057743908477789), new FalconFPR( 0.393992040061048108596188661),
+ new FalconFPR(-0.393992040061048108596188661), new FalconFPR( 0.919113851690057743908477789),
+ new FalconFPR( 0.371317193951837543411934967), new FalconFPR( 0.928506080473215565937167396),
+ new FalconFPR(-0.928506080473215565937167396), new FalconFPR( 0.371317193951837543411934967),
+ new FalconFPR( 0.978317370719627633106240097), new FalconFPR( 0.207111376192218549708116020),
+ new FalconFPR(-0.207111376192218549708116020), new FalconFPR( 0.978317370719627633106240097),
+ new FalconFPR( 0.545324988422046422313987347), new FalconFPR( 0.838224705554838043186996856),
+ new FalconFPR(-0.838224705554838043186996856), new FalconFPR( 0.545324988422046422313987347),
+ new FalconFPR( 0.824589302785025264474803737), new FalconFPR( 0.565731810783613197389765011),
+ new FalconFPR(-0.565731810783613197389765011), new FalconFPR( 0.824589302785025264474803737),
+ new FalconFPR( 0.183039887955140958516532578), new FalconFPR( 0.983105487431216327180301155),
+ new FalconFPR(-0.983105487431216327180301155), new FalconFPR( 0.183039887955140958516532578),
+ new FalconFPR( 0.993906970002356041546922813), new FalconFPR( 0.110222207293883058807899140),
+ new FalconFPR(-0.110222207293883058807899140), new FalconFPR( 0.993906970002356041546922813),
+ new FalconFPR( 0.624859488142386377084072816), new FalconFPR( 0.780737228572094478301588484),
+ new FalconFPR(-0.780737228572094478301588484), new FalconFPR( 0.624859488142386377084072816),
+ new FalconFPR( 0.876070094195406607095844268), new FalconFPR( 0.482183772079122748517344481),
+ new FalconFPR(-0.482183772079122748517344481), new FalconFPR( 0.876070094195406607095844268),
+ new FalconFPR( 0.278519689385053105207848526), new FalconFPR( 0.960430519415565811199035138),
+ new FalconFPR(-0.960430519415565811199035138), new FalconFPR( 0.278519689385053105207848526),
+ new FalconFPR( 0.953306040354193836916740383), new FalconFPR( 0.302005949319228067003463232),
+ new FalconFPR(-0.302005949319228067003463232), new FalconFPR( 0.953306040354193836916740383),
+ new FalconFPR( 0.460538710958240023633181487), new FalconFPR( 0.887639620402853947760181617),
+ new FalconFPR(-0.887639620402853947760181617), new FalconFPR( 0.460538710958240023633181487),
+ new FalconFPR( 0.765167265622458925888815999), new FalconFPR( 0.643831542889791465068086063),
+ new FalconFPR(-0.643831542889791465068086063), new FalconFPR( 0.765167265622458925888815999),
+ new FalconFPR( 0.085797312344439890461556332), new FalconFPR( 0.996312612182778012627226190),
+ new FalconFPR(-0.996312612182778012627226190), new FalconFPR( 0.085797312344439890461556332),
+ new FalconFPR( 0.998118112900149207125155861), new FalconFPR( 0.061320736302208577782614593),
+ new FalconFPR(-0.061320736302208577782614593), new FalconFPR( 0.998118112900149207125155861),
+ new FalconFPR( 0.662415777590171761113069817), new FalconFPR( 0.749136394523459325469203257),
+ new FalconFPR(-0.749136394523459325469203257), new FalconFPR( 0.662415777590171761113069817),
+ new FalconFPR( 0.898674465693953843041976744), new FalconFPR( 0.438616238538527637647025738),
+ new FalconFPR(-0.438616238538527637647025738), new FalconFPR( 0.898674465693953843041976744),
+ new FalconFPR( 0.325310292162262934135954708), new FalconFPR( 0.945607325380521325730945387),
+ new FalconFPR(-0.945607325380521325730945387), new FalconFPR( 0.325310292162262934135954708),
+ new FalconFPR( 0.966976471044852109087220226), new FalconFPR( 0.254865659604514571553980779),
+ new FalconFPR(-0.254865659604514571553980779), new FalconFPR( 0.966976471044852109087220226),
+ new FalconFPR( 0.503538383725717558691867071), new FalconFPR( 0.863972856121586737918147054),
+ new FalconFPR(-0.863972856121586737918147054), new FalconFPR( 0.503538383725717558691867071),
+ new FalconFPR( 0.795836904608883536262791915), new FalconFPR( 0.605511041404325513920626941),
+ new FalconFPR(-0.605511041404325513920626941), new FalconFPR( 0.795836904608883536262791915),
+ new FalconFPR( 0.134580708507126186316358409), new FalconFPR( 0.990902635427780025108237011),
+ new FalconFPR(-0.990902635427780025108237011), new FalconFPR( 0.134580708507126186316358409),
+ new FalconFPR( 0.987301418157858382399815802), new FalconFPR( 0.158858143333861441684385360),
+ new FalconFPR(-0.158858143333861441684385360), new FalconFPR( 0.987301418157858382399815802),
+ new FalconFPR( 0.585797857456438860328080838), new FalconFPR( 0.810457198252594791726703434),
+ new FalconFPR(-0.810457198252594791726703434), new FalconFPR( 0.585797857456438860328080838),
+ new FalconFPR( 0.851355193105265142261290312), new FalconFPR( 0.524589682678468906215098464),
+ new FalconFPR(-0.524589682678468906215098464), new FalconFPR( 0.851355193105265142261290312),
+ new FalconFPR( 0.231058108280671119643236018), new FalconFPR( 0.972939952205560145467720114),
+ new FalconFPR(-0.972939952205560145467720114), new FalconFPR( 0.231058108280671119643236018),
+ new FalconFPR( 0.937339011912574923201899593), new FalconFPR( 0.348418680249434568419308588),
+ new FalconFPR(-0.348418680249434568419308588), new FalconFPR( 0.937339011912574923201899593),
+ new FalconFPR( 0.416429560097637182562598911), new FalconFPR( 0.909167983090522376563884788),
+ new FalconFPR(-0.909167983090522376563884788), new FalconFPR( 0.416429560097637182562598911),
+ new FalconFPR( 0.732654271672412834615546649), new FalconFPR( 0.680600997795453050594430464),
+ new FalconFPR(-0.680600997795453050594430464), new FalconFPR( 0.732654271672412834615546649),
+ new FalconFPR( 0.036807222941358832324332691), new FalconFPR( 0.999322384588349500896221011),
+ new FalconFPR(-0.999322384588349500896221011), new FalconFPR( 0.036807222941358832324332691),
+ new FalconFPR( 0.999322384588349500896221011), new FalconFPR( 0.036807222941358832324332691),
+ new FalconFPR(-0.036807222941358832324332691), new FalconFPR( 0.999322384588349500896221011),
+ new FalconFPR( 0.680600997795453050594430464), new FalconFPR( 0.732654271672412834615546649),
+ new FalconFPR(-0.732654271672412834615546649), new FalconFPR( 0.680600997795453050594430464),
+ new FalconFPR( 0.909167983090522376563884788), new FalconFPR( 0.416429560097637182562598911),
+ new FalconFPR(-0.416429560097637182562598911), new FalconFPR( 0.909167983090522376563884788),
+ new FalconFPR( 0.348418680249434568419308588), new FalconFPR( 0.937339011912574923201899593),
+ new FalconFPR(-0.937339011912574923201899593), new FalconFPR( 0.348418680249434568419308588),
+ new FalconFPR( 0.972939952205560145467720114), new FalconFPR( 0.231058108280671119643236018),
+ new FalconFPR(-0.231058108280671119643236018), new FalconFPR( 0.972939952205560145467720114),
+ new FalconFPR( 0.524589682678468906215098464), new FalconFPR( 0.851355193105265142261290312),
+ new FalconFPR(-0.851355193105265142261290312), new FalconFPR( 0.524589682678468906215098464),
+ new FalconFPR( 0.810457198252594791726703434), new FalconFPR( 0.585797857456438860328080838),
+ new FalconFPR(-0.585797857456438860328080838), new FalconFPR( 0.810457198252594791726703434),
+ new FalconFPR( 0.158858143333861441684385360), new FalconFPR( 0.987301418157858382399815802),
+ new FalconFPR(-0.987301418157858382399815802), new FalconFPR( 0.158858143333861441684385360),
+ new FalconFPR( 0.990902635427780025108237011), new FalconFPR( 0.134580708507126186316358409),
+ new FalconFPR(-0.134580708507126186316358409), new FalconFPR( 0.990902635427780025108237011),
+ new FalconFPR( 0.605511041404325513920626941), new FalconFPR( 0.795836904608883536262791915),
+ new FalconFPR(-0.795836904608883536262791915), new FalconFPR( 0.605511041404325513920626941),
+ new FalconFPR( 0.863972856121586737918147054), new FalconFPR( 0.503538383725717558691867071),
+ new FalconFPR(-0.503538383725717558691867071), new FalconFPR( 0.863972856121586737918147054),
+ new FalconFPR( 0.254865659604514571553980779), new FalconFPR( 0.966976471044852109087220226),
+ new FalconFPR(-0.966976471044852109087220226), new FalconFPR( 0.254865659604514571553980779),
+ new FalconFPR( 0.945607325380521325730945387), new FalconFPR( 0.325310292162262934135954708),
+ new FalconFPR(-0.325310292162262934135954708), new FalconFPR( 0.945607325380521325730945387),
+ new FalconFPR( 0.438616238538527637647025738), new FalconFPR( 0.898674465693953843041976744),
+ new FalconFPR(-0.898674465693953843041976744), new FalconFPR( 0.438616238538527637647025738),
+ new FalconFPR( 0.749136394523459325469203257), new FalconFPR( 0.662415777590171761113069817),
+ new FalconFPR(-0.662415777590171761113069817), new FalconFPR( 0.749136394523459325469203257),
+ new FalconFPR( 0.061320736302208577782614593), new FalconFPR( 0.998118112900149207125155861),
+ new FalconFPR(-0.998118112900149207125155861), new FalconFPR( 0.061320736302208577782614593),
+ new FalconFPR( 0.996312612182778012627226190), new FalconFPR( 0.085797312344439890461556332),
+ new FalconFPR(-0.085797312344439890461556332), new FalconFPR( 0.996312612182778012627226190),
+ new FalconFPR( 0.643831542889791465068086063), new FalconFPR( 0.765167265622458925888815999),
+ new FalconFPR(-0.765167265622458925888815999), new FalconFPR( 0.643831542889791465068086063),
+ new FalconFPR( 0.887639620402853947760181617), new FalconFPR( 0.460538710958240023633181487),
+ new FalconFPR(-0.460538710958240023633181487), new FalconFPR( 0.887639620402853947760181617),
+ new FalconFPR( 0.302005949319228067003463232), new FalconFPR( 0.953306040354193836916740383),
+ new FalconFPR(-0.953306040354193836916740383), new FalconFPR( 0.302005949319228067003463232),
+ new FalconFPR( 0.960430519415565811199035138), new FalconFPR( 0.278519689385053105207848526),
+ new FalconFPR(-0.278519689385053105207848526), new FalconFPR( 0.960430519415565811199035138),
+ new FalconFPR( 0.482183772079122748517344481), new FalconFPR( 0.876070094195406607095844268),
+ new FalconFPR(-0.876070094195406607095844268), new FalconFPR( 0.482183772079122748517344481),
+ new FalconFPR( 0.780737228572094478301588484), new FalconFPR( 0.624859488142386377084072816),
+ new FalconFPR(-0.624859488142386377084072816), new FalconFPR( 0.780737228572094478301588484),
+ new FalconFPR( 0.110222207293883058807899140), new FalconFPR( 0.993906970002356041546922813),
+ new FalconFPR(-0.993906970002356041546922813), new FalconFPR( 0.110222207293883058807899140),
+ new FalconFPR( 0.983105487431216327180301155), new FalconFPR( 0.183039887955140958516532578),
+ new FalconFPR(-0.183039887955140958516532578), new FalconFPR( 0.983105487431216327180301155),
+ new FalconFPR( 0.565731810783613197389765011), new FalconFPR( 0.824589302785025264474803737),
+ new FalconFPR(-0.824589302785025264474803737), new FalconFPR( 0.565731810783613197389765011),
+ new FalconFPR( 0.838224705554838043186996856), new FalconFPR( 0.545324988422046422313987347),
+ new FalconFPR(-0.545324988422046422313987347), new FalconFPR( 0.838224705554838043186996856),
+ new FalconFPR( 0.207111376192218549708116020), new FalconFPR( 0.978317370719627633106240097),
+ new FalconFPR(-0.978317370719627633106240097), new FalconFPR( 0.207111376192218549708116020),
+ new FalconFPR( 0.928506080473215565937167396), new FalconFPR( 0.371317193951837543411934967),
+ new FalconFPR(-0.371317193951837543411934967), new FalconFPR( 0.928506080473215565937167396),
+ new FalconFPR( 0.393992040061048108596188661), new FalconFPR( 0.919113851690057743908477789),
+ new FalconFPR(-0.919113851690057743908477789), new FalconFPR( 0.393992040061048108596188661),
+ new FalconFPR( 0.715730825283818654125532623), new FalconFPR( 0.698376249408972853554813503),
+ new FalconFPR(-0.698376249408972853554813503), new FalconFPR( 0.715730825283818654125532623),
+ new FalconFPR( 0.012271538285719926079408262), new FalconFPR( 0.999924701839144540921646491),
+ new FalconFPR(-0.999924701839144540921646491), new FalconFPR( 0.012271538285719926079408262),
+ new FalconFPR( 0.999981175282601142656990438), new FalconFPR( 0.006135884649154475359640235),
+ new FalconFPR(-0.006135884649154475359640235), new FalconFPR( 0.999981175282601142656990438),
+ new FalconFPR( 0.702754744457225302452914421), new FalconFPR( 0.711432195745216441522130290),
+ new FalconFPR(-0.711432195745216441522130290), new FalconFPR( 0.702754744457225302452914421),
+ new FalconFPR( 0.921514039342041943465396332), new FalconFPR( 0.388345046698826291624993541),
+ new FalconFPR(-0.388345046698826291624993541), new FalconFPR( 0.921514039342041943465396332),
+ new FalconFPR( 0.377007410216418256726567823), new FalconFPR( 0.926210242138311341974793388),
+ new FalconFPR(-0.926210242138311341974793388), new FalconFPR( 0.377007410216418256726567823),
+ new FalconFPR( 0.979569765685440534439326110), new FalconFPR( 0.201104634842091911558443546),
+ new FalconFPR(-0.201104634842091911558443546), new FalconFPR( 0.979569765685440534439326110),
+ new FalconFPR( 0.550457972936604802977289893), new FalconFPR( 0.834862874986380056304401383),
+ new FalconFPR(-0.834862874986380056304401383), new FalconFPR( 0.550457972936604802977289893),
+ new FalconFPR( 0.828045045257755752067527592), new FalconFPR( 0.560661576197336023839710223),
+ new FalconFPR(-0.560661576197336023839710223), new FalconFPR( 0.828045045257755752067527592),
+ new FalconFPR( 0.189068664149806212754997837), new FalconFPR( 0.981963869109555264072848154),
+ new FalconFPR(-0.981963869109555264072848154), new FalconFPR( 0.189068664149806212754997837),
+ new FalconFPR( 0.994564570734255452119106243), new FalconFPR( 0.104121633872054579120943880),
+ new FalconFPR(-0.104121633872054579120943880), new FalconFPR( 0.994564570734255452119106243),
+ new FalconFPR( 0.629638238914927025372981341), new FalconFPR( 0.776888465673232450040827983),
+ new FalconFPR(-0.776888465673232450040827983), new FalconFPR( 0.629638238914927025372981341),
+ new FalconFPR( 0.879012226428633477831323711), new FalconFPR( 0.476799230063322133342158117),
+ new FalconFPR(-0.476799230063322133342158117), new FalconFPR( 0.879012226428633477831323711),
+ new FalconFPR( 0.284407537211271843618310615), new FalconFPR( 0.958703474895871555374645792),
+ new FalconFPR(-0.958703474895871555374645792), new FalconFPR( 0.284407537211271843618310615),
+ new FalconFPR( 0.955141168305770721498157712), new FalconFPR( 0.296150888243623824121786128),
+ new FalconFPR(-0.296150888243623824121786128), new FalconFPR( 0.955141168305770721498157712),
+ new FalconFPR( 0.465976495767966177902756065), new FalconFPR( 0.884797098430937780104007041),
+ new FalconFPR(-0.884797098430937780104007041), new FalconFPR( 0.465976495767966177902756065),
+ new FalconFPR( 0.769103337645579639346626069), new FalconFPR( 0.639124444863775743801488193),
+ new FalconFPR(-0.639124444863775743801488193), new FalconFPR( 0.769103337645579639346626069),
+ new FalconFPR( 0.091908956497132728624990979), new FalconFPR( 0.995767414467659793982495643),
+ new FalconFPR(-0.995767414467659793982495643), new FalconFPR( 0.091908956497132728624990979),
+ new FalconFPR( 0.998475580573294752208559038), new FalconFPR( 0.055195244349689939809447526),
+ new FalconFPR(-0.055195244349689939809447526), new FalconFPR( 0.998475580573294752208559038),
+ new FalconFPR( 0.666999922303637506650154222), new FalconFPR( 0.745057785441465962407907310),
+ new FalconFPR(-0.745057785441465962407907310), new FalconFPR( 0.666999922303637506650154222),
+ new FalconFPR( 0.901348847046022014570746093), new FalconFPR( 0.433093818853151968484222638),
+ new FalconFPR(-0.433093818853151968484222638), new FalconFPR( 0.901348847046022014570746093),
+ new FalconFPR( 0.331106305759876401737190737), new FalconFPR( 0.943593458161960361495301445),
+ new FalconFPR(-0.943593458161960361495301445), new FalconFPR( 0.331106305759876401737190737),
+ new FalconFPR( 0.968522094274417316221088329), new FalconFPR( 0.248927605745720168110682816),
+ new FalconFPR(-0.248927605745720168110682816), new FalconFPR( 0.968522094274417316221088329),
+ new FalconFPR( 0.508830142543107036931749324), new FalconFPR( 0.860866938637767279344583877),
+ new FalconFPR(-0.860866938637767279344583877), new FalconFPR( 0.508830142543107036931749324),
+ new FalconFPR( 0.799537269107905033500246232), new FalconFPR( 0.600616479383868926653875896),
+ new FalconFPR(-0.600616479383868926653875896), new FalconFPR( 0.799537269107905033500246232),
+ new FalconFPR( 0.140658239332849230714788846), new FalconFPR( 0.990058210262297105505906464),
+ new FalconFPR(-0.990058210262297105505906464), new FalconFPR( 0.140658239332849230714788846),
+ new FalconFPR( 0.988257567730749491404792538), new FalconFPR( 0.152797185258443427720336613),
+ new FalconFPR(-0.152797185258443427720336613), new FalconFPR( 0.988257567730749491404792538),
+ new FalconFPR( 0.590759701858874228423887908), new FalconFPR( 0.806847553543799272206514313),
+ new FalconFPR(-0.806847553543799272206514313), new FalconFPR( 0.590759701858874228423887908),
+ new FalconFPR( 0.854557988365400520767862276), new FalconFPR( 0.519355990165589587361829932),
+ new FalconFPR(-0.519355990165589587361829932), new FalconFPR( 0.854557988365400520767862276),
+ new FalconFPR( 0.237023605994367206867735915), new FalconFPR( 0.971503890986251775537099622),
+ new FalconFPR(-0.971503890986251775537099622), new FalconFPR( 0.237023605994367206867735915),
+ new FalconFPR( 0.939459223602189911962669246), new FalconFPR( 0.342660717311994397592781983),
+ new FalconFPR(-0.342660717311994397592781983), new FalconFPR( 0.939459223602189911962669246),
+ new FalconFPR( 0.422000270799799685941287941), new FalconFPR( 0.906595704514915365332960588),
+ new FalconFPR(-0.906595704514915365332960588), new FalconFPR( 0.422000270799799685941287941),
+ new FalconFPR( 0.736816568877369875090132520), new FalconFPR( 0.676092703575315960360419228),
+ new FalconFPR(-0.676092703575315960360419228), new FalconFPR( 0.736816568877369875090132520),
+ new FalconFPR( 0.042938256934940823077124540), new FalconFPR( 0.999077727752645382888781997),
+ new FalconFPR(-0.999077727752645382888781997), new FalconFPR( 0.042938256934940823077124540),
+ new FalconFPR( 0.999529417501093163079703322), new FalconFPR( 0.030674803176636625934021028),
+ new FalconFPR(-0.030674803176636625934021028), new FalconFPR( 0.999529417501093163079703322),
+ new FalconFPR( 0.685083667772700381362052545), new FalconFPR( 0.728464390448225196492035438),
+ new FalconFPR(-0.728464390448225196492035438), new FalconFPR( 0.685083667772700381362052545),
+ new FalconFPR( 0.911706032005429851404397325), new FalconFPR( 0.410843171057903942183466675),
+ new FalconFPR(-0.410843171057903942183466675), new FalconFPR( 0.911706032005429851404397325),
+ new FalconFPR( 0.354163525420490382357395796), new FalconFPR( 0.935183509938947577642207480),
+ new FalconFPR(-0.935183509938947577642207480), new FalconFPR( 0.354163525420490382357395796),
+ new FalconFPR( 0.974339382785575860518721668), new FalconFPR( 0.225083911359792835991642120),
+ new FalconFPR(-0.225083911359792835991642120), new FalconFPR( 0.974339382785575860518721668),
+ new FalconFPR( 0.529803624686294668216054671), new FalconFPR( 0.848120344803297251279133563),
+ new FalconFPR(-0.848120344803297251279133563), new FalconFPR( 0.529803624686294668216054671),
+ new FalconFPR( 0.814036329705948361654516690), new FalconFPR( 0.580813958095764545075595272),
+ new FalconFPR(-0.580813958095764545075595272), new FalconFPR( 0.814036329705948361654516690),
+ new FalconFPR( 0.164913120489969921418189113), new FalconFPR( 0.986308097244598647863297524),
+ new FalconFPR(-0.986308097244598647863297524), new FalconFPR( 0.164913120489969921418189113),
+ new FalconFPR( 0.991709753669099522860049931), new FalconFPR( 0.128498110793793172624415589),
+ new FalconFPR(-0.128498110793793172624415589), new FalconFPR( 0.991709753669099522860049931),
+ new FalconFPR( 0.610382806276309452716352152), new FalconFPR( 0.792106577300212351782342879),
+ new FalconFPR(-0.792106577300212351782342879), new FalconFPR( 0.610382806276309452716352152),
+ new FalconFPR( 0.867046245515692651480195629), new FalconFPR( 0.498227666972781852410983869),
+ new FalconFPR(-0.498227666972781852410983869), new FalconFPR( 0.867046245515692651480195629),
+ new FalconFPR( 0.260794117915275518280186509), new FalconFPR( 0.965394441697689374550843858),
+ new FalconFPR(-0.965394441697689374550843858), new FalconFPR( 0.260794117915275518280186509),
+ new FalconFPR( 0.947585591017741134653387321), new FalconFPR( 0.319502030816015677901518272),
+ new FalconFPR(-0.319502030816015677901518272), new FalconFPR( 0.947585591017741134653387321),
+ new FalconFPR( 0.444122144570429231642069418), new FalconFPR( 0.895966249756185155914560282),
+ new FalconFPR(-0.895966249756185155914560282), new FalconFPR( 0.444122144570429231642069418),
+ new FalconFPR( 0.753186799043612482483430486), new FalconFPR( 0.657806693297078656931182264),
+ new FalconFPR(-0.657806693297078656931182264), new FalconFPR( 0.753186799043612482483430486),
+ new FalconFPR( 0.067443919563664057897972422), new FalconFPR( 0.997723066644191609848546728),
+ new FalconFPR(-0.997723066644191609848546728), new FalconFPR( 0.067443919563664057897972422),
+ new FalconFPR( 0.996820299291165714972629398), new FalconFPR( 0.079682437971430121147120656),
+ new FalconFPR(-0.079682437971430121147120656), new FalconFPR( 0.996820299291165714972629398),
+ new FalconFPR( 0.648514401022112445084560551), new FalconFPR( 0.761202385484261814029709836),
+ new FalconFPR(-0.761202385484261814029709836), new FalconFPR( 0.648514401022112445084560551),
+ new FalconFPR( 0.890448723244757889952150560), new FalconFPR( 0.455083587126343823535869268),
+ new FalconFPR(-0.455083587126343823535869268), new FalconFPR( 0.890448723244757889952150560),
+ new FalconFPR( 0.307849640041534893682063646), new FalconFPR( 0.951435020969008369549175569),
+ new FalconFPR(-0.951435020969008369549175569), new FalconFPR( 0.307849640041534893682063646),
+ new FalconFPR( 0.962121404269041595429604316), new FalconFPR( 0.272621355449948984493347477),
+ new FalconFPR(-0.272621355449948984493347477), new FalconFPR( 0.962121404269041595429604316),
+ new FalconFPR( 0.487550160148435954641485027), new FalconFPR( 0.873094978418290098636085973),
+ new FalconFPR(-0.873094978418290098636085973), new FalconFPR( 0.487550160148435954641485027),
+ new FalconFPR( 0.784556597155575233023892575), new FalconFPR( 0.620057211763289178646268191),
+ new FalconFPR(-0.620057211763289178646268191), new FalconFPR( 0.784556597155575233023892575),
+ new FalconFPR( 0.116318630911904767252544319), new FalconFPR( 0.993211949234794533104601012),
+ new FalconFPR(-0.993211949234794533104601012), new FalconFPR( 0.116318630911904767252544319),
+ new FalconFPR( 0.984210092386929073193874387), new FalconFPR( 0.177004220412148756196839844),
+ new FalconFPR(-0.177004220412148756196839844), new FalconFPR( 0.984210092386929073193874387),
+ new FalconFPR( 0.570780745886967280232652864), new FalconFPR( 0.821102514991104679060430820),
+ new FalconFPR(-0.821102514991104679060430820), new FalconFPR( 0.570780745886967280232652864),
+ new FalconFPR( 0.841554977436898409603499520), new FalconFPR( 0.540171472729892881297845480),
+ new FalconFPR(-0.540171472729892881297845480), new FalconFPR( 0.841554977436898409603499520),
+ new FalconFPR( 0.213110319916091373967757518), new FalconFPR( 0.977028142657754351485866211),
+ new FalconFPR(-0.977028142657754351485866211), new FalconFPR( 0.213110319916091373967757518),
+ new FalconFPR( 0.930766961078983731944872340), new FalconFPR( 0.365612997804773870011745909),
+ new FalconFPR(-0.365612997804773870011745909), new FalconFPR( 0.930766961078983731944872340),
+ new FalconFPR( 0.399624199845646828544117031), new FalconFPR( 0.916679059921042663116457013),
+ new FalconFPR(-0.916679059921042663116457013), new FalconFPR( 0.399624199845646828544117031),
+ new FalconFPR( 0.720002507961381629076682999), new FalconFPR( 0.693971460889654009003734389),
+ new FalconFPR(-0.693971460889654009003734389), new FalconFPR( 0.720002507961381629076682999),
+ new FalconFPR( 0.018406729905804820927366313), new FalconFPR( 0.999830581795823422015722275),
+ new FalconFPR(-0.999830581795823422015722275), new FalconFPR( 0.018406729905804820927366313),
+ new FalconFPR( 0.999830581795823422015722275), new FalconFPR( 0.018406729905804820927366313),
+ new FalconFPR(-0.018406729905804820927366313), new FalconFPR( 0.999830581795823422015722275),
+ new FalconFPR( 0.693971460889654009003734389), new FalconFPR( 0.720002507961381629076682999),
+ new FalconFPR(-0.720002507961381629076682999), new FalconFPR( 0.693971460889654009003734389),
+ new FalconFPR( 0.916679059921042663116457013), new FalconFPR( 0.399624199845646828544117031),
+ new FalconFPR(-0.399624199845646828544117031), new FalconFPR( 0.916679059921042663116457013),
+ new FalconFPR( 0.365612997804773870011745909), new FalconFPR( 0.930766961078983731944872340),
+ new FalconFPR(-0.930766961078983731944872340), new FalconFPR( 0.365612997804773870011745909),
+ new FalconFPR( 0.977028142657754351485866211), new FalconFPR( 0.213110319916091373967757518),
+ new FalconFPR(-0.213110319916091373967757518), new FalconFPR( 0.977028142657754351485866211),
+ new FalconFPR( 0.540171472729892881297845480), new FalconFPR( 0.841554977436898409603499520),
+ new FalconFPR(-0.841554977436898409603499520), new FalconFPR( 0.540171472729892881297845480),
+ new FalconFPR( 0.821102514991104679060430820), new FalconFPR( 0.570780745886967280232652864),
+ new FalconFPR(-0.570780745886967280232652864), new FalconFPR( 0.821102514991104679060430820),
+ new FalconFPR( 0.177004220412148756196839844), new FalconFPR( 0.984210092386929073193874387),
+ new FalconFPR(-0.984210092386929073193874387), new FalconFPR( 0.177004220412148756196839844),
+ new FalconFPR( 0.993211949234794533104601012), new FalconFPR( 0.116318630911904767252544319),
+ new FalconFPR(-0.116318630911904767252544319), new FalconFPR( 0.993211949234794533104601012),
+ new FalconFPR( 0.620057211763289178646268191), new FalconFPR( 0.784556597155575233023892575),
+ new FalconFPR(-0.784556597155575233023892575), new FalconFPR( 0.620057211763289178646268191),
+ new FalconFPR( 0.873094978418290098636085973), new FalconFPR( 0.487550160148435954641485027),
+ new FalconFPR(-0.487550160148435954641485027), new FalconFPR( 0.873094978418290098636085973),
+ new FalconFPR( 0.272621355449948984493347477), new FalconFPR( 0.962121404269041595429604316),
+ new FalconFPR(-0.962121404269041595429604316), new FalconFPR( 0.272621355449948984493347477),
+ new FalconFPR( 0.951435020969008369549175569), new FalconFPR( 0.307849640041534893682063646),
+ new FalconFPR(-0.307849640041534893682063646), new FalconFPR( 0.951435020969008369549175569),
+ new FalconFPR( 0.455083587126343823535869268), new FalconFPR( 0.890448723244757889952150560),
+ new FalconFPR(-0.890448723244757889952150560), new FalconFPR( 0.455083587126343823535869268),
+ new FalconFPR( 0.761202385484261814029709836), new FalconFPR( 0.648514401022112445084560551),
+ new FalconFPR(-0.648514401022112445084560551), new FalconFPR( 0.761202385484261814029709836),
+ new FalconFPR( 0.079682437971430121147120656), new FalconFPR( 0.996820299291165714972629398),
+ new FalconFPR(-0.996820299291165714972629398), new FalconFPR( 0.079682437971430121147120656),
+ new FalconFPR( 0.997723066644191609848546728), new FalconFPR( 0.067443919563664057897972422),
+ new FalconFPR(-0.067443919563664057897972422), new FalconFPR( 0.997723066644191609848546728),
+ new FalconFPR( 0.657806693297078656931182264), new FalconFPR( 0.753186799043612482483430486),
+ new FalconFPR(-0.753186799043612482483430486), new FalconFPR( 0.657806693297078656931182264),
+ new FalconFPR( 0.895966249756185155914560282), new FalconFPR( 0.444122144570429231642069418),
+ new FalconFPR(-0.444122144570429231642069418), new FalconFPR( 0.895966249756185155914560282),
+ new FalconFPR( 0.319502030816015677901518272), new FalconFPR( 0.947585591017741134653387321),
+ new FalconFPR(-0.947585591017741134653387321), new FalconFPR( 0.319502030816015677901518272),
+ new FalconFPR( 0.965394441697689374550843858), new FalconFPR( 0.260794117915275518280186509),
+ new FalconFPR(-0.260794117915275518280186509), new FalconFPR( 0.965394441697689374550843858),
+ new FalconFPR( 0.498227666972781852410983869), new FalconFPR( 0.867046245515692651480195629),
+ new FalconFPR(-0.867046245515692651480195629), new FalconFPR( 0.498227666972781852410983869),
+ new FalconFPR( 0.792106577300212351782342879), new FalconFPR( 0.610382806276309452716352152),
+ new FalconFPR(-0.610382806276309452716352152), new FalconFPR( 0.792106577300212351782342879),
+ new FalconFPR( 0.128498110793793172624415589), new FalconFPR( 0.991709753669099522860049931),
+ new FalconFPR(-0.991709753669099522860049931), new FalconFPR( 0.128498110793793172624415589),
+ new FalconFPR( 0.986308097244598647863297524), new FalconFPR( 0.164913120489969921418189113),
+ new FalconFPR(-0.164913120489969921418189113), new FalconFPR( 0.986308097244598647863297524),
+ new FalconFPR( 0.580813958095764545075595272), new FalconFPR( 0.814036329705948361654516690),
+ new FalconFPR(-0.814036329705948361654516690), new FalconFPR( 0.580813958095764545075595272),
+ new FalconFPR( 0.848120344803297251279133563), new FalconFPR( 0.529803624686294668216054671),
+ new FalconFPR(-0.529803624686294668216054671), new FalconFPR( 0.848120344803297251279133563),
+ new FalconFPR( 0.225083911359792835991642120), new FalconFPR( 0.974339382785575860518721668),
+ new FalconFPR(-0.974339382785575860518721668), new FalconFPR( 0.225083911359792835991642120),
+ new FalconFPR( 0.935183509938947577642207480), new FalconFPR( 0.354163525420490382357395796),
+ new FalconFPR(-0.354163525420490382357395796), new FalconFPR( 0.935183509938947577642207480),
+ new FalconFPR( 0.410843171057903942183466675), new FalconFPR( 0.911706032005429851404397325),
+ new FalconFPR(-0.911706032005429851404397325), new FalconFPR( 0.410843171057903942183466675),
+ new FalconFPR( 0.728464390448225196492035438), new FalconFPR( 0.685083667772700381362052545),
+ new FalconFPR(-0.685083667772700381362052545), new FalconFPR( 0.728464390448225196492035438),
+ new FalconFPR( 0.030674803176636625934021028), new FalconFPR( 0.999529417501093163079703322),
+ new FalconFPR(-0.999529417501093163079703322), new FalconFPR( 0.030674803176636625934021028),
+ new FalconFPR( 0.999077727752645382888781997), new FalconFPR( 0.042938256934940823077124540),
+ new FalconFPR(-0.042938256934940823077124540), new FalconFPR( 0.999077727752645382888781997),
+ new FalconFPR( 0.676092703575315960360419228), new FalconFPR( 0.736816568877369875090132520),
+ new FalconFPR(-0.736816568877369875090132520), new FalconFPR( 0.676092703575315960360419228),
+ new FalconFPR( 0.906595704514915365332960588), new FalconFPR( 0.422000270799799685941287941),
+ new FalconFPR(-0.422000270799799685941287941), new FalconFPR( 0.906595704514915365332960588),
+ new FalconFPR( 0.342660717311994397592781983), new FalconFPR( 0.939459223602189911962669246),
+ new FalconFPR(-0.939459223602189911962669246), new FalconFPR( 0.342660717311994397592781983),
+ new FalconFPR( 0.971503890986251775537099622), new FalconFPR( 0.237023605994367206867735915),
+ new FalconFPR(-0.237023605994367206867735915), new FalconFPR( 0.971503890986251775537099622),
+ new FalconFPR( 0.519355990165589587361829932), new FalconFPR( 0.854557988365400520767862276),
+ new FalconFPR(-0.854557988365400520767862276), new FalconFPR( 0.519355990165589587361829932),
+ new FalconFPR( 0.806847553543799272206514313), new FalconFPR( 0.590759701858874228423887908),
+ new FalconFPR(-0.590759701858874228423887908), new FalconFPR( 0.806847553543799272206514313),
+ new FalconFPR( 0.152797185258443427720336613), new FalconFPR( 0.988257567730749491404792538),
+ new FalconFPR(-0.988257567730749491404792538), new FalconFPR( 0.152797185258443427720336613),
+ new FalconFPR( 0.990058210262297105505906464), new FalconFPR( 0.140658239332849230714788846),
+ new FalconFPR(-0.140658239332849230714788846), new FalconFPR( 0.990058210262297105505906464),
+ new FalconFPR( 0.600616479383868926653875896), new FalconFPR( 0.799537269107905033500246232),
+ new FalconFPR(-0.799537269107905033500246232), new FalconFPR( 0.600616479383868926653875896),
+ new FalconFPR( 0.860866938637767279344583877), new FalconFPR( 0.508830142543107036931749324),
+ new FalconFPR(-0.508830142543107036931749324), new FalconFPR( 0.860866938637767279344583877),
+ new FalconFPR( 0.248927605745720168110682816), new FalconFPR( 0.968522094274417316221088329),
+ new FalconFPR(-0.968522094274417316221088329), new FalconFPR( 0.248927605745720168110682816),
+ new FalconFPR( 0.943593458161960361495301445), new FalconFPR( 0.331106305759876401737190737),
+ new FalconFPR(-0.331106305759876401737190737), new FalconFPR( 0.943593458161960361495301445),
+ new FalconFPR( 0.433093818853151968484222638), new FalconFPR( 0.901348847046022014570746093),
+ new FalconFPR(-0.901348847046022014570746093), new FalconFPR( 0.433093818853151968484222638),
+ new FalconFPR( 0.745057785441465962407907310), new FalconFPR( 0.666999922303637506650154222),
+ new FalconFPR(-0.666999922303637506650154222), new FalconFPR( 0.745057785441465962407907310),
+ new FalconFPR( 0.055195244349689939809447526), new FalconFPR( 0.998475580573294752208559038),
+ new FalconFPR(-0.998475580573294752208559038), new FalconFPR( 0.055195244349689939809447526),
+ new FalconFPR( 0.995767414467659793982495643), new FalconFPR( 0.091908956497132728624990979),
+ new FalconFPR(-0.091908956497132728624990979), new FalconFPR( 0.995767414467659793982495643),
+ new FalconFPR( 0.639124444863775743801488193), new FalconFPR( 0.769103337645579639346626069),
+ new FalconFPR(-0.769103337645579639346626069), new FalconFPR( 0.639124444863775743801488193),
+ new FalconFPR( 0.884797098430937780104007041), new FalconFPR( 0.465976495767966177902756065),
+ new FalconFPR(-0.465976495767966177902756065), new FalconFPR( 0.884797098430937780104007041),
+ new FalconFPR( 0.296150888243623824121786128), new FalconFPR( 0.955141168305770721498157712),
+ new FalconFPR(-0.955141168305770721498157712), new FalconFPR( 0.296150888243623824121786128),
+ new FalconFPR( 0.958703474895871555374645792), new FalconFPR( 0.284407537211271843618310615),
+ new FalconFPR(-0.284407537211271843618310615), new FalconFPR( 0.958703474895871555374645792),
+ new FalconFPR( 0.476799230063322133342158117), new FalconFPR( 0.879012226428633477831323711),
+ new FalconFPR(-0.879012226428633477831323711), new FalconFPR( 0.476799230063322133342158117),
+ new FalconFPR( 0.776888465673232450040827983), new FalconFPR( 0.629638238914927025372981341),
+ new FalconFPR(-0.629638238914927025372981341), new FalconFPR( 0.776888465673232450040827983),
+ new FalconFPR( 0.104121633872054579120943880), new FalconFPR( 0.994564570734255452119106243),
+ new FalconFPR(-0.994564570734255452119106243), new FalconFPR( 0.104121633872054579120943880),
+ new FalconFPR( 0.981963869109555264072848154), new FalconFPR( 0.189068664149806212754997837),
+ new FalconFPR(-0.189068664149806212754997837), new FalconFPR( 0.981963869109555264072848154),
+ new FalconFPR( 0.560661576197336023839710223), new FalconFPR( 0.828045045257755752067527592),
+ new FalconFPR(-0.828045045257755752067527592), new FalconFPR( 0.560661576197336023839710223),
+ new FalconFPR( 0.834862874986380056304401383), new FalconFPR( 0.550457972936604802977289893),
+ new FalconFPR(-0.550457972936604802977289893), new FalconFPR( 0.834862874986380056304401383),
+ new FalconFPR( 0.201104634842091911558443546), new FalconFPR( 0.979569765685440534439326110),
+ new FalconFPR(-0.979569765685440534439326110), new FalconFPR( 0.201104634842091911558443546),
+ new FalconFPR( 0.926210242138311341974793388), new FalconFPR( 0.377007410216418256726567823),
+ new FalconFPR(-0.377007410216418256726567823), new FalconFPR( 0.926210242138311341974793388),
+ new FalconFPR( 0.388345046698826291624993541), new FalconFPR( 0.921514039342041943465396332),
+ new FalconFPR(-0.921514039342041943465396332), new FalconFPR( 0.388345046698826291624993541),
+ new FalconFPR( 0.711432195745216441522130290), new FalconFPR( 0.702754744457225302452914421),
+ new FalconFPR(-0.702754744457225302452914421), new FalconFPR( 0.711432195745216441522130290),
+ new FalconFPR( 0.006135884649154475359640235), new FalconFPR( 0.999981175282601142656990438),
+ new FalconFPR(-0.999981175282601142656990438), new FalconFPR( 0.006135884649154475359640235),
+ new FalconFPR( 0.999995293809576171511580126), new FalconFPR( 0.003067956762965976270145365),
+ new FalconFPR(-0.003067956762965976270145365), new FalconFPR( 0.999995293809576171511580126),
+ new FalconFPR( 0.704934080375904908852523758), new FalconFPR( 0.709272826438865651316533772),
+ new FalconFPR(-0.709272826438865651316533772), new FalconFPR( 0.704934080375904908852523758),
+ new FalconFPR( 0.922701128333878570437264227), new FalconFPR( 0.385516053843918864075607949),
+ new FalconFPR(-0.385516053843918864075607949), new FalconFPR( 0.922701128333878570437264227),
+ new FalconFPR( 0.379847208924051170576281147), new FalconFPR( 0.925049240782677590302371869),
+ new FalconFPR(-0.925049240782677590302371869), new FalconFPR( 0.379847208924051170576281147),
+ new FalconFPR( 0.980182135968117392690210009), new FalconFPR( 0.198098410717953586179324918),
+ new FalconFPR(-0.198098410717953586179324918), new FalconFPR( 0.980182135968117392690210009),
+ new FalconFPR( 0.553016705580027531764226988), new FalconFPR( 0.833170164701913186439915922),
+ new FalconFPR(-0.833170164701913186439915922), new FalconFPR( 0.553016705580027531764226988),
+ new FalconFPR( 0.829761233794523042469023765), new FalconFPR( 0.558118531220556115693702964),
+ new FalconFPR(-0.558118531220556115693702964), new FalconFPR( 0.829761233794523042469023765),
+ new FalconFPR( 0.192080397049892441679288205), new FalconFPR( 0.981379193313754574318224190),
+ new FalconFPR(-0.981379193313754574318224190), new FalconFPR( 0.192080397049892441679288205),
+ new FalconFPR( 0.994879330794805620591166107), new FalconFPR( 0.101069862754827824987887585),
+ new FalconFPR(-0.101069862754827824987887585), new FalconFPR( 0.994879330794805620591166107),
+ new FalconFPR( 0.632018735939809021909403706), new FalconFPR( 0.774953106594873878359129282),
+ new FalconFPR(-0.774953106594873878359129282), new FalconFPR( 0.632018735939809021909403706),
+ new FalconFPR( 0.880470889052160770806542929), new FalconFPR( 0.474100214650550014398580015),
+ new FalconFPR(-0.474100214650550014398580015), new FalconFPR( 0.880470889052160770806542929),
+ new FalconFPR( 0.287347459544729526477331841), new FalconFPR( 0.957826413027532890321037029),
+ new FalconFPR(-0.957826413027532890321037029), new FalconFPR( 0.287347459544729526477331841),
+ new FalconFPR( 0.956045251349996443270479823), new FalconFPR( 0.293219162694258650606608599),
+ new FalconFPR(-0.293219162694258650606608599), new FalconFPR( 0.956045251349996443270479823),
+ new FalconFPR( 0.468688822035827933697617870), new FalconFPR( 0.883363338665731594736308015),
+ new FalconFPR(-0.883363338665731594736308015), new FalconFPR( 0.468688822035827933697617870),
+ new FalconFPR( 0.771060524261813773200605759), new FalconFPR( 0.636761861236284230413943435),
+ new FalconFPR(-0.636761861236284230413943435), new FalconFPR( 0.771060524261813773200605759),
+ new FalconFPR( 0.094963495329638998938034312), new FalconFPR( 0.995480755491926941769171600),
+ new FalconFPR(-0.995480755491926941769171600), new FalconFPR( 0.094963495329638998938034312),
+ new FalconFPR( 0.998640218180265222418199049), new FalconFPR( 0.052131704680283321236358216),
+ new FalconFPR(-0.052131704680283321236358216), new FalconFPR( 0.998640218180265222418199049),
+ new FalconFPR( 0.669282588346636065720696366), new FalconFPR( 0.743007952135121693517362293),
+ new FalconFPR(-0.743007952135121693517362293), new FalconFPR( 0.669282588346636065720696366),
+ new FalconFPR( 0.902673318237258806751502391), new FalconFPR( 0.430326481340082633908199031),
+ new FalconFPR(-0.430326481340082633908199031), new FalconFPR( 0.902673318237258806751502391),
+ new FalconFPR( 0.333999651442009404650865481), new FalconFPR( 0.942573197601446879280758735),
+ new FalconFPR(-0.942573197601446879280758735), new FalconFPR( 0.333999651442009404650865481),
+ new FalconFPR( 0.969281235356548486048290738), new FalconFPR( 0.245955050335794611599924709),
+ new FalconFPR(-0.245955050335794611599924709), new FalconFPR( 0.969281235356548486048290738),
+ new FalconFPR( 0.511468850437970399504391001), new FalconFPR( 0.859301818357008404783582139),
+ new FalconFPR(-0.859301818357008404783582139), new FalconFPR( 0.511468850437970399504391001),
+ new FalconFPR( 0.801376171723140219430247777), new FalconFPR( 0.598160706996342311724958652),
+ new FalconFPR(-0.598160706996342311724958652), new FalconFPR( 0.801376171723140219430247777),
+ new FalconFPR( 0.143695033150294454819773349), new FalconFPR( 0.989622017463200834623694454),
+ new FalconFPR(-0.989622017463200834623694454), new FalconFPR( 0.143695033150294454819773349),
+ new FalconFPR( 0.988721691960323767604516485), new FalconFPR( 0.149764534677321517229695737),
+ new FalconFPR(-0.149764534677321517229695737), new FalconFPR( 0.988721691960323767604516485),
+ new FalconFPR( 0.593232295039799808047809426), new FalconFPR( 0.805031331142963597922659282),
+ new FalconFPR(-0.805031331142963597922659282), new FalconFPR( 0.593232295039799808047809426),
+ new FalconFPR( 0.856147328375194481019630732), new FalconFPR( 0.516731799017649881508753876),
+ new FalconFPR(-0.516731799017649881508753876), new FalconFPR( 0.856147328375194481019630732),
+ new FalconFPR( 0.240003022448741486568922365), new FalconFPR( 0.970772140728950302138169611),
+ new FalconFPR(-0.970772140728950302138169611), new FalconFPR( 0.240003022448741486568922365),
+ new FalconFPR( 0.940506070593268323787291309), new FalconFPR( 0.339776884406826857828825803),
+ new FalconFPR(-0.339776884406826857828825803), new FalconFPR( 0.940506070593268323787291309),
+ new FalconFPR( 0.424779681209108833357226189), new FalconFPR( 0.905296759318118774354048329),
+ new FalconFPR(-0.905296759318118774354048329), new FalconFPR( 0.424779681209108833357226189),
+ new FalconFPR( 0.738887324460615147933116508), new FalconFPR( 0.673829000378756060917568372),
+ new FalconFPR(-0.673829000378756060917568372), new FalconFPR( 0.738887324460615147933116508),
+ new FalconFPR( 0.046003182130914628814301788), new FalconFPR( 0.998941293186856850633930266),
+ new FalconFPR(-0.998941293186856850633930266), new FalconFPR( 0.046003182130914628814301788),
+ new FalconFPR( 0.999618822495178597116830637), new FalconFPR( 0.027608145778965741612354872),
+ new FalconFPR(-0.027608145778965741612354872), new FalconFPR( 0.999618822495178597116830637),
+ new FalconFPR( 0.687315340891759108199186948), new FalconFPR( 0.726359155084345976817494315),
+ new FalconFPR(-0.726359155084345976817494315), new FalconFPR( 0.687315340891759108199186948),
+ new FalconFPR( 0.912962190428398164628018233), new FalconFPR( 0.408044162864978680820747499),
+ new FalconFPR(-0.408044162864978680820747499), new FalconFPR( 0.912962190428398164628018233),
+ new FalconFPR( 0.357030961233430032614954036), new FalconFPR( 0.934092550404258914729877883),
+ new FalconFPR(-0.934092550404258914729877883), new FalconFPR( 0.357030961233430032614954036),
+ new FalconFPR( 0.975025345066994146844913468), new FalconFPR( 0.222093620973203534094094721),
+ new FalconFPR(-0.222093620973203534094094721), new FalconFPR( 0.975025345066994146844913468),
+ new FalconFPR( 0.532403127877197971442805218), new FalconFPR( 0.846490938774052078300544488),
+ new FalconFPR(-0.846490938774052078300544488), new FalconFPR( 0.532403127877197971442805218),
+ new FalconFPR( 0.815814410806733789010772660), new FalconFPR( 0.578313796411655563342245019),
+ new FalconFPR(-0.578313796411655563342245019), new FalconFPR( 0.815814410806733789010772660),
+ new FalconFPR( 0.167938294974731178054745536), new FalconFPR( 0.985797509167567424700995000),
+ new FalconFPR(-0.985797509167567424700995000), new FalconFPR( 0.167938294974731178054745536),
+ new FalconFPR( 0.992099313142191757112085445), new FalconFPR( 0.125454983411546238542336453),
+ new FalconFPR(-0.125454983411546238542336453), new FalconFPR( 0.992099313142191757112085445),
+ new FalconFPR( 0.612810082429409703935211936), new FalconFPR( 0.790230221437310055030217152),
+ new FalconFPR(-0.790230221437310055030217152), new FalconFPR( 0.612810082429409703935211936),
+ new FalconFPR( 0.868570705971340895340449876), new FalconFPR( 0.495565261825772531150266670),
+ new FalconFPR(-0.495565261825772531150266670), new FalconFPR( 0.868570705971340895340449876),
+ new FalconFPR( 0.263754678974831383611349322), new FalconFPR( 0.964589793289812723836432159),
+ new FalconFPR(-0.964589793289812723836432159), new FalconFPR( 0.263754678974831383611349322),
+ new FalconFPR( 0.948561349915730288158494826), new FalconFPR( 0.316593375556165867243047035),
+ new FalconFPR(-0.316593375556165867243047035), new FalconFPR( 0.948561349915730288158494826),
+ new FalconFPR( 0.446868840162374195353044389), new FalconFPR( 0.894599485631382678433072126),
+ new FalconFPR(-0.894599485631382678433072126), new FalconFPR( 0.446868840162374195353044389),
+ new FalconFPR( 0.755201376896536527598710756), new FalconFPR( 0.655492852999615385312679701),
+ new FalconFPR(-0.655492852999615385312679701), new FalconFPR( 0.755201376896536527598710756),
+ new FalconFPR( 0.070504573389613863027351471), new FalconFPR( 0.997511456140303459699448390),
+ new FalconFPR(-0.997511456140303459699448390), new FalconFPR( 0.070504573389613863027351471),
+ new FalconFPR( 0.997060070339482978987989949), new FalconFPR( 0.076623861392031492278332463),
+ new FalconFPR(-0.076623861392031492278332463), new FalconFPR( 0.997060070339482978987989949),
+ new FalconFPR( 0.650846684996380915068975573), new FalconFPR( 0.759209188978388033485525443),
+ new FalconFPR(-0.759209188978388033485525443), new FalconFPR( 0.650846684996380915068975573),
+ new FalconFPR( 0.891840709392342727796478697), new FalconFPR( 0.452349587233770874133026703),
+ new FalconFPR(-0.452349587233770874133026703), new FalconFPR( 0.891840709392342727796478697),
+ new FalconFPR( 0.310767152749611495835997250), new FalconFPR( 0.950486073949481721759926101),
+ new FalconFPR(-0.950486073949481721759926101), new FalconFPR( 0.310767152749611495835997250),
+ new FalconFPR( 0.962953266873683886347921481), new FalconFPR( 0.269668325572915106525464462),
+ new FalconFPR(-0.269668325572915106525464462), new FalconFPR( 0.962953266873683886347921481),
+ new FalconFPR( 0.490226483288291154229598449), new FalconFPR( 0.871595086655951034842481435),
+ new FalconFPR(-0.871595086655951034842481435), new FalconFPR( 0.490226483288291154229598449),
+ new FalconFPR( 0.786455213599085757522319464), new FalconFPR( 0.617647307937803932403979402),
+ new FalconFPR(-0.617647307937803932403979402), new FalconFPR( 0.786455213599085757522319464),
+ new FalconFPR( 0.119365214810991364593637790), new FalconFPR( 0.992850414459865090793563344),
+ new FalconFPR(-0.992850414459865090793563344), new FalconFPR( 0.119365214810991364593637790),
+ new FalconFPR( 0.984748501801904218556553176), new FalconFPR( 0.173983873387463827950700807),
+ new FalconFPR(-0.173983873387463827950700807), new FalconFPR( 0.984748501801904218556553176),
+ new FalconFPR( 0.573297166698042212820171239), new FalconFPR( 0.819347520076796960824689637),
+ new FalconFPR(-0.819347520076796960824689637), new FalconFPR( 0.573297166698042212820171239),
+ new FalconFPR( 0.843208239641845437161743865), new FalconFPR( 0.537587076295645482502214932),
+ new FalconFPR(-0.537587076295645482502214932), new FalconFPR( 0.843208239641845437161743865),
+ new FalconFPR( 0.216106797076219509948385131), new FalconFPR( 0.976369731330021149312732194),
+ new FalconFPR(-0.976369731330021149312732194), new FalconFPR( 0.216106797076219509948385131),
+ new FalconFPR( 0.931884265581668106718557199), new FalconFPR( 0.362755724367397216204854462),
+ new FalconFPR(-0.362755724367397216204854462), new FalconFPR( 0.931884265581668106718557199),
+ new FalconFPR( 0.402434650859418441082533934), new FalconFPR( 0.915448716088267819566431292),
+ new FalconFPR(-0.915448716088267819566431292), new FalconFPR( 0.402434650859418441082533934),
+ new FalconFPR( 0.722128193929215321243607198), new FalconFPR( 0.691759258364157774906734132),
+ new FalconFPR(-0.691759258364157774906734132), new FalconFPR( 0.722128193929215321243607198),
+ new FalconFPR( 0.021474080275469507418374898), new FalconFPR( 0.999769405351215321657617036),
+ new FalconFPR(-0.999769405351215321657617036), new FalconFPR( 0.021474080275469507418374898),
+ new FalconFPR( 0.999882347454212525633049627), new FalconFPR( 0.015339206284988101044151868),
+ new FalconFPR(-0.015339206284988101044151868), new FalconFPR( 0.999882347454212525633049627),
+ new FalconFPR( 0.696177131491462944788582591), new FalconFPR( 0.717870045055731736211325329),
+ new FalconFPR(-0.717870045055731736211325329), new FalconFPR( 0.696177131491462944788582591),
+ new FalconFPR( 0.917900775621390457642276297), new FalconFPR( 0.396809987416710328595290911),
+ new FalconFPR(-0.396809987416710328595290911), new FalconFPR( 0.917900775621390457642276297),
+ new FalconFPR( 0.368466829953372331712746222), new FalconFPR( 0.929640895843181265457918066),
+ new FalconFPR(-0.929640895843181265457918066), new FalconFPR( 0.368466829953372331712746222),
+ new FalconFPR( 0.977677357824509979943404762), new FalconFPR( 0.210111836880469621717489972),
+ new FalconFPR(-0.210111836880469621717489972), new FalconFPR( 0.977677357824509979943404762),
+ new FalconFPR( 0.542750784864515906586768661), new FalconFPR( 0.839893794195999504583383987),
+ new FalconFPR(-0.839893794195999504583383987), new FalconFPR( 0.542750784864515906586768661),
+ new FalconFPR( 0.822849781375826332046780034), new FalconFPR( 0.568258952670131549790548489),
+ new FalconFPR(-0.568258952670131549790548489), new FalconFPR( 0.822849781375826332046780034),
+ new FalconFPR( 0.180022901405699522679906590), new FalconFPR( 0.983662419211730274396237776),
+ new FalconFPR(-0.983662419211730274396237776), new FalconFPR( 0.180022901405699522679906590),
+ new FalconFPR( 0.993564135520595333782021697), new FalconFPR( 0.113270952177564349018228733),
+ new FalconFPR(-0.113270952177564349018228733), new FalconFPR( 0.993564135520595333782021697),
+ new FalconFPR( 0.622461279374149972519166721), new FalconFPR( 0.782650596166575738458949301),
+ new FalconFPR(-0.782650596166575738458949301), new FalconFPR( 0.622461279374149972519166721),
+ new FalconFPR( 0.874586652278176112634431897), new FalconFPR( 0.484869248000791101822951699),
+ new FalconFPR(-0.484869248000791101822951699), new FalconFPR( 0.874586652278176112634431897),
+ new FalconFPR( 0.275571819310958163076425168), new FalconFPR( 0.961280485811320641748659653),
+ new FalconFPR(-0.961280485811320641748659653), new FalconFPR( 0.275571819310958163076425168),
+ new FalconFPR( 0.952375012719765858529893608), new FalconFPR( 0.304929229735402406490728633),
+ new FalconFPR(-0.304929229735402406490728633), new FalconFPR( 0.952375012719765858529893608),
+ new FalconFPR( 0.457813303598877221904961155), new FalconFPR( 0.889048355854664562540777729),
+ new FalconFPR(-0.889048355854664562540777729), new FalconFPR( 0.457813303598877221904961155),
+ new FalconFPR( 0.763188417263381271704838297), new FalconFPR( 0.646176012983316364832802220),
+ new FalconFPR(-0.646176012983316364832802220), new FalconFPR( 0.763188417263381271704838297),
+ new FalconFPR( 0.082740264549375693111987083), new FalconFPR( 0.996571145790554847093566910),
+ new FalconFPR(-0.996571145790554847093566910), new FalconFPR( 0.082740264549375693111987083),
+ new FalconFPR( 0.997925286198596012623025462), new FalconFPR( 0.064382630929857460819324537),
+ new FalconFPR(-0.064382630929857460819324537), new FalconFPR( 0.997925286198596012623025462),
+ new FalconFPR( 0.660114342067420478559490747), new FalconFPR( 0.751165131909686411205819422),
+ new FalconFPR(-0.751165131909686411205819422), new FalconFPR( 0.660114342067420478559490747),
+ new FalconFPR( 0.897324580705418281231391836), new FalconFPR( 0.441371268731716692879988968),
+ new FalconFPR(-0.441371268731716692879988968), new FalconFPR( 0.897324580705418281231391836),
+ new FalconFPR( 0.322407678801069848384807478), new FalconFPR( 0.946600913083283570044599823),
+ new FalconFPR(-0.946600913083283570044599823), new FalconFPR( 0.322407678801069848384807478),
+ new FalconFPR( 0.966190003445412555433832961), new FalconFPR( 0.257831102162159005614471295),
+ new FalconFPR(-0.257831102162159005614471295), new FalconFPR( 0.966190003445412555433832961),
+ new FalconFPR( 0.500885382611240786241285004), new FalconFPR( 0.865513624090569082825488358),
+ new FalconFPR(-0.865513624090569082825488358), new FalconFPR( 0.500885382611240786241285004),
+ new FalconFPR( 0.793975477554337164895083757), new FalconFPR( 0.607949784967773667243642671),
+ new FalconFPR(-0.607949784967773667243642671), new FalconFPR( 0.793975477554337164895083757),
+ new FalconFPR( 0.131540028702883111103387493), new FalconFPR( 0.991310859846115418957349799),
+ new FalconFPR(-0.991310859846115418957349799), new FalconFPR( 0.131540028702883111103387493),
+ new FalconFPR( 0.986809401814185476970235952), new FalconFPR( 0.161886393780111837641387995),
+ new FalconFPR(-0.161886393780111837641387995), new FalconFPR( 0.986809401814185476970235952),
+ new FalconFPR( 0.583308652937698294392830961), new FalconFPR( 0.812250586585203913049744181),
+ new FalconFPR(-0.812250586585203913049744181), new FalconFPR( 0.583308652937698294392830961),
+ new FalconFPR( 0.849741768000852489471268395), new FalconFPR( 0.527199134781901348464274575),
+ new FalconFPR(-0.527199134781901348464274575), new FalconFPR( 0.849741768000852489471268395),
+ new FalconFPR( 0.228072083170885739254457379), new FalconFPR( 0.973644249650811925318383912),
+ new FalconFPR(-0.973644249650811925318383912), new FalconFPR( 0.228072083170885739254457379),
+ new FalconFPR( 0.936265667170278246576310996), new FalconFPR( 0.351292756085567125601307623),
+ new FalconFPR(-0.351292756085567125601307623), new FalconFPR( 0.936265667170278246576310996),
+ new FalconFPR( 0.413638312238434547471944324), new FalconFPR( 0.910441292258067196934095369),
+ new FalconFPR(-0.910441292258067196934095369), new FalconFPR( 0.413638312238434547471944324),
+ new FalconFPR( 0.730562769227827561177758850), new FalconFPR( 0.682845546385248068164596123),
+ new FalconFPR(-0.682845546385248068164596123), new FalconFPR( 0.730562769227827561177758850),
+ new FalconFPR( 0.033741171851377584833716112), new FalconFPR( 0.999430604555461772019008327),
+ new FalconFPR(-0.999430604555461772019008327), new FalconFPR( 0.033741171851377584833716112),
+ new FalconFPR( 0.999204758618363895492950001), new FalconFPR( 0.039872927587739811128578738),
+ new FalconFPR(-0.039872927587739811128578738), new FalconFPR( 0.999204758618363895492950001),
+ new FalconFPR( 0.678350043129861486873655042), new FalconFPR( 0.734738878095963464563223604),
+ new FalconFPR(-0.734738878095963464563223604), new FalconFPR( 0.678350043129861486873655042),
+ new FalconFPR( 0.907886116487666212038681480), new FalconFPR( 0.419216888363223956433010020),
+ new FalconFPR(-0.419216888363223956433010020), new FalconFPR( 0.907886116487666212038681480),
+ new FalconFPR( 0.345541324963989065539191723), new FalconFPR( 0.938403534063108112192420774),
+ new FalconFPR(-0.938403534063108112192420774), new FalconFPR( 0.345541324963989065539191723),
+ new FalconFPR( 0.972226497078936305708321144), new FalconFPR( 0.234041958583543423191242045),
+ new FalconFPR(-0.234041958583543423191242045), new FalconFPR( 0.972226497078936305708321144),
+ new FalconFPR( 0.521975292937154342694258318), new FalconFPR( 0.852960604930363657746588082),
+ new FalconFPR(-0.852960604930363657746588082), new FalconFPR( 0.521975292937154342694258318),
+ new FalconFPR( 0.808656181588174991946968128), new FalconFPR( 0.588281548222645304786439813),
+ new FalconFPR(-0.588281548222645304786439813), new FalconFPR( 0.808656181588174991946968128),
+ new FalconFPR( 0.155828397654265235743101486), new FalconFPR( 0.987784141644572154230969032),
+ new FalconFPR(-0.987784141644572154230969032), new FalconFPR( 0.155828397654265235743101486),
+ new FalconFPR( 0.990485084256457037998682243), new FalconFPR( 0.137620121586486044948441663),
+ new FalconFPR(-0.137620121586486044948441663), new FalconFPR( 0.990485084256457037998682243),
+ new FalconFPR( 0.603066598540348201693430617), new FalconFPR( 0.797690840943391108362662755),
+ new FalconFPR(-0.797690840943391108362662755), new FalconFPR( 0.603066598540348201693430617),
+ new FalconFPR( 0.862423956111040538690933878), new FalconFPR( 0.506186645345155291048942344),
+ new FalconFPR(-0.506186645345155291048942344), new FalconFPR( 0.862423956111040538690933878),
+ new FalconFPR( 0.251897818154216950498106628), new FalconFPR( 0.967753837093475465243391912),
+ new FalconFPR(-0.967753837093475465243391912), new FalconFPR( 0.251897818154216950498106628),
+ new FalconFPR( 0.944604837261480265659265493), new FalconFPR( 0.328209843579092526107916817),
+ new FalconFPR(-0.328209843579092526107916817), new FalconFPR( 0.944604837261480265659265493),
+ new FalconFPR( 0.435857079922255491032544080), new FalconFPR( 0.900015892016160228714535267),
+ new FalconFPR(-0.900015892016160228714535267), new FalconFPR( 0.435857079922255491032544080),
+ new FalconFPR( 0.747100605980180144323078847), new FalconFPR( 0.664710978203344868130324985),
+ new FalconFPR(-0.664710978203344868130324985), new FalconFPR( 0.747100605980180144323078847),
+ new FalconFPR( 0.058258264500435759613979782), new FalconFPR( 0.998301544933892840738782163),
+ new FalconFPR(-0.998301544933892840738782163), new FalconFPR( 0.058258264500435759613979782),
+ new FalconFPR( 0.996044700901251989887944810), new FalconFPR( 0.088853552582524596561586535),
+ new FalconFPR(-0.088853552582524596561586535), new FalconFPR( 0.996044700901251989887944810),
+ new FalconFPR( 0.641481012808583151988739898), new FalconFPR( 0.767138911935820381181694573),
+ new FalconFPR(-0.767138911935820381181694573), new FalconFPR( 0.641481012808583151988739898),
+ new FalconFPR( 0.886222530148880631647990821), new FalconFPR( 0.463259783551860197390719637),
+ new FalconFPR(-0.463259783551860197390719637), new FalconFPR( 0.886222530148880631647990821),
+ new FalconFPR( 0.299079826308040476750336973), new FalconFPR( 0.954228095109105629780430732),
+ new FalconFPR(-0.954228095109105629780430732), new FalconFPR( 0.299079826308040476750336973),
+ new FalconFPR( 0.959571513081984528335528181), new FalconFPR( 0.281464937925757984095231007),
+ new FalconFPR(-0.281464937925757984095231007), new FalconFPR( 0.959571513081984528335528181),
+ new FalconFPR( 0.479493757660153026679839798), new FalconFPR( 0.877545290207261291668470750),
+ new FalconFPR(-0.877545290207261291668470750), new FalconFPR( 0.479493757660153026679839798),
+ new FalconFPR( 0.778816512381475953374724325), new FalconFPR( 0.627251815495144113509622565),
+ new FalconFPR(-0.627251815495144113509622565), new FalconFPR( 0.778816512381475953374724325),
+ new FalconFPR( 0.107172424956808849175529148), new FalconFPR( 0.994240449453187946358413442),
+ new FalconFPR(-0.994240449453187946358413442), new FalconFPR( 0.107172424956808849175529148),
+ new FalconFPR( 0.982539302287441255907040396), new FalconFPR( 0.186055151663446648105438304),
+ new FalconFPR(-0.186055151663446648105438304), new FalconFPR( 0.982539302287441255907040396),
+ new FalconFPR( 0.563199344013834115007363772), new FalconFPR( 0.826321062845663480311195452),
+ new FalconFPR(-0.826321062845663480311195452), new FalconFPR( 0.563199344013834115007363772),
+ new FalconFPR( 0.836547727223511984524285790), new FalconFPR( 0.547894059173100165608820571),
+ new FalconFPR(-0.547894059173100165608820571), new FalconFPR( 0.836547727223511984524285790),
+ new FalconFPR( 0.204108966092816874181696950), new FalconFPR( 0.978948175319062194715480124),
+ new FalconFPR(-0.978948175319062194715480124), new FalconFPR( 0.204108966092816874181696950),
+ new FalconFPR( 0.927362525650401087274536959), new FalconFPR( 0.374164062971457997104393020),
+ new FalconFPR(-0.374164062971457997104393020), new FalconFPR( 0.927362525650401087274536959),
+ new FalconFPR( 0.391170384302253888687512949), new FalconFPR( 0.920318276709110566440076541),
+ new FalconFPR(-0.920318276709110566440076541), new FalconFPR( 0.391170384302253888687512949),
+ new FalconFPR( 0.713584868780793592903125099), new FalconFPR( 0.700568793943248366792866380),
+ new FalconFPR(-0.700568793943248366792866380), new FalconFPR( 0.713584868780793592903125099),
+ new FalconFPR( 0.009203754782059819315102378), new FalconFPR( 0.999957644551963866333120920),
+ new FalconFPR(-0.999957644551963866333120920), new FalconFPR( 0.009203754782059819315102378),
+ new FalconFPR( 0.999957644551963866333120920), new FalconFPR( 0.009203754782059819315102378),
+ new FalconFPR(-0.009203754782059819315102378), new FalconFPR( 0.999957644551963866333120920),
+ new FalconFPR( 0.700568793943248366792866380), new FalconFPR( 0.713584868780793592903125099),
+ new FalconFPR(-0.713584868780793592903125099), new FalconFPR( 0.700568793943248366792866380),
+ new FalconFPR( 0.920318276709110566440076541), new FalconFPR( 0.391170384302253888687512949),
+ new FalconFPR(-0.391170384302253888687512949), new FalconFPR( 0.920318276709110566440076541),
+ new FalconFPR( 0.374164062971457997104393020), new FalconFPR( 0.927362525650401087274536959),
+ new FalconFPR(-0.927362525650401087274536959), new FalconFPR( 0.374164062971457997104393020),
+ new FalconFPR( 0.978948175319062194715480124), new FalconFPR( 0.204108966092816874181696950),
+ new FalconFPR(-0.204108966092816874181696950), new FalconFPR( 0.978948175319062194715480124),
+ new FalconFPR( 0.547894059173100165608820571), new FalconFPR( 0.836547727223511984524285790),
+ new FalconFPR(-0.836547727223511984524285790), new FalconFPR( 0.547894059173100165608820571),
+ new FalconFPR( 0.826321062845663480311195452), new FalconFPR( 0.563199344013834115007363772),
+ new FalconFPR(-0.563199344013834115007363772), new FalconFPR( 0.826321062845663480311195452),
+ new FalconFPR( 0.186055151663446648105438304), new FalconFPR( 0.982539302287441255907040396),
+ new FalconFPR(-0.982539302287441255907040396), new FalconFPR( 0.186055151663446648105438304),
+ new FalconFPR( 0.994240449453187946358413442), new FalconFPR( 0.107172424956808849175529148),
+ new FalconFPR(-0.107172424956808849175529148), new FalconFPR( 0.994240449453187946358413442),
+ new FalconFPR( 0.627251815495144113509622565), new FalconFPR( 0.778816512381475953374724325),
+ new FalconFPR(-0.778816512381475953374724325), new FalconFPR( 0.627251815495144113509622565),
+ new FalconFPR( 0.877545290207261291668470750), new FalconFPR( 0.479493757660153026679839798),
+ new FalconFPR(-0.479493757660153026679839798), new FalconFPR( 0.877545290207261291668470750),
+ new FalconFPR( 0.281464937925757984095231007), new FalconFPR( 0.959571513081984528335528181),
+ new FalconFPR(-0.959571513081984528335528181), new FalconFPR( 0.281464937925757984095231007),
+ new FalconFPR( 0.954228095109105629780430732), new FalconFPR( 0.299079826308040476750336973),
+ new FalconFPR(-0.299079826308040476750336973), new FalconFPR( 0.954228095109105629780430732),
+ new FalconFPR( 0.463259783551860197390719637), new FalconFPR( 0.886222530148880631647990821),
+ new FalconFPR(-0.886222530148880631647990821), new FalconFPR( 0.463259783551860197390719637),
+ new FalconFPR( 0.767138911935820381181694573), new FalconFPR( 0.641481012808583151988739898),
+ new FalconFPR(-0.641481012808583151988739898), new FalconFPR( 0.767138911935820381181694573),
+ new FalconFPR( 0.088853552582524596561586535), new FalconFPR( 0.996044700901251989887944810),
+ new FalconFPR(-0.996044700901251989887944810), new FalconFPR( 0.088853552582524596561586535),
+ new FalconFPR( 0.998301544933892840738782163), new FalconFPR( 0.058258264500435759613979782),
+ new FalconFPR(-0.058258264500435759613979782), new FalconFPR( 0.998301544933892840738782163),
+ new FalconFPR( 0.664710978203344868130324985), new FalconFPR( 0.747100605980180144323078847),
+ new FalconFPR(-0.747100605980180144323078847), new FalconFPR( 0.664710978203344868130324985),
+ new FalconFPR( 0.900015892016160228714535267), new FalconFPR( 0.435857079922255491032544080),
+ new FalconFPR(-0.435857079922255491032544080), new FalconFPR( 0.900015892016160228714535267),
+ new FalconFPR( 0.328209843579092526107916817), new FalconFPR( 0.944604837261480265659265493),
+ new FalconFPR(-0.944604837261480265659265493), new FalconFPR( 0.328209843579092526107916817),
+ new FalconFPR( 0.967753837093475465243391912), new FalconFPR( 0.251897818154216950498106628),
+ new FalconFPR(-0.251897818154216950498106628), new FalconFPR( 0.967753837093475465243391912),
+ new FalconFPR( 0.506186645345155291048942344), new FalconFPR( 0.862423956111040538690933878),
+ new FalconFPR(-0.862423956111040538690933878), new FalconFPR( 0.506186645345155291048942344),
+ new FalconFPR( 0.797690840943391108362662755), new FalconFPR( 0.603066598540348201693430617),
+ new FalconFPR(-0.603066598540348201693430617), new FalconFPR( 0.797690840943391108362662755),
+ new FalconFPR( 0.137620121586486044948441663), new FalconFPR( 0.990485084256457037998682243),
+ new FalconFPR(-0.990485084256457037998682243), new FalconFPR( 0.137620121586486044948441663),
+ new FalconFPR( 0.987784141644572154230969032), new FalconFPR( 0.155828397654265235743101486),
+ new FalconFPR(-0.155828397654265235743101486), new FalconFPR( 0.987784141644572154230969032),
+ new FalconFPR( 0.588281548222645304786439813), new FalconFPR( 0.808656181588174991946968128),
+ new FalconFPR(-0.808656181588174991946968128), new FalconFPR( 0.588281548222645304786439813),
+ new FalconFPR( 0.852960604930363657746588082), new FalconFPR( 0.521975292937154342694258318),
+ new FalconFPR(-0.521975292937154342694258318), new FalconFPR( 0.852960604930363657746588082),
+ new FalconFPR( 0.234041958583543423191242045), new FalconFPR( 0.972226497078936305708321144),
+ new FalconFPR(-0.972226497078936305708321144), new FalconFPR( 0.234041958583543423191242045),
+ new FalconFPR( 0.938403534063108112192420774), new FalconFPR( 0.345541324963989065539191723),
+ new FalconFPR(-0.345541324963989065539191723), new FalconFPR( 0.938403534063108112192420774),
+ new FalconFPR( 0.419216888363223956433010020), new FalconFPR( 0.907886116487666212038681480),
+ new FalconFPR(-0.907886116487666212038681480), new FalconFPR( 0.419216888363223956433010020),
+ new FalconFPR( 0.734738878095963464563223604), new FalconFPR( 0.678350043129861486873655042),
+ new FalconFPR(-0.678350043129861486873655042), new FalconFPR( 0.734738878095963464563223604),
+ new FalconFPR( 0.039872927587739811128578738), new FalconFPR( 0.999204758618363895492950001),
+ new FalconFPR(-0.999204758618363895492950001), new FalconFPR( 0.039872927587739811128578738),
+ new FalconFPR( 0.999430604555461772019008327), new FalconFPR( 0.033741171851377584833716112),
+ new FalconFPR(-0.033741171851377584833716112), new FalconFPR( 0.999430604555461772019008327),
+ new FalconFPR( 0.682845546385248068164596123), new FalconFPR( 0.730562769227827561177758850),
+ new FalconFPR(-0.730562769227827561177758850), new FalconFPR( 0.682845546385248068164596123),
+ new FalconFPR( 0.910441292258067196934095369), new FalconFPR( 0.413638312238434547471944324),
+ new FalconFPR(-0.413638312238434547471944324), new FalconFPR( 0.910441292258067196934095369),
+ new FalconFPR( 0.351292756085567125601307623), new FalconFPR( 0.936265667170278246576310996),
+ new FalconFPR(-0.936265667170278246576310996), new FalconFPR( 0.351292756085567125601307623),
+ new FalconFPR( 0.973644249650811925318383912), new FalconFPR( 0.228072083170885739254457379),
+ new FalconFPR(-0.228072083170885739254457379), new FalconFPR( 0.973644249650811925318383912),
+ new FalconFPR( 0.527199134781901348464274575), new FalconFPR( 0.849741768000852489471268395),
+ new FalconFPR(-0.849741768000852489471268395), new FalconFPR( 0.527199134781901348464274575),
+ new FalconFPR( 0.812250586585203913049744181), new FalconFPR( 0.583308652937698294392830961),
+ new FalconFPR(-0.583308652937698294392830961), new FalconFPR( 0.812250586585203913049744181),
+ new FalconFPR( 0.161886393780111837641387995), new FalconFPR( 0.986809401814185476970235952),
+ new FalconFPR(-0.986809401814185476970235952), new FalconFPR( 0.161886393780111837641387995),
+ new FalconFPR( 0.991310859846115418957349799), new FalconFPR( 0.131540028702883111103387493),
+ new FalconFPR(-0.131540028702883111103387493), new FalconFPR( 0.991310859846115418957349799),
+ new FalconFPR( 0.607949784967773667243642671), new FalconFPR( 0.793975477554337164895083757),
+ new FalconFPR(-0.793975477554337164895083757), new FalconFPR( 0.607949784967773667243642671),
+ new FalconFPR( 0.865513624090569082825488358), new FalconFPR( 0.500885382611240786241285004),
+ new FalconFPR(-0.500885382611240786241285004), new FalconFPR( 0.865513624090569082825488358),
+ new FalconFPR( 0.257831102162159005614471295), new FalconFPR( 0.966190003445412555433832961),
+ new FalconFPR(-0.966190003445412555433832961), new FalconFPR( 0.257831102162159005614471295),
+ new FalconFPR( 0.946600913083283570044599823), new FalconFPR( 0.322407678801069848384807478),
+ new FalconFPR(-0.322407678801069848384807478), new FalconFPR( 0.946600913083283570044599823),
+ new FalconFPR( 0.441371268731716692879988968), new FalconFPR( 0.897324580705418281231391836),
+ new FalconFPR(-0.897324580705418281231391836), new FalconFPR( 0.441371268731716692879988968),
+ new FalconFPR( 0.751165131909686411205819422), new FalconFPR( 0.660114342067420478559490747),
+ new FalconFPR(-0.660114342067420478559490747), new FalconFPR( 0.751165131909686411205819422),
+ new FalconFPR( 0.064382630929857460819324537), new FalconFPR( 0.997925286198596012623025462),
+ new FalconFPR(-0.997925286198596012623025462), new FalconFPR( 0.064382630929857460819324537),
+ new FalconFPR( 0.996571145790554847093566910), new FalconFPR( 0.082740264549375693111987083),
+ new FalconFPR(-0.082740264549375693111987083), new FalconFPR( 0.996571145790554847093566910),
+ new FalconFPR( 0.646176012983316364832802220), new FalconFPR( 0.763188417263381271704838297),
+ new FalconFPR(-0.763188417263381271704838297), new FalconFPR( 0.646176012983316364832802220),
+ new FalconFPR( 0.889048355854664562540777729), new FalconFPR( 0.457813303598877221904961155),
+ new FalconFPR(-0.457813303598877221904961155), new FalconFPR( 0.889048355854664562540777729),
+ new FalconFPR( 0.304929229735402406490728633), new FalconFPR( 0.952375012719765858529893608),
+ new FalconFPR(-0.952375012719765858529893608), new FalconFPR( 0.304929229735402406490728633),
+ new FalconFPR( 0.961280485811320641748659653), new FalconFPR( 0.275571819310958163076425168),
+ new FalconFPR(-0.275571819310958163076425168), new FalconFPR( 0.961280485811320641748659653),
+ new FalconFPR( 0.484869248000791101822951699), new FalconFPR( 0.874586652278176112634431897),
+ new FalconFPR(-0.874586652278176112634431897), new FalconFPR( 0.484869248000791101822951699),
+ new FalconFPR( 0.782650596166575738458949301), new FalconFPR( 0.622461279374149972519166721),
+ new FalconFPR(-0.622461279374149972519166721), new FalconFPR( 0.782650596166575738458949301),
+ new FalconFPR( 0.113270952177564349018228733), new FalconFPR( 0.993564135520595333782021697),
+ new FalconFPR(-0.993564135520595333782021697), new FalconFPR( 0.113270952177564349018228733),
+ new FalconFPR( 0.983662419211730274396237776), new FalconFPR( 0.180022901405699522679906590),
+ new FalconFPR(-0.180022901405699522679906590), new FalconFPR( 0.983662419211730274396237776),
+ new FalconFPR( 0.568258952670131549790548489), new FalconFPR( 0.822849781375826332046780034),
+ new FalconFPR(-0.822849781375826332046780034), new FalconFPR( 0.568258952670131549790548489),
+ new FalconFPR( 0.839893794195999504583383987), new FalconFPR( 0.542750784864515906586768661),
+ new FalconFPR(-0.542750784864515906586768661), new FalconFPR( 0.839893794195999504583383987),
+ new FalconFPR( 0.210111836880469621717489972), new FalconFPR( 0.977677357824509979943404762),
+ new FalconFPR(-0.977677357824509979943404762), new FalconFPR( 0.210111836880469621717489972),
+ new FalconFPR( 0.929640895843181265457918066), new FalconFPR( 0.368466829953372331712746222),
+ new FalconFPR(-0.368466829953372331712746222), new FalconFPR( 0.929640895843181265457918066),
+ new FalconFPR( 0.396809987416710328595290911), new FalconFPR( 0.917900775621390457642276297),
+ new FalconFPR(-0.917900775621390457642276297), new FalconFPR( 0.396809987416710328595290911),
+ new FalconFPR( 0.717870045055731736211325329), new FalconFPR( 0.696177131491462944788582591),
+ new FalconFPR(-0.696177131491462944788582591), new FalconFPR( 0.717870045055731736211325329),
+ new FalconFPR( 0.015339206284988101044151868), new FalconFPR( 0.999882347454212525633049627),
+ new FalconFPR(-0.999882347454212525633049627), new FalconFPR( 0.015339206284988101044151868),
+ new FalconFPR( 0.999769405351215321657617036), new FalconFPR( 0.021474080275469507418374898),
+ new FalconFPR(-0.021474080275469507418374898), new FalconFPR( 0.999769405351215321657617036),
+ new FalconFPR( 0.691759258364157774906734132), new FalconFPR( 0.722128193929215321243607198),
+ new FalconFPR(-0.722128193929215321243607198), new FalconFPR( 0.691759258364157774906734132),
+ new FalconFPR( 0.915448716088267819566431292), new FalconFPR( 0.402434650859418441082533934),
+ new FalconFPR(-0.402434650859418441082533934), new FalconFPR( 0.915448716088267819566431292),
+ new FalconFPR( 0.362755724367397216204854462), new FalconFPR( 0.931884265581668106718557199),
+ new FalconFPR(-0.931884265581668106718557199), new FalconFPR( 0.362755724367397216204854462),
+ new FalconFPR( 0.976369731330021149312732194), new FalconFPR( 0.216106797076219509948385131),
+ new FalconFPR(-0.216106797076219509948385131), new FalconFPR( 0.976369731330021149312732194),
+ new FalconFPR( 0.537587076295645482502214932), new FalconFPR( 0.843208239641845437161743865),
+ new FalconFPR(-0.843208239641845437161743865), new FalconFPR( 0.537587076295645482502214932),
+ new FalconFPR( 0.819347520076796960824689637), new FalconFPR( 0.573297166698042212820171239),
+ new FalconFPR(-0.573297166698042212820171239), new FalconFPR( 0.819347520076796960824689637),
+ new FalconFPR( 0.173983873387463827950700807), new FalconFPR( 0.984748501801904218556553176),
+ new FalconFPR(-0.984748501801904218556553176), new FalconFPR( 0.173983873387463827950700807),
+ new FalconFPR( 0.992850414459865090793563344), new FalconFPR( 0.119365214810991364593637790),
+ new FalconFPR(-0.119365214810991364593637790), new FalconFPR( 0.992850414459865090793563344),
+ new FalconFPR( 0.617647307937803932403979402), new FalconFPR( 0.786455213599085757522319464),
+ new FalconFPR(-0.786455213599085757522319464), new FalconFPR( 0.617647307937803932403979402),
+ new FalconFPR( 0.871595086655951034842481435), new FalconFPR( 0.490226483288291154229598449),
+ new FalconFPR(-0.490226483288291154229598449), new FalconFPR( 0.871595086655951034842481435),
+ new FalconFPR( 0.269668325572915106525464462), new FalconFPR( 0.962953266873683886347921481),
+ new FalconFPR(-0.962953266873683886347921481), new FalconFPR( 0.269668325572915106525464462),
+ new FalconFPR( 0.950486073949481721759926101), new FalconFPR( 0.310767152749611495835997250),
+ new FalconFPR(-0.310767152749611495835997250), new FalconFPR( 0.950486073949481721759926101),
+ new FalconFPR( 0.452349587233770874133026703), new FalconFPR( 0.891840709392342727796478697),
+ new FalconFPR(-0.891840709392342727796478697), new FalconFPR( 0.452349587233770874133026703),
+ new FalconFPR( 0.759209188978388033485525443), new FalconFPR( 0.650846684996380915068975573),
+ new FalconFPR(-0.650846684996380915068975573), new FalconFPR( 0.759209188978388033485525443),
+ new FalconFPR( 0.076623861392031492278332463), new FalconFPR( 0.997060070339482978987989949),
+ new FalconFPR(-0.997060070339482978987989949), new FalconFPR( 0.076623861392031492278332463),
+ new FalconFPR( 0.997511456140303459699448390), new FalconFPR( 0.070504573389613863027351471),
+ new FalconFPR(-0.070504573389613863027351471), new FalconFPR( 0.997511456140303459699448390),
+ new FalconFPR( 0.655492852999615385312679701), new FalconFPR( 0.755201376896536527598710756),
+ new FalconFPR(-0.755201376896536527598710756), new FalconFPR( 0.655492852999615385312679701),
+ new FalconFPR( 0.894599485631382678433072126), new FalconFPR( 0.446868840162374195353044389),
+ new FalconFPR(-0.446868840162374195353044389), new FalconFPR( 0.894599485631382678433072126),
+ new FalconFPR( 0.316593375556165867243047035), new FalconFPR( 0.948561349915730288158494826),
+ new FalconFPR(-0.948561349915730288158494826), new FalconFPR( 0.316593375556165867243047035),
+ new FalconFPR( 0.964589793289812723836432159), new FalconFPR( 0.263754678974831383611349322),
+ new FalconFPR(-0.263754678974831383611349322), new FalconFPR( 0.964589793289812723836432159),
+ new FalconFPR( 0.495565261825772531150266670), new FalconFPR( 0.868570705971340895340449876),
+ new FalconFPR(-0.868570705971340895340449876), new FalconFPR( 0.495565261825772531150266670),
+ new FalconFPR( 0.790230221437310055030217152), new FalconFPR( 0.612810082429409703935211936),
+ new FalconFPR(-0.612810082429409703935211936), new FalconFPR( 0.790230221437310055030217152),
+ new FalconFPR( 0.125454983411546238542336453), new FalconFPR( 0.992099313142191757112085445),
+ new FalconFPR(-0.992099313142191757112085445), new FalconFPR( 0.125454983411546238542336453),
+ new FalconFPR( 0.985797509167567424700995000), new FalconFPR( 0.167938294974731178054745536),
+ new FalconFPR(-0.167938294974731178054745536), new FalconFPR( 0.985797509167567424700995000),
+ new FalconFPR( 0.578313796411655563342245019), new FalconFPR( 0.815814410806733789010772660),
+ new FalconFPR(-0.815814410806733789010772660), new FalconFPR( 0.578313796411655563342245019),
+ new FalconFPR( 0.846490938774052078300544488), new FalconFPR( 0.532403127877197971442805218),
+ new FalconFPR(-0.532403127877197971442805218), new FalconFPR( 0.846490938774052078300544488),
+ new FalconFPR( 0.222093620973203534094094721), new FalconFPR( 0.975025345066994146844913468),
+ new FalconFPR(-0.975025345066994146844913468), new FalconFPR( 0.222093620973203534094094721),
+ new FalconFPR( 0.934092550404258914729877883), new FalconFPR( 0.357030961233430032614954036),
+ new FalconFPR(-0.357030961233430032614954036), new FalconFPR( 0.934092550404258914729877883),
+ new FalconFPR( 0.408044162864978680820747499), new FalconFPR( 0.912962190428398164628018233),
+ new FalconFPR(-0.912962190428398164628018233), new FalconFPR( 0.408044162864978680820747499),
+ new FalconFPR( 0.726359155084345976817494315), new FalconFPR( 0.687315340891759108199186948),
+ new FalconFPR(-0.687315340891759108199186948), new FalconFPR( 0.726359155084345976817494315),
+ new FalconFPR( 0.027608145778965741612354872), new FalconFPR( 0.999618822495178597116830637),
+ new FalconFPR(-0.999618822495178597116830637), new FalconFPR( 0.027608145778965741612354872),
+ new FalconFPR( 0.998941293186856850633930266), new FalconFPR( 0.046003182130914628814301788),
+ new FalconFPR(-0.046003182130914628814301788), new FalconFPR( 0.998941293186856850633930266),
+ new FalconFPR( 0.673829000378756060917568372), new FalconFPR( 0.738887324460615147933116508),
+ new FalconFPR(-0.738887324460615147933116508), new FalconFPR( 0.673829000378756060917568372),
+ new FalconFPR( 0.905296759318118774354048329), new FalconFPR( 0.424779681209108833357226189),
+ new FalconFPR(-0.424779681209108833357226189), new FalconFPR( 0.905296759318118774354048329),
+ new FalconFPR( 0.339776884406826857828825803), new FalconFPR( 0.940506070593268323787291309),
+ new FalconFPR(-0.940506070593268323787291309), new FalconFPR( 0.339776884406826857828825803),
+ new FalconFPR( 0.970772140728950302138169611), new FalconFPR( 0.240003022448741486568922365),
+ new FalconFPR(-0.240003022448741486568922365), new FalconFPR( 0.970772140728950302138169611),
+ new FalconFPR( 0.516731799017649881508753876), new FalconFPR( 0.856147328375194481019630732),
+ new FalconFPR(-0.856147328375194481019630732), new FalconFPR( 0.516731799017649881508753876),
+ new FalconFPR( 0.805031331142963597922659282), new FalconFPR( 0.593232295039799808047809426),
+ new FalconFPR(-0.593232295039799808047809426), new FalconFPR( 0.805031331142963597922659282),
+ new FalconFPR( 0.149764534677321517229695737), new FalconFPR( 0.988721691960323767604516485),
+ new FalconFPR(-0.988721691960323767604516485), new FalconFPR( 0.149764534677321517229695737),
+ new FalconFPR( 0.989622017463200834623694454), new FalconFPR( 0.143695033150294454819773349),
+ new FalconFPR(-0.143695033150294454819773349), new FalconFPR( 0.989622017463200834623694454),
+ new FalconFPR( 0.598160706996342311724958652), new FalconFPR( 0.801376171723140219430247777),
+ new FalconFPR(-0.801376171723140219430247777), new FalconFPR( 0.598160706996342311724958652),
+ new FalconFPR( 0.859301818357008404783582139), new FalconFPR( 0.511468850437970399504391001),
+ new FalconFPR(-0.511468850437970399504391001), new FalconFPR( 0.859301818357008404783582139),
+ new FalconFPR( 0.245955050335794611599924709), new FalconFPR( 0.969281235356548486048290738),
+ new FalconFPR(-0.969281235356548486048290738), new FalconFPR( 0.245955050335794611599924709),
+ new FalconFPR( 0.942573197601446879280758735), new FalconFPR( 0.333999651442009404650865481),
+ new FalconFPR(-0.333999651442009404650865481), new FalconFPR( 0.942573197601446879280758735),
+ new FalconFPR( 0.430326481340082633908199031), new FalconFPR( 0.902673318237258806751502391),
+ new FalconFPR(-0.902673318237258806751502391), new FalconFPR( 0.430326481340082633908199031),
+ new FalconFPR( 0.743007952135121693517362293), new FalconFPR( 0.669282588346636065720696366),
+ new FalconFPR(-0.669282588346636065720696366), new FalconFPR( 0.743007952135121693517362293),
+ new FalconFPR( 0.052131704680283321236358216), new FalconFPR( 0.998640218180265222418199049),
+ new FalconFPR(-0.998640218180265222418199049), new FalconFPR( 0.052131704680283321236358216),
+ new FalconFPR( 0.995480755491926941769171600), new FalconFPR( 0.094963495329638998938034312),
+ new FalconFPR(-0.094963495329638998938034312), new FalconFPR( 0.995480755491926941769171600),
+ new FalconFPR( 0.636761861236284230413943435), new FalconFPR( 0.771060524261813773200605759),
+ new FalconFPR(-0.771060524261813773200605759), new FalconFPR( 0.636761861236284230413943435),
+ new FalconFPR( 0.883363338665731594736308015), new FalconFPR( 0.468688822035827933697617870),
+ new FalconFPR(-0.468688822035827933697617870), new FalconFPR( 0.883363338665731594736308015),
+ new FalconFPR( 0.293219162694258650606608599), new FalconFPR( 0.956045251349996443270479823),
+ new FalconFPR(-0.956045251349996443270479823), new FalconFPR( 0.293219162694258650606608599),
+ new FalconFPR( 0.957826413027532890321037029), new FalconFPR( 0.287347459544729526477331841),
+ new FalconFPR(-0.287347459544729526477331841), new FalconFPR( 0.957826413027532890321037029),
+ new FalconFPR( 0.474100214650550014398580015), new FalconFPR( 0.880470889052160770806542929),
+ new FalconFPR(-0.880470889052160770806542929), new FalconFPR( 0.474100214650550014398580015),
+ new FalconFPR( 0.774953106594873878359129282), new FalconFPR( 0.632018735939809021909403706),
+ new FalconFPR(-0.632018735939809021909403706), new FalconFPR( 0.774953106594873878359129282),
+ new FalconFPR( 0.101069862754827824987887585), new FalconFPR( 0.994879330794805620591166107),
+ new FalconFPR(-0.994879330794805620591166107), new FalconFPR( 0.101069862754827824987887585),
+ new FalconFPR( 0.981379193313754574318224190), new FalconFPR( 0.192080397049892441679288205),
+ new FalconFPR(-0.192080397049892441679288205), new FalconFPR( 0.981379193313754574318224190),
+ new FalconFPR( 0.558118531220556115693702964), new FalconFPR( 0.829761233794523042469023765),
+ new FalconFPR(-0.829761233794523042469023765), new FalconFPR( 0.558118531220556115693702964),
+ new FalconFPR( 0.833170164701913186439915922), new FalconFPR( 0.553016705580027531764226988),
+ new FalconFPR(-0.553016705580027531764226988), new FalconFPR( 0.833170164701913186439915922),
+ new FalconFPR( 0.198098410717953586179324918), new FalconFPR( 0.980182135968117392690210009),
+ new FalconFPR(-0.980182135968117392690210009), new FalconFPR( 0.198098410717953586179324918),
+ new FalconFPR( 0.925049240782677590302371869), new FalconFPR( 0.379847208924051170576281147),
+ new FalconFPR(-0.379847208924051170576281147), new FalconFPR( 0.925049240782677590302371869),
+ new FalconFPR( 0.385516053843918864075607949), new FalconFPR( 0.922701128333878570437264227),
+ new FalconFPR(-0.922701128333878570437264227), new FalconFPR( 0.385516053843918864075607949),
+ new FalconFPR( 0.709272826438865651316533772), new FalconFPR( 0.704934080375904908852523758),
+ new FalconFPR(-0.704934080375904908852523758), new FalconFPR( 0.709272826438865651316533772),
+ new FalconFPR( 0.003067956762965976270145365), new FalconFPR( 0.999995293809576171511580126),
+ new FalconFPR(-0.999995293809576171511580126), new FalconFPR( 0.003067956762965976270145365)
+ };
+
+ internal FalconFPR[] fpr_p2_tab = {
+ new FalconFPR( 2.00000000000 ),
+ new FalconFPR( 1.00000000000 ),
+ new FalconFPR( 0.50000000000 ),
+ new FalconFPR( 0.25000000000 ),
+ new FalconFPR( 0.12500000000 ),
+ new FalconFPR( 0.06250000000 ),
+ new FalconFPR( 0.03125000000 ),
+ new FalconFPR( 0.01562500000 ),
+ new FalconFPR( 0.00781250000 ),
+ new FalconFPR( 0.00390625000 ),
+ new FalconFPR( 0.00195312500 )
+ };
+ internal FalconFPR fpr_log2 = new FalconFPR(0.69314718055994530941723212146);
+ internal FalconFPR fpr_inv_log2 = new FalconFPR(1.4426950408889634073599246810);
+ internal FalconFPR fpr_bnorm_max = new FalconFPR(16822.4121);
+ internal FalconFPR fpr_zero = new FalconFPR(0.0);
+ internal FalconFPR fpr_one = new FalconFPR(1.0);
+ internal FalconFPR fpr_two = new FalconFPR(2.0);
+ internal FalconFPR fpr_onehalf = new FalconFPR(0.5);
+ internal FalconFPR fpr_invsqrt2 = new FalconFPR(0.707106781186547524400844362105);
+ internal FalconFPR fpr_invsqrt8 = new FalconFPR(0.353553390593273762200422181052);
+ internal FalconFPR fpr_ptwo31 = new FalconFPR(2147483648.0);
+ internal FalconFPR fpr_ptwo31m1 = new FalconFPR(2147483647.0);
+ internal FalconFPR fpr_mtwo31m1 = new FalconFPR(-2147483647.0);
+ internal FalconFPR fpr_ptwo63m1 = new FalconFPR(9223372036854775807.0);
+ internal FalconFPR fpr_mtwo63m1 = new FalconFPR(-9223372036854775807.0);
+ internal FalconFPR fpr_ptwo63 = new FalconFPR(9223372036854775808.0);
+ internal FalconFPR fpr_q = new FalconFPR(12289.0);
+ internal FalconFPR fpr_inverse_of_q = new FalconFPR(1.0 / 12289.0);
+ internal FalconFPR fpr_inv_2sqrsigma0 = new FalconFPR(0.150865048875372721532312163019);
+ internal FalconFPR[] fpr_inv_sigma = {
+ new FalconFPR( 0.0 ), /* unused */
+ new FalconFPR( 0.0069054793295940891952143765991630516 ),
+ new FalconFPR( 0.0068102267767177975961393730687908629 ),
+ new FalconFPR( 0.0067188101910722710707826117910434131 ),
+ new FalconFPR( 0.0065883354370073665545865037227681924 ),
+ new FalconFPR( 0.0064651781207602900738053897763485516 ),
+ new FalconFPR( 0.0063486788828078995327741182928037856 ),
+ new FalconFPR( 0.0062382586529084374473367528433697537 ),
+ new FalconFPR( 0.0061334065020930261548984001431770281 ),
+ new FalconFPR( 0.0060336696681577241031668062510953022 ),
+ new FalconFPR( 0.0059386453095331159950250124336477482 )
+ };
+ internal FalconFPR[] fpr_sigma_min = {
+ new FalconFPR( 0.0 ), /* unused */
+ new FalconFPR( 1.1165085072329102588881898380334015 ),
+ new FalconFPR( 1.1321247692325272405718031785357108 ),
+ new FalconFPR( 1.1475285353733668684571123112513188 ),
+ new FalconFPR( 1.1702540788534828939713084716509250 ),
+ new FalconFPR( 1.1925466358390344011122170489094133 ),
+ new FalconFPR( 1.2144300507766139921088487776957699 ),
+ new FalconFPR( 1.2359260567719808790104525941706723 ),
+ new FalconFPR( 1.2570545284063214162779743112075080 ),
+ new FalconFPR( 1.2778336969128335860256340575729042 ),
+ new FalconFPR( 1.2982803343442918539708792538826807 )
+ };
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/FalconCodec.cs b/crypto/src/pqc/crypto/falcon/FalconCodec.cs
new file mode 100644
index 000000000..062e006e4
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FalconCodec.cs
@@ -0,0 +1,576 @@
+using System;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ class FalconCodec
+ {
+
+ internal FalconCodec() {
+
+ }
+
+ /*
+ * License from the reference C code (the code was copied then modified
+ * to function in C#):
+ * ==========================(LICENSE BEGIN)============================
+ *
+ * Copyright (c) 2017-2019 Falcon Project
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * ===========================(LICENSE END)=============================
+ */
+
+ internal int modq_encode(
+ byte[] outarrsrc, int outarr, int max_out_len,
+ ushort[] xsrc, int x, uint logn)
+ {
+ int n, out_len, u;
+ int buf;
+ uint acc;
+ int acc_len;
+
+ n = (int)1 << (int)logn;
+ for (u = 0; u < n; u ++) {
+ if (xsrc[x+u] >= 12289) {
+ return 0;
+ }
+ }
+ out_len = ((n * 14) + 7) >> 3;
+ if (outarrsrc == null) {
+ return out_len;
+ }
+ if (out_len > max_out_len) {
+ return 0;
+ }
+ buf = outarr;
+ acc = 0;
+ acc_len = 0;
+ for (u = 0; u < n; u ++) {
+ acc = (acc << 14) | xsrc[x+u];
+ acc_len += 14;
+ while (acc_len >= 8) {
+ acc_len -= 8;
+ outarrsrc[buf ++] = (byte)(acc >> acc_len);
+ }
+ }
+ if (acc_len > 0) {
+ outarrsrc[buf] = (byte)(acc << (8 - acc_len));
+ }
+ return out_len;
+ }
+
+ internal int modq_decode(
+ ushort[] xsrc, int x, uint logn,
+ byte[] inarrsrc, int inarr, int max_in_len)
+ {
+ int n, in_len, u;
+ int buf;
+ uint acc;
+ int acc_len;
+
+ n = (int)1 << (int)logn;
+ in_len = ((n * 14) + 7) >> 3;
+ if (in_len > max_in_len) {
+ return 0;
+ }
+ buf = inarr;
+ acc = 0;
+ acc_len = 0;
+ u = 0;
+ while (u < n) {
+ acc = (acc << 8) | (inarrsrc[buf ++]);
+ acc_len += 8;
+ if (acc_len >= 14) {
+ uint w;
+
+ acc_len -= 14;
+ w = (acc >> acc_len) & 0x3FFF;
+ if (w >= 12289) {
+ return 0;
+ }
+ xsrc[x + u] = (ushort)w;
+ u++;
+ }
+ }
+ if ((acc & (((uint)1 << acc_len) - 1)) != 0) {
+ return 0;
+ }
+ return in_len;
+ }
+
+ internal int trim_i16_encode(
+ byte[] outarrsrc, int outarr, int max_out_len,
+ short[] xsrc, int x, uint logn, uint bits)
+ {
+ int n, u, out_len;
+ int minv, maxv;
+ int buf;
+ uint acc, mask;
+ uint acc_len;
+
+ n = (int)1 << (int)logn;
+ maxv = (1 << (int)(bits - 1)) - 1;
+ minv = -maxv;
+ for (u = 0; u < n; u ++) {
+ if (xsrc[x+u] < minv || xsrc[x+u] > maxv) {
+ return 0;
+ }
+ }
+ out_len = (int)((n * bits) + 7) >> 3;
+ if (outarrsrc == null) {
+ return out_len;
+ }
+ if (out_len > max_out_len) {
+ return 0;
+ }
+ buf = outarr;
+ acc = 0;
+ acc_len = 0;
+ mask = ((uint)1 << (int)bits) - 1;
+ for (u = 0; u < n; u ++) {
+ acc = (acc << (int)bits) | ((ushort)xsrc[x+u] & mask);
+ acc_len += bits;
+ while (acc_len >= 8) {
+ acc_len -= 8;
+ outarrsrc[buf ++] = (byte)(acc >> (int)acc_len);
+ }
+ }
+ if (acc_len > 0) {
+ outarrsrc[buf ++] = (byte)(acc << (int)(8 - acc_len));
+ }
+ return out_len;
+ }
+
+ internal int trim_i16_decode(
+ short[] xsrc, int x, uint logn, uint bits,
+ byte[] inarrsrc, int inarr, int max_in_len)
+ {
+ int n, in_len;
+ int buf;
+ int u;
+ uint acc, mask1, mask2;
+ uint acc_len;
+
+ n = (int)1 << (int)logn;
+ in_len = (int)((n * bits) + 7) >> 3;
+ if (in_len > max_in_len) {
+ return 0;
+ }
+ buf = inarr;
+ u = 0;
+ acc = 0;
+ acc_len = 0;
+ mask1 = ((uint)1 << (int)bits) - 1;
+ mask2 = (uint)1 << (int)(bits - 1);
+ while (u < n) {
+ acc = (acc << 8) | inarrsrc[buf ++];
+ acc_len += 8;
+ while (acc_len >= bits && u < n) {
+ uint w;
+
+ acc_len -= bits;
+ w = (acc >> (int)acc_len) & mask1;
+ w = (uint)(w | -(w & mask2));
+ w |= (uint)(-(w & mask2));
+ if (w == -mask2) {
+ /*
+ * The -2^(bits-1) value is forbidden.
+ */
+ return 0;
+ }
+ w |= (uint)(-(w & mask2));
+ //xsrc[x + u] = (short)*(int *)&w;
+ xsrc[x + u] = (short)(int)w;
+ u++;
+ }
+ }
+ if ((acc & (((uint)1 << (int)acc_len) - 1)) != 0) {
+ /*
+ * Extra bits in the last byte must be zero.
+ */
+ return 0;
+ }
+ return in_len;
+ }
+
+ internal int trim_i8_encode(
+ byte[] outarrsrc, int outarr, int max_out_len,
+ sbyte[] xsrc, int x, uint logn, uint bits)
+ {
+ int n, u, out_len;
+ int minv, maxv;
+ int buf;
+ uint acc, mask;
+ uint acc_len;
+
+ n = (int)1 << (int)logn;
+ maxv = (1 << (int)(bits - 1)) - 1;
+ minv = -maxv;
+ for (u = 0; u < n; u ++) {
+ if (xsrc[x+u] < minv || xsrc[x+u] > maxv) {
+ return 0;
+ }
+ }
+ out_len = (int)((n * bits) + 7) >> 3;
+ if (outarrsrc == null) {
+ return out_len;
+ }
+ if (out_len > max_out_len) {
+ return 0;
+ }
+ buf = outarr;
+ acc = 0;
+ acc_len = 0;
+ mask = ((uint)1 << (int)bits) - 1;
+ for (u = 0; u < n; u ++) {
+ acc = (acc << (int)bits) | ((byte)xsrc[x+u] & mask);
+ acc_len += bits;
+ while (acc_len >= 8) {
+ acc_len -= 8;
+ outarrsrc[buf ++] = (byte)(acc >> (int)acc_len);
+ }
+ }
+ if (acc_len > 0) {
+ outarrsrc[buf ++] = (byte)(acc << (int)(8 - acc_len));
+ }
+ return out_len;
+ }
+
+ internal int trim_i8_decode(
+ sbyte[] xsrc, int x, uint logn, uint bits,
+ byte[] inarrsrc, int inarr, int max_in_len)
+ {
+ int n, in_len;
+ int buf;
+ int u;
+ uint acc, mask1, mask2;
+ uint acc_len;
+
+ n = (int)1 << (int)logn;
+ in_len = (int)((n * bits) + 7) >> 3;
+ if (in_len > max_in_len) {
+ return 0;
+ }
+ buf = inarr;
+ u = 0;
+ acc = 0;
+ acc_len = 0;
+ mask1 = ((uint)1 << (int)bits) - 1;
+ mask2 = (uint)1 << (int)(bits - 1);
+ while (u < n) {
+ acc = (acc << 8) | inarrsrc[buf ++];
+ acc_len += 8;
+ while (acc_len >= bits && u < n) {
+ uint w;
+
+ acc_len -= bits;
+ w = (acc >> (int)acc_len) & mask1;
+ w |= (uint)(-(w & mask2));
+ if (w == -mask2) {
+ /*
+ * The -2^(bits-1) value is forbidden.
+ */
+ return 0;
+ }
+ //xsrc[x + u] = (sbyte)*(int *)&w;
+ xsrc[x + u] = (sbyte)(int)w;
+ u++;
+ }
+ }
+ if ((acc & (((uint)1 << (int)acc_len) - 1)) != 0) {
+ /*
+ * Extra bits in the last byte must be zero.
+ */
+ return 0;
+ }
+ return in_len;
+ }
+
+ internal int comp_encode(
+ byte[] outarrsrc, int outarr, int max_out_len,
+ short[] xsrc, int x, uint logn)
+ {
+ int buf;
+ int n, u, v;
+ uint acc;
+ uint acc_len;
+
+ n = (int)1 << (int)logn;
+ buf = outarr;
+
+ /*
+ * Make sure that all values are within the -2047..+2047 range.
+ */
+ for (u = 0; u < n; u ++) {
+ if (xsrc[x+u] < -2047 || xsrc[x+u] > +2047) {
+ return 0;
+ }
+ }
+
+ acc = 0;
+ acc_len = 0;
+ v = 0;
+ for (u = 0; u < n; u ++) {
+ int t;
+ uint w;
+
+ /*
+ * Get sign and absolute value of next integer; push the
+ * sign bit.
+ */
+ acc <<= 1;
+ t = xsrc[x+u];
+ if (t < 0) {
+ t = -t;
+ acc |= 1;
+ }
+ w = (uint)t;
+
+ /*
+ * Push the low 7 bits of the absolute value.
+ */
+ acc <<= 7;
+ acc |= w & 127u;
+ w >>= 7;
+
+ /*
+ * We pushed exactly 8 bits.
+ */
+ acc_len += 8;
+
+ /*
+ * Push as many zeros as necessary, then a one. Since the
+ * absolute value is at most 2047, w can only range up to
+ * 15 at this point, thus we will add at most 16 bits
+ * here. With the 8 bits above and possibly up to 7 bits
+ * from previous iterations, we may go up to 31 bits, which
+ * will fit in the accumulator, which is an uint.
+ */
+ acc <<= (int)(w + 1);
+ acc |= 1;
+ acc_len += w + 1;
+
+ /*
+ * Produce all full bytes.
+ */
+ while (acc_len >= 8) {
+ acc_len -= 8;
+ if (outarrsrc != null) {
+ if (v >= max_out_len) {
+ return 0;
+ }
+ outarrsrc[buf+v] = (byte)(acc >> (int)acc_len);
+ }
+ v ++;
+ }
+ }
+
+ /*
+ * Flush remaining bits (if any).
+ */
+ if (acc_len > 0) {
+ if (outarrsrc != null) {
+ if (v >= max_out_len) {
+ return 0;
+ }
+ outarrsrc[buf+v] = (byte)(acc << (int)(8 - acc_len));
+ }
+ v ++;
+ }
+
+ return v;
+ }
+
+ internal int comp_decode(
+ short[] xsrc, int x, uint logn,
+ byte[] inarrsrc, int inarr, int max_in_len)
+ {
+ int buf;
+ int n, u, v;
+ uint acc;
+ uint acc_len;
+
+ n = (int)1 << (int)logn;
+ buf = inarr;
+ acc = 0;
+ acc_len = 0;
+ v = 0;
+ for (u = 0; u < n; u ++) {
+ uint b, s, m;
+
+ /*
+ * Get next eight bits: sign and low seven bits of the
+ * absolute value.
+ */
+ if (v >= max_in_len) {
+ return 0;
+ }
+ acc = (acc << 8) | (uint)inarrsrc[buf + v];
+ v++;
+ b = acc >> (int)acc_len;
+ s = b & 128;
+ m = b & 127;
+
+ /*
+ * Get next bits until a 1 is reached.
+ */
+ for (;;) {
+ if (acc_len == 0) {
+ if (v >= max_in_len) {
+ return 0;
+ }
+ acc = (acc << 8) | (uint)inarrsrc[buf + v];
+ v++;
+ acc_len = 8;
+ }
+ acc_len --;
+ if (((acc >> (int)acc_len) & 1) != 0) {
+ break;
+ }
+ m += 128;
+ if (m > 2047) {
+ return 0;
+ }
+ }
+
+ /*
+ * "-0" is forbidden.
+ */
+ if (s != 0 && m == 0) {
+ return 0;
+ }
+
+ xsrc[x+u] = (short)(s != 0 ? -(int)m : (int)m);
+ }
+
+ /*
+ * Unused bits in the last byte must be zero.
+ */
+ if ((acc & ((1u << (int)acc_len) - 1u)) != 0) {
+ return 0;
+ }
+
+ return v;
+ }
+
+ /*
+ * Key elements and signatures are polynomials with small integer
+ * coefficients. Here are some statistics gathered over many
+ * generated key pairs (10000 or more for each degree):
+ *
+ * log(n) n max(f,g) std(f,g) max(F,G) std(F,G)
+ * 1 2 129 56.31 143 60.02
+ * 2 4 123 40.93 160 46.52
+ * 3 8 97 28.97 159 38.01
+ * 4 16 100 21.48 154 32.50
+ * 5 32 71 15.41 151 29.36
+ * 6 64 59 11.07 138 27.77
+ * 7 128 39 7.91 144 27.00
+ * 8 256 32 5.63 148 26.61
+ * 9 512 22 4.00 137 26.46
+ * 10 1024 15 2.84 146 26.41
+ *
+ * We want a compact storage format for private key, and, as part of
+ * key generation, we are allowed to reject some keys which would
+ * otherwise be fine (this does not induce any noticeable vulnerability
+ * as long as we reject only a small proportion of possible keys).
+ * Hence, we enforce at key generation time maximum values for the
+ * elements of f, g, F and G, so that their encoding can be expressed
+ * in fixed-width values. Limits have been chosen so that generated
+ * keys are almost always within bounds, thus not impacting neither
+ * security or performance.
+ *
+ * IMPORTANT: the code assumes that all coefficients of f, g, F and G
+ * ultimately fit in the -127..+127 range. Thus, none of the elements
+ * of max_fg_bits[] and max_FG_bits[] shall be greater than 8.
+ */
+
+ internal byte[] max_fg_bits = {
+ 0, /* unused */
+ 8,
+ 8,
+ 8,
+ 8,
+ 8,
+ 7,
+ 7,
+ 6,
+ 6,
+ 5
+ };
+
+ internal byte[] max_FG_bits = {
+ 0, /* unused */
+ 8,
+ 8,
+ 8,
+ 8,
+ 8,
+ 8,
+ 8,
+ 8,
+ 8,
+ 8
+ };
+
+ /*
+ * When generating a new key pair, we can always reject keys which
+ * feature an abnormally large coefficient. This can also be done for
+ * signatures, albeit with some care: in case the signature process is
+ * used in a derandomized setup (explicitly seeded with the message and
+ * private key), we have to follow the specification faithfully, and the
+ * specification only enforces a limit on the L2 norm of the signature
+ * vector. The limit on the L2 norm implies that the absolute value of
+ * a coefficient of the signature cannot be more than the following:
+ *
+ * log(n) n max sig coeff (theoretical)
+ * 1 2 412
+ * 2 4 583
+ * 3 8 824
+ * 4 16 1166
+ * 5 32 1649
+ * 6 64 2332
+ * 7 128 3299
+ * 8 256 4665
+ * 9 512 6598
+ * 10 1024 9331
+ *
+ * However, the largest observed signature coefficients during our
+ * experiments was 1077 (in absolute value), hence we can assume that,
+ * with overwhelming probability, signature coefficients will fit
+ * in -2047..2047, i.e. 12 bits.
+ */
+
+ internal byte[] max_sig_bits = {
+ 0, /* unused */
+ 10,
+ 11,
+ 11,
+ 12,
+ 12,
+ 12,
+ 12,
+ 12,
+ 12,
+ 12
+ };
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/FalconCommon.cs b/crypto/src/pqc/crypto/falcon/FalconCommon.cs
new file mode 100644
index 000000000..e92237936
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FalconCommon.cs
@@ -0,0 +1,304 @@
+using System;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ class FalconCommon
+ {
+ /*
+ * License from the reference C code (the code was copied then modified
+ * to function in C#):
+ * ==========================(LICENSE BEGIN)============================
+ *
+ * Copyright (c) 2017-2019 Falcon Project
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * ===========================(LICENSE END)=============================
+ */
+ internal void hash_to_point_vartime(
+ SHAKE256 sc,
+ ushort[] xsrc, int x, uint logn)
+ {
+ /*
+ * This is the straightforward per-the-spec implementation. It
+ * is not constant-time, thus it might reveal information on the
+ * plaintext (at least, enough to check the plaintext against a
+ * list of potential plaintexts) in a scenario where the
+ * attacker does not have access to the signature value or to
+ * the public key, but knows the nonce (without knowledge of the
+ * nonce, the hashed output cannot be matched against potential
+ * plaintexts).
+ */
+ int n;
+
+ n = (int)1 << (int)logn;
+ while (n > 0) {
+ byte[] buf = new byte[2];
+ uint w;
+ sc.i_shake256_extract(buf, 0, 2);
+ // inner_shake256_extract(sc, (void *)buf, sizeof buf);
+ w = ((uint)buf[0] << 8) | (uint)buf[1];
+ if (w < 61445) {
+ while (w >= 12289) {
+ w -= 12289;
+ }
+ xsrc[x ++] = (ushort)w;
+ n --;
+ }
+ }
+ }
+
+ // void hash_to_point_ct(
+ // SHAKE256 sc,
+ // ushort[] xsrc, int x, uint logn, byte *tmp)
+ // {
+ // /*
+ // * Each 16-bit sample is a value in 0..65535. The value is
+ // * kept if it falls in 0..61444 (because 61445 = 5*12289)
+ // * and rejected otherwise; thus, each sample has probability
+ // * about 0.93758 of being selected.
+ // *
+ // * We want to oversample enough to be sure that we will
+ // * have enough values with probability at least 1 - 2^(-256).
+ // * Depending on degree N, this leads to the following
+ // * required oversampling:
+ // *
+ // * logn n oversampling
+ // * 1 2 65
+ // * 2 4 67
+ // * 3 8 71
+ // * 4 16 77
+ // * 5 32 86
+ // * 6 64 100
+ // * 7 128 122
+ // * 8 256 154
+ // * 9 512 205
+ // * 10 1024 287
+ // *
+ // * If logn >= 7, then the provided temporary buffer is large
+ // * enough. Otherwise, we use a stack buffer of 63 entries
+ // * (i.e. 126 bytes) for the values that do not fit in tmp[].
+ // */
+
+ // const ushort[] overtab = {
+ // 0, /* unused */
+ // 65,
+ // 67,
+ // 71,
+ // 77,
+ // 86,
+ // 100,
+ // 122,
+ // 154,
+ // 205,
+ // 287
+ // };
+
+ // uint n, n2, u, m, p, over;
+ // int tt1;
+ // ushort[] tt2 = new ushort[63];
+
+ // /*
+ // * We first generate m 16-bit value. Values 0..n-1 go to x[].
+ // * Values n..2*n-1 go to tt1[]. Values 2*n and later go to tt2[].
+ // * We also reduce modulo q the values; rejected values are set
+ // * to 0xFFFF.
+ // */
+ // n = 1U << logn;
+ // n2 = n << 1;
+ // over = overtab[logn];
+ // m = n + over;
+ // tt1 = tmp;
+ // for (u = 0; u < m; u ++) {
+ // byte[] buf = new byte[2];
+ // uint w, wr;
+
+ // // inner_shake256_extract(sc, buf, sizeof buf);
+ // sc.i_shake256_extract(buf, 2);
+ // w = ((uint)buf[0] << 8) | (uint)buf[1];
+ // wr = w - ((uint)24578 & (((w - 24578) >> 31) - 1));
+ // wr = wr - ((uint)24578 & (((wr - 24578) >> 31) - 1));
+ // wr = wr - ((uint)12289 & (((wr - 12289) >> 31) - 1));
+ // wr |= ((w - 61445) >> 31) - 1;
+ // if (u < n) {
+ // x[u] = (ushort)wr;
+ // } else if (u < n2) {
+ // tt1[u - n] = (ushort)wr;
+ // } else {
+ // tt2[u - n2] = (ushort)wr;
+ // }
+ // }
+
+ // /*
+ // * Now we must "squeeze out" the invalid values. We do this in
+ // * a logarithmic sequence of passes; each pass computes where a
+ // * value should go, and moves it down by 'p' slots if necessary,
+ // * where 'p' uses an increasing powers-of-two scale. It can be
+ // * shown that in all cases where the loop decides that a value
+ // * has to be moved down by p slots, the destination slot is
+ // * "free" (i.e. contains an invalid value).
+ // */
+ // for (p = 1; p <= over; p <<= 1) {
+ // uint v;
+
+ // /*
+ // * In the loop below:
+ // *
+ // * - v contains the index of the final destination of
+ // * the value; it is recomputed dynamically based on
+ // * whether values are valid or not.
+ // *
+ // * - u is the index of the value we consider ("source");
+ // * its address is s.
+ // *
+ // * - The loop may swap the value with the one at index
+ // * u-p. The address of the swap destination is d.
+ // */
+ // v = 0;
+ // for (u = 0; u < m; u ++) {
+ // ushort *s;
+ // ushort *d;
+ // uint j, sv, dv, mk;
+
+ // if (u < n) {
+ // s = &x[u];
+ // } else if (u < n2) {
+ // s = &tt1[u - n];
+ // } else {
+ // s = &tt2[u - n2];
+ // }
+ // sv = *s;
+
+ // /*
+ // * The value in sv should ultimately go to
+ // * address v, i.e. jump back by u-v slots.
+ // */
+ // j = u - v;
+
+ // /*
+ // * We increment v for the next iteration, but
+ // * only if the source value is valid. The mask
+ // * 'mk' is -1 if the value is valid, 0 otherwise,
+ // * so we _subtract_ mk.
+ // */
+ // mk = (sv >> 15) - 1U;
+ // v -= mk;
+
+ // /*
+ // * In this loop we consider jumps by p slots; if
+ // * u < p then there is nothing more to do.
+ // */
+ // if (u < p) {
+ // continue;
+ // }
+
+ // /*
+ // * Destination for the swap: value at address u-p.
+ // */
+ // if ((u - p) < n) {
+ // d = &x[u - p];
+ // } else if ((u - p) < n2) {
+ // d = &tt1[(u - p) - n];
+ // } else {
+ // d = &tt2[(u - p) - n2];
+ // }
+ // dv = *d;
+
+ // /*
+ // * The swap should be performed only if the source
+ // * is valid AND the jump j has its 'p' bit set.
+ // */
+ // mk &= -(((j & p) + 0x1FF) >> 9);
+
+ // *s = (ushort)(sv ^ (mk & (sv ^ dv)));
+ // *d = (ushort)(dv ^ (mk & (sv ^ dv)));
+ // }
+ // }
+ // }
+
+ /*
+ * Acceptance bound for the (squared) l2-norm of the signature depends
+ * on the degree. This array is indexed by logn (1 to 10). These bounds
+ * are _inclusive_ (they are equal to floor(beta^2)).
+ */
+ internal uint[] l2bound = {
+ 0, /* unused */
+ 101498,
+ 208714,
+ 428865,
+ 892039,
+ 1852696,
+ 3842630,
+ 7959734,
+ 16468416,
+ 34034726,
+ 70265242
+ };
+
+ internal bool is_short(
+ short[] s1src, int s1, short[] s2src, int s2, uint logn)
+ {
+ /*
+ * We use the l2-norm. Code below uses only 32-bit operations to
+ * compute the square of the norm with saturation to 2^32-1 if
+ * the value exceeds 2^31-1.
+ */
+ int n, u;
+ uint s, ng;
+
+ n = (int)1 << (int)logn;
+ s = 0;
+ ng = 0;
+ for (u = 0; u < n; u ++) {
+ int z;
+
+ z = s1src[s1+u];
+ s += (uint)(z * z);
+ ng |= s;
+ z = s2src[s2+u];
+ s += (uint)(z * z);
+ ng |= s;
+ }
+ s |= (uint)(-(ng >> 31));
+
+ return s <= l2bound[logn];
+ }
+
+ internal bool is_short_half(
+ uint sqn, short[] s2src, int s2, uint logn)
+ {
+ int n, u;
+ uint ng;
+
+ n = (int)1 << (int)logn;
+ ng = (uint)(-(sqn >> 31));
+ for (u = 0; u < n; u ++) {
+ int z;
+
+ z = s2src[s2 + u];
+ sqn += (uint)(z * z);
+ ng |= sqn;
+ }
+ sqn |= (uint)(-(ng >> 31));
+
+ return sqn <= l2bound[logn];
+ }
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/FalconConversions.cs b/crypto/src/pqc/crypto/falcon/FalconConversions.cs
new file mode 100644
index 000000000..36ef56fb4
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FalconConversions.cs
@@ -0,0 +1,66 @@
+using System;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ class FalconConversions
+ {
+ internal FalconConversions(){}
+
+ internal byte[] int_to_bytes(int x)
+ {
+ byte[] res = new byte[4];
+ res[0] = (byte)(x >> 0);
+ res[1] = (byte)(x >> 8);
+ res[2] = (byte)(x >> 16);
+ res[3] = (byte)(x >> 24);
+ return res;
+ }
+ internal uint bytes_to_uint(byte[] src, int pos)
+ {
+ uint acc = 0;
+ acc = ((uint)src[pos + 0]) << 0 |
+ ((uint)src[pos + 1]) << 8 |
+ ((uint)src[pos + 2]) << 16 |
+ ((uint)src[pos + 3]) << 24;
+ return acc;
+ }
+
+ internal byte[] ulong_to_bytes(ulong x)
+ {
+ byte[] res = new byte[8];
+ res[0] = (byte)(x >> 0);
+ res[1] = (byte)(x >> 8);
+ res[2] = (byte)(x >> 16);
+ res[3] = (byte)(x >> 24);
+ res[4] = (byte)(x >> 32);
+ res[5] = (byte)(x >> 40);
+ res[6] = (byte)(x >> 48);
+ res[7] = (byte)(x >> 56);
+ return res;
+ }
+
+ internal ulong bytes_to_ulong(byte[] src, int pos)
+ {
+ ulong acc = 0;
+ acc = ((ulong)src[pos + 0]) << 0 |
+ ((ulong)src[pos + 1]) << 8 |
+ ((ulong)src[pos + 2]) << 16 |
+ ((ulong)src[pos + 3]) << 24 |
+ ((ulong)src[pos + 4]) << 32 |
+ ((ulong)src[pos + 5]) << 40 |
+ ((ulong)src[pos + 6]) << 48 |
+ ((ulong)src[pos + 7]) << 56;
+ return acc;
+ }
+
+ internal uint[] bytes_to_uint_array(byte[] src, int pos, int num)
+ {
+ uint[] res = new uint[num];
+ for (int i = 0; i < num; i++)
+ {
+ res[i] = bytes_to_uint(src, pos + (4 * i));
+ }
+ return res;
+ }
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/FalconFFT.cs b/crypto/src/pqc/crypto/falcon/FalconFFT.cs
new file mode 100644
index 000000000..aa862cc23
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FalconFFT.cs
@@ -0,0 +1,711 @@
+using System;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ class FalconFFT
+ {
+ FPREngine fpre;
+ internal FalconFFT() {
+ fpre = new FPREngine();
+ }
+ internal FalconFFT(FPREngine fprengine) {
+ this.fpre = fprengine;
+ }
+
+ /*
+ * License from the reference C code (the code was copied then modified
+ * to function in C#):
+ * ==========================(LICENSE BEGIN)============================
+ *
+ * Copyright (c) 2017-2019 Falcon Project
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * ===========================(LICENSE END)=============================
+ */
+ /*
+ * Addition of two complex numbers (d = a + b).
+ */
+ internal FalconFPR[] FPC_ADD(FalconFPR a_re, FalconFPR a_im,
+ FalconFPR b_re, FalconFPR b_im) {
+ FalconFPR fpct_re, fpct_im;
+ fpct_re = this.fpre.fpr_add(a_re, b_re);
+ fpct_im = this.fpre.fpr_add(a_im, b_im);
+ //d_re.Set(fpct_re);
+ //d_im.Set(fpct_im);
+ return new FalconFPR[] { fpct_re, fpct_im };
+ }
+
+ /*
+ * Subtraction of two complex numbers (d = a - b).
+ */
+ internal FalconFPR[] FPC_SUB(FalconFPR a_re, FalconFPR a_im,
+ FalconFPR b_re, FalconFPR b_im) {
+ FalconFPR fpct_re, fpct_im;
+ fpct_re = this.fpre.fpr_sub(a_re, b_re);
+ fpct_im = this.fpre.fpr_sub(a_im, b_im);
+ return new FalconFPR[] { fpct_re, fpct_im };
+ }
+
+ /*
+ * Multplication of two complex numbers (d = a * b).
+ */
+ internal FalconFPR[] FPC_MUL(FalconFPR a_re, FalconFPR a_im,
+ FalconFPR b_re, FalconFPR b_im) {
+ FalconFPR fpct_a_re, fpct_a_im;
+ FalconFPR fpct_b_re, fpct_b_im;
+ FalconFPR fpct_d_re, fpct_d_im;
+ fpct_a_re = a_re;
+ fpct_a_im = a_im;
+ fpct_b_re = b_re;
+ fpct_b_im = b_im;
+ fpct_d_re = this.fpre.fpr_sub(
+ this.fpre.fpr_mul(fpct_a_re, fpct_b_re),
+ this.fpre.fpr_mul(fpct_a_im, fpct_b_im));
+ fpct_d_im = this.fpre.fpr_add(
+ this.fpre.fpr_mul(fpct_a_re, fpct_b_im),
+ this.fpre.fpr_mul(fpct_a_im, fpct_b_re));
+ return new FalconFPR[] {fpct_d_re, fpct_d_im};
+ }
+
+ /*
+ * Squaring of a complex number (d = a * a).
+ */
+ internal FalconFPR[] FPC_SQR(FalconFPR d_re, FalconFPR d_im,
+ FalconFPR a_re, FalconFPR a_im) {
+ FalconFPR fpct_a_re, fpct_a_im;
+ FalconFPR fpct_d_re, fpct_d_im;
+ fpct_a_re = a_re;
+ fpct_a_im = a_im;
+ fpct_d_re = this.fpre.fpr_sub(this.fpre.fpr_sqr(fpct_a_re), this.fpre.fpr_sqr(fpct_a_im));
+ fpct_d_im = this.fpre.fpr_double(this.fpre.fpr_mul(fpct_a_re, fpct_a_im));
+ return new FalconFPR[] {fpct_d_re, fpct_d_im};
+ }
+
+ /*
+ * Inversion of a complex number (d = 1 / a).
+ */
+ internal FalconFPR[] FPC_INV(FalconFPR a_re, FalconFPR a_im) {
+ FalconFPR fpct_a_re, fpct_a_im;
+ FalconFPR fpct_d_re, fpct_d_im;
+ FalconFPR fpct_m;
+ fpct_a_re = a_re;
+ fpct_a_im = a_im;
+ fpct_m = this.fpre.fpr_add(this.fpre.fpr_sqr(fpct_a_re), this.fpre.fpr_sqr(fpct_a_im));
+ fpct_m = this.fpre.fpr_inv(fpct_m);
+ fpct_d_re = this.fpre.fpr_mul(fpct_a_re, fpct_m);
+ fpct_d_im = this.fpre.fpr_mul(this.fpre.fpr_neg(fpct_a_im), fpct_m);
+ return new FalconFPR[] { fpct_d_re, fpct_d_im };
+ }
+ /*
+ * Division of complex numbers (d = a / b).
+ */
+ internal FalconFPR[] FPC_DIV(FalconFPR a_re, FalconFPR a_im,
+ FalconFPR b_re, FalconFPR b_im) {
+ FalconFPR fpct_a_re, fpct_a_im;
+ FalconFPR fpct_b_re, fpct_b_im;
+ FalconFPR fpct_d_re, fpct_d_im;
+ FalconFPR fpct_m;
+ fpct_a_re = (a_re);
+ fpct_a_im = (a_im);
+ fpct_b_re = (b_re);
+ fpct_b_im = (b_im);
+ fpct_m = this.fpre.fpr_add(this.fpre.fpr_sqr(fpct_b_re), this.fpre.fpr_sqr(fpct_b_im));
+ fpct_m = this.fpre.fpr_inv(fpct_m);
+ fpct_b_re = this.fpre.fpr_mul(fpct_b_re, fpct_m);
+ fpct_b_im = this.fpre.fpr_mul(this.fpre.fpr_neg(fpct_b_im), fpct_m);
+ fpct_d_re = this.fpre.fpr_sub(
+ this.fpre.fpr_mul(fpct_a_re, fpct_b_re),
+ this.fpre.fpr_mul(fpct_a_im, fpct_b_im));
+ fpct_d_im = this.fpre.fpr_add(
+ this.fpre.fpr_mul(fpct_a_re, fpct_b_im),
+ this.fpre.fpr_mul(fpct_a_im, fpct_b_re));
+ return new FalconFPR[] { fpct_d_re, fpct_d_im };
+ }
+
+ /*
+ * Let w = exp(i*pi/N); w is a primitive 2N-th root of 1. We define the
+ * values w_j = w^(2j+1) for all j from 0 to N-1: these are the roots
+ * of X^N+1 in the field of complex numbers. A crucial property is that
+ * w_{N-1-j} = conj(w_j) = 1/w_j for all j.
+ *
+ * FFT representation of a polynomial f (taken modulo X^N+1) is the
+ * set of values f(w_j). Since f is real, conj(f(w_j)) = f(conj(w_j)),
+ * thus f(w_{N-1-j}) = conj(f(w_j)). We thus store only half the values,
+ * for j = 0 to N/2-1; the other half can be recomputed easily when (if)
+ * needed. A consequence is that FFT representation has the same size
+ * as normal representation: N/2 complex numbers use N real numbers (each
+ * complex number is the combination of a real and an imaginary part).
+ *
+ * We use a specific ordering which makes computations easier. Let rev()
+ * be the bit-reversal function over log(N) bits. For j in 0..N/2-1, we
+ * store the real and imaginary parts of f(w_j) in slots:
+ *
+ * Re(f(w_j)) -> slot rev(j)/2
+ * Im(f(w_j)) -> slot rev(j)/2+N/2
+ *
+ * (Note that rev(j) is even for j < N/2.)
+ */
+
+ internal void FFT(FalconFPR[] fsrc, int f, uint logn)
+ {
+ /*
+ * FFT algorithm in bit-reversal order uses the following
+ * iterative algorithm:
+ *
+ * t = N
+ * for m = 1; m < N; m *= 2:
+ * ht = t/2
+ * for i1 = 0; i1 < m; i1 ++:
+ * j1 = i1 * t
+ * s = GM[m + i1]
+ * for j = j1; j < (j1 + ht); j ++:
+ * x = fsrc[f + j]
+ * y = s * fsrc[f + j + ht]
+ * fsrc[f + j] = x + y
+ * fsrc[f + j + ht] = x - y
+ * t = ht
+ *
+ * GM[k] contains w^rev(k) for primitive root w = exp(i*pi/N).
+ *
+ * In the description above, fsrc[f + ] is supposed to contain complex
+ * numbers. In our in-memory representation, the real and
+ * imaginary parts of fsrc[f + k] are in array slots k and k+N/2.
+ *
+ * We only keep the first half of the complex numbers. We can
+ * see that after the first iteration, the first and second halves
+ * of the array of complex numbers have separate lives, so we
+ * simply ignore the second part.
+ */
+
+ uint u;
+ int t, n, hn, m;
+
+ /*
+ * First iteration: compute fsrc[f + j] + i * fsrc[f + j+N/2] for all j < N/2
+ * (because GM[1] = w^rev(1) = w^(N/2) = i).
+ * In our chosen representation, this is a no-op: everything is
+ * already where it should be.
+ */
+
+ /*
+ * Subsequent iterations are truncated to use only the first
+ * half of values.
+ */
+ n = (int)1 << (int)logn;
+ hn = n >> 1;
+ t = hn;
+ for (u = 1, m = 2; u < logn; u ++, m <<= 1) {
+ int ht, hm, i1, j1;
+
+ ht = t >> 1;
+ hm = m >> 1;
+ for (i1 = 0, j1 = 0; i1 < hm; i1 ++, j1 += t) {
+ int j, j2;
+
+ j2 = j1 + ht;
+ FalconFPR s_re, s_im;
+
+ s_re = this.fpre.fpr_gm_tab[((m + i1) << 1) + 0];
+ s_im = this.fpre.fpr_gm_tab[((m + i1) << 1) + 1];
+ for (j = j1; j < j2; j ++) {
+ FalconFPR x_re, x_im, y_re, y_im;
+ FalconFPR[] res;
+
+ x_re = fsrc[f + j];
+ x_im = fsrc[f + j + hn];
+ y_re = fsrc[f + j + ht];
+ y_im = fsrc[f + j + ht + hn];
+ res = FPC_MUL(y_re, y_im, s_re, s_im);
+ y_re = res[0]; y_im = res[1];
+ res = FPC_ADD(x_re, x_im, y_re, y_im);
+ fsrc[f + j] = res[0]; fsrc[f + j + hn] = res[1];
+ res = FPC_SUB(x_re, x_im, y_re, y_im);
+ fsrc[f + j + ht] = res[0]; fsrc[f + j + ht + hn] = res[1];
+ }
+ }
+ t = ht;
+ }
+ }
+
+ internal void iFFT(FalconFPR[] fsrc, int f, uint logn)
+ {
+ /*
+ * Inverse FFT algorithm in bit-reversal order uses the following
+ * iterative algorithm:
+ *
+ * t = 1
+ * for m = N; m > 1; m /= 2:
+ * hm = m/2
+ * dt = t*2
+ * for i1 = 0; i1 < hm; i1 ++:
+ * j1 = i1 * dt
+ * s = iGM[hm + i1]
+ * for j = j1; j < (j1 + t); j ++:
+ * x = fsrc[f + j]
+ * y = fsrc[f + j + t]
+ * fsrc[f + j] = x + y
+ * fsrc[f + j + t] = s * (x - y)
+ * t = dt
+ * for i1 = 0; i1 < N; i1 ++:
+ * fsrc[f + i1] = fsrc[f + i1] / N
+ *
+ * iGM[k] contains (1/w)^rev(k) for primitive root w = exp(i*pi/N)
+ * (actually, iGM[k] = 1/GM[k] = conj(GM[k])).
+ *
+ * In the main loop (not counting the final division loop), in
+ * all iterations except the last, the first and second half of fsrc[f + ]
+ * (as an array of complex numbers) are separate. In our chosen
+ * representation, we do not keep the second half.
+ *
+ * The last iteration recombines the recomputed half with the
+ * implicit half, and should yield only real numbers since the
+ * target polynomial is real; moreover, s = i at that step.
+ * Thus, when considering x and y:
+ * y = conj(x) since the final fsrc[f + j] must be real
+ * Therefore, fsrc[f + j] is filled with 2*Re(x), and fsrc[f + j + t] is
+ * filled with 2*Im(x).
+ * But we already have Re(x) and Im(x) in array slots j and j+t
+ * in our chosen representation. That last iteration is thus a
+ * simple doubling of the values in all the array.
+ *
+ * We make the last iteration a no-op by tweaking the final
+ * division into a division by N/2, not N.
+ */
+ int u, n, hn, t, m;
+
+ n = (int)1 << (int)logn;
+ t = 1;
+ m = n;
+ hn = n >> 1;
+ for (u = (int)logn; u > 1; u --) {
+ int hm, dt, i1, j1;
+
+ hm = m >> 1;
+ dt = t << 1;
+ for (i1 = 0, j1 = 0; j1 < hn; i1 ++, j1 += dt) {
+ int j, j2;
+
+ j2 = j1 + t;
+ FalconFPR s_re, s_im;
+
+ s_re = this.fpre.fpr_gm_tab[((hm + i1) << 1) + 0];
+ s_im = this.fpre.fpr_neg(this.fpre.fpr_gm_tab[((hm + i1) << 1) + 1]);
+ for (j = j1; j < j2; j ++) {
+ FalconFPR x_re, x_im, y_re, y_im;
+ FalconFPR[] res;
+
+ x_re = fsrc[f + j];
+ x_im = fsrc[f + j + hn];
+ y_re = fsrc[f + j + t];
+ y_im = fsrc[f + j + t + hn];
+ res = FPC_ADD(x_re, x_im, y_re, y_im);
+ fsrc[f + j] = res[0]; fsrc[f + j + hn] = res[1];
+
+ res = FPC_SUB(x_re, x_im, y_re, y_im);
+ x_re = res[0]; x_im = res[1];
+ res = FPC_MUL(x_re, x_im, s_re, s_im);
+ fsrc[f + j + t] = res[0]; fsrc[f + j + t + hn] = res[1];
+ }
+ }
+ t = dt;
+ m = hm;
+ }
+
+ /*
+ * Last iteration is a no-op, provided that we divide by N/2
+ * instead of N. We need to make a special case for logn = 0.
+ */
+ if (logn > 0) {
+ FalconFPR ni;
+
+ ni = this.fpre.fpr_p2_tab[logn];
+ for (u = 0; u < n; u ++) {
+ fsrc[f+u] = this.fpre.fpr_mul(fsrc[f+u], ni);
+ }
+ }
+ }
+
+ internal void poly_add(
+ FalconFPR[] asrc, int a, FalconFPR[] bsrc, int b, uint logn)
+ {
+ int n, u;
+
+ n = (int)1 << (int)logn;
+ for (u = 0; u < n; u ++) {
+ asrc[a + u] = this.fpre.fpr_add(asrc[a + u], bsrc[b + u]);
+ }
+ }
+
+ internal void poly_sub(
+ FalconFPR[] asrc, int a, FalconFPR[] bsrc, int b, uint logn)
+ {
+ int n, u;
+
+ n = (int)1 << (int)logn;
+ for (u = 0; u < n; u ++) {
+ asrc[a + u] = this.fpre.fpr_sub(asrc[a + u], bsrc[b + u]);
+ }
+ }
+
+ internal void poly_neg(FalconFPR[] asrc, int a, uint logn)
+ {
+ int n, u;
+
+ n = (int)1 << (int)logn;
+ for (u = 0; u < n; u ++) {
+ asrc[a + u] = this.fpre.fpr_neg(asrc[a + u]);
+ }
+ }
+
+ internal void poly_adj_fft(FalconFPR[] asrc, int a, uint logn)
+ {
+ int n, u;
+
+ n = (int)1 << (int)logn;
+ for (u = (n >> 1); u < n; u ++) {
+ asrc[a + u] = this.fpre.fpr_neg(asrc[a + u]);
+ }
+ }
+
+ internal void poly_mul_fft(
+ FalconFPR[] asrc, int a, FalconFPR[] bsrc, int b, uint logn)
+ {
+ int n, hn, u;
+
+ n = (int)1 << (int)logn;
+ hn = n >> 1;
+ for (u = 0; u < hn; u ++) {
+ FalconFPR a_re, a_im, b_re, b_im;
+ FalconFPR[] res;
+
+ a_re = asrc[a + u];
+ a_im = asrc[a + u + hn];
+ b_re = bsrc[b + u];
+ b_im = bsrc[b + u + hn];
+ res = FPC_MUL(a_re, a_im, b_re, b_im);
+ asrc[a + u] = res[0]; asrc[a + u + hn] = res[1];
+ }
+ }
+
+ internal void poly_muladj_fft(
+ FalconFPR[] asrc, int a, FalconFPR[] bsrc, int b, uint logn)
+ {
+ int n, hn, u;
+
+ n = (int)1 << (int)logn;
+ hn = n >> 1;
+ for (u = 0; u < hn; u ++) {
+ FalconFPR a_re, a_im, b_re, b_im;
+ FalconFPR[] res;
+
+ a_re = asrc[a + u];
+ a_im = asrc[a + u + hn];
+ b_re = bsrc[b + u];
+ b_im = this.fpre.fpr_neg(bsrc[b + u + hn]);
+ res = FPC_MUL(a_re, a_im, b_re, b_im);
+ asrc[a + u] = res[0]; asrc[a + u + hn] = res[1];
+ }
+ }
+
+ internal void poly_mulselfadj_fft(FalconFPR[] asrc, int a, uint logn)
+ {
+ /*
+ * Since each coefficient is multiplied with its own conjugate,
+ * the result contains only real values.
+ */
+ int n, hn, u;
+
+ n = (int)1 << (int)logn;
+ hn = n >> 1;
+ for (u = 0; u < hn; u ++) {
+ FalconFPR a_re, a_im;
+
+ a_re = asrc[a + u];
+ a_im = asrc[a + u + hn];
+ asrc[a + u] = this.fpre.fpr_add(this.fpre.fpr_sqr(a_re), this.fpre.fpr_sqr(a_im));
+ asrc[a + u + hn] = this.fpre.fpr_zero;
+ }
+ }
+
+ internal void poly_mulconst(FalconFPR[] asrc, int a, FalconFPR x, uint logn)
+ {
+ int n, u;
+
+ n = (int)1 << (int)logn;
+ for (u = 0; u < n; u ++) {
+ asrc[a + u] = this.fpre.fpr_mul(asrc[a + u], x);
+ }
+ }
+
+ internal void poly_div_fft(
+ FalconFPR[] asrc, int a, FalconFPR[] bsrc, int b, uint logn)
+ {
+ int n, hn, u;
+
+ n = (int)1 << (int)logn;
+ hn = n >> 1;
+ for (u = 0; u < hn; u ++) {
+ FalconFPR a_re, a_im, b_re, b_im;
+ FalconFPR[] res;
+
+ a_re = asrc[a + u];
+ a_im = asrc[a + u + hn];
+ b_re = bsrc[b + u];
+ b_im = bsrc[b + u + hn];
+ res = FPC_DIV(a_re, a_im, b_re, b_im);
+ asrc[a + u] = res[0]; asrc[a + u + hn] = res[1];
+ }
+ }
+
+ internal void poly_invnorm2_fft(FalconFPR[] dsrc, int d,
+ FalconFPR[] asrc, int a, FalconFPR[] bsrc, int b, uint logn)
+ {
+ int n, hn, u;
+
+ n = (int)1 << (int)logn;
+ hn = n >> 1;
+ for (u = 0; u < hn; u ++) {
+ FalconFPR a_re, a_im;
+ FalconFPR b_re, b_im;
+
+ a_re = asrc[a + u];
+ a_im = asrc[a + u + hn];
+ b_re = bsrc[b + u];
+ b_im = bsrc[b + u + hn];
+ dsrc[d + u] = this.fpre.fpr_inv(this.fpre.fpr_add(
+ this.fpre.fpr_add(this.fpre.fpr_sqr(a_re), this.fpre.fpr_sqr(a_im)),
+ this.fpre.fpr_add(this.fpre.fpr_sqr(b_re), this.fpre.fpr_sqr(b_im))));
+ }
+ }
+
+ internal void poly_add_muladj_fft(FalconFPR[] dsrc, int d,
+ FalconFPR[] Fsrc, int F, FalconFPR[] Gsrc, int G,
+ FalconFPR[] fsrc, int f, FalconFPR[] gsrc, int g, uint logn)
+ {
+ int n, hn, u;
+
+ n = (int)1 << (int)logn;
+ hn = n >> 1;
+ for (u = 0; u < hn; u ++) {
+ FalconFPR F_re, F_im, G_re, G_im;
+ FalconFPR f_re, f_im, g_re, g_im;
+ FalconFPR a_re, a_im, b_re, b_im;
+ FalconFPR[] res;
+
+
+ F_re = Fsrc[F + u];
+ F_im = Fsrc[F + u + hn];
+ G_re = Gsrc[G + u];
+ G_im = Gsrc[G + u + hn];
+ f_re = fsrc[f + u];
+ f_im = fsrc[f + u + hn];
+ g_re = gsrc[g + u];
+ g_im = gsrc[g + u + hn];
+
+ res = FPC_MUL(F_re, F_im, f_re, this.fpre.fpr_neg(f_im));
+ a_re = res[0]; a_im = res[1];
+ res = FPC_MUL(G_re, G_im, g_re, this.fpre.fpr_neg(g_im));
+ b_re = res[0]; b_im = res[1];
+ dsrc[d + u] = this.fpre.fpr_add(a_re, b_re);
+ dsrc[d + u + hn] = this.fpre.fpr_add(a_im, b_im);
+ }
+ }
+
+ internal void poly_mul_autoadj_fft(
+ FalconFPR[] asrc, int a, FalconFPR[] bsrc, int b, uint logn)
+ {
+ int n, hn, u;
+
+ n = (int)1 << (int)logn;
+ hn = n >> 1;
+ for (u = 0; u < hn; u ++) {
+ asrc[a + u] = this.fpre.fpr_mul(asrc[a + u], bsrc[b + u]);
+ asrc[a + u + hn] = this.fpre.fpr_mul(asrc[a + u + hn], bsrc[b + u]);
+ }
+ }
+
+ internal void poly_div_autoadj_fft(
+ FalconFPR[] asrc, int a, FalconFPR[] bsrc, int b, uint logn)
+ {
+ int n, hn, u;
+
+ n = (int)1 << (int)logn;
+ hn = n >> 1;
+ for (u = 0; u < hn; u ++) {
+ FalconFPR ib;
+
+ ib = this.fpre.fpr_inv(bsrc[b + u]);
+ asrc[a + u] = this.fpre.fpr_mul(asrc[a + u], ib);
+ asrc[a + u + hn] = this.fpre.fpr_mul(asrc[a + u + hn], ib);
+ }
+ }
+
+ internal void poly_LDL_fft(
+ FalconFPR[] g00src, int g00,
+ FalconFPR[] g01src, int g01, FalconFPR[] g11src, int g11, uint logn)
+ {
+ int n, hn, u;
+
+ n = (int)1 << (int)logn;
+ hn = n >> 1;
+ for (u = 0; u < hn; u ++) {
+ FalconFPR g00_re, g00_im, g01_re, g01_im, g11_re, g11_im;
+ FalconFPR[] res;
+ FalconFPR mu_re, mu_im;
+
+ g00_re = g00src[g00 + u];
+ g00_im = g00src[g00 + u + hn];
+ g01_re = g01src[g01 + u];
+ g01_im = g01src[g01 + u + hn];
+ g11_re = g11src[g11 + u];
+ g11_im = g11src[g11 + u + hn];
+ res = FPC_DIV(g01_re, g01_im, g00_re, g00_im);
+ mu_re = res[0]; mu_im = res[1];
+ res = FPC_MUL(mu_re, mu_im, g01_re, this.fpre.fpr_neg(g01_im));
+ g01_re = res[0]; g01_im = res[1];
+ res = FPC_SUB(g11_re, g11_im, g01_re, g01_im);
+ g11src[g11 + u] = res[0]; g11src[g11 + u + hn] = res[1];
+ g01src[g01 + u] = mu_re;
+ g01src[g01 + u + hn] = this.fpre.fpr_neg(mu_im);
+ }
+ }
+
+ internal void poly_LDLmv_fft(
+ FalconFPR[] d11src, int d11, FalconFPR[] l10src, int l10,
+ FalconFPR[] g00src, int g00, FalconFPR[] g01src, int g01,
+ FalconFPR[] g11src, int g11, uint logn)
+ {
+ int n, hn, u;
+
+ n = (int)1 << (int)logn;
+ hn = n >> 1;
+ for (u = 0; u < hn; u ++) {
+ FalconFPR g00_re, g00_im, g01_re, g01_im, g11_re, g11_im;
+ FalconFPR[] res;
+ FalconFPR mu_re, mu_im;
+
+ g00_re = g00src[g00 + u];
+ g00_im = g00src[g00 + u + hn];
+ g01_re = g01src[g01 + u];
+ g01_im = g01src[g01 + u + hn];
+ g11_re = g11src[g11 + u];
+ g11_im = g11src[g11 + u + hn];
+ res = FPC_DIV(g01_re, g01_im, g00_re, g00_im);
+ mu_re = res[0]; mu_im = res[1];
+ res = FPC_MUL(mu_re, mu_im, g01_re, this.fpre.fpr_neg(g01_im));
+ g01_re = res[0]; g01_im = res[1];
+ res = FPC_SUB(g11_re, g11_im, g01_re, g01_im);
+ d11src[d11 + u] = res[0]; d11src[d11 + u + hn] = res[1];
+ l10src[l10 + u] = mu_re;
+ l10src[l10 + u + hn] = this.fpre.fpr_neg(mu_im);
+ }
+ }
+
+ internal void poly_split_fft(
+ FalconFPR[] f0src, int f0, FalconFPR[] f1src, int f1,
+ FalconFPR[] fsrc, int f, uint logn)
+ {
+ /*
+ * The FFT representation we use is in bit-reversed order
+ * (element i contains f(w^(rev(i))), where rev() is the
+ * bit-reversal function over the ring degree. This changes
+ * indexes with regards to the Falcon specification.
+ */
+ int n, hn, qn, u;
+
+ n = (int)1 << (int)logn;
+ hn = n >> 1;
+ qn = hn >> 1;
+
+ /*
+ * We process complex values by pairs. For logn = 1, there is only
+ * one complex value (the other one is the implicit conjugate),
+ * so we add the two lines below because the loop will be
+ * skipped.
+ */
+ f0src[f0 + 0] = fsrc[f + 0];
+ f1src[f1 + 0] = fsrc[f + hn];
+
+ for (u = 0; u < qn; u ++) {
+ FalconFPR a_re, a_im, b_re, b_im, t_re, t_im;
+ FalconFPR[] res;
+
+ a_re = fsrc[f + (u << 1) + 0];
+ a_im = fsrc[f + (u << 1) + 0 + hn];
+ b_re = fsrc[f + (u << 1) + 1];
+ b_im = fsrc[f + (u << 1) + 1 + hn];
+
+ res = FPC_ADD(a_re, a_im, b_re, b_im);
+ t_re = res[0]; t_im = res[1];
+ f0src[f0 + u] = this.fpre.fpr_half(t_re);
+ f0src[f0 + u + qn] = this.fpre.fpr_half(t_im);
+
+ res = FPC_SUB(a_re, a_im, b_re, b_im);
+ t_re = res[0]; t_im = res[1];
+ res = FPC_MUL(t_re, t_im,
+ this.fpre.fpr_gm_tab[((u + hn) << 1) + 0],
+ this.fpre.fpr_neg(this.fpre.fpr_gm_tab[((u + hn) << 1) + 1]));
+ t_re = res[0]; t_im = res[1];
+ f1src[f1 + u] = this.fpre.fpr_half(t_re);
+ f1src[f1 + u + qn] = this.fpre.fpr_half(t_im);
+ }
+ }
+
+ internal void poly_merge_fft(
+ FalconFPR[] fsrc, int f,
+ FalconFPR[] f0src, int f0, FalconFPR[] f1src, int f1, uint logn)
+ {
+ int n, hn, qn, u;
+
+ n = (int)1 << (int)logn;
+ hn = n >> 1;
+ qn = hn >> 1;
+
+ /*
+ * An extra copy to handle the special case logn = 1.
+ */
+ fsrc[f + 0] = f0src[f0 + 0];
+ fsrc[f + hn] = f1src[f1 + 0];
+
+ for (u = 0; u < qn; u ++) {
+ FalconFPR a_re, a_im,
+ b_re, b_im;
+ FalconFPR t_re, t_im;
+ FalconFPR[] res;
+
+ a_re = f0src[f0 + u];
+ a_im = f0src[f0 + u + qn];
+ res = FPC_MUL(f1src[f1 + u], f1src[f1 + u + qn],
+ this.fpre.fpr_gm_tab[((u + hn) << 1) + 0],
+ this.fpre.fpr_gm_tab[((u + hn) << 1) + 1]);
+ b_re = res[0]; b_im = res[1];
+ res = FPC_ADD(a_re, a_im, b_re, b_im);
+ t_re = res[0]; t_im = res[1];
+ fsrc[f + (u << 1) + 0] = t_re;
+ fsrc[f + (u << 1) + 0 + hn] = t_im;
+ res = FPC_SUB(a_re, a_im, b_re, b_im);
+ t_re = res[0]; t_im = res[1];
+ fsrc[f + (u << 1) + 1] = t_re;
+ fsrc[f + (u << 1) + 1 + hn] = t_im;
+ }
+ }
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/FalconFPR.cs b/crypto/src/pqc/crypto/falcon/FalconFPR.cs
new file mode 100644
index 000000000..b3f99f944
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FalconFPR.cs
@@ -0,0 +1,13 @@
+using System;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ class FalconFPR
+ {
+ internal double v;
+
+ internal FalconFPR(double v) {
+ this.v = v;
+ }
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/FalconKeyGenerationParameters.cs b/crypto/src/pqc/crypto/falcon/FalconKeyGenerationParameters.cs
new file mode 100644
index 000000000..3531a6670
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FalconKeyGenerationParameters.cs
@@ -0,0 +1,22 @@
+using Org.BouncyCastle.Crypto;
+using Org.BouncyCastle.Security;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ public class FalconKeyGenerationParameters
+ : KeyGenerationParameters
+ {
+ private FalconParameters parameters;
+
+ public FalconKeyGenerationParameters(SecureRandom random, FalconParameters parameters)
+ : base(random, 320)
+ {
+ this.parameters = parameters;
+ }
+
+ public FalconParameters GetParameters()
+ {
+ return this.parameters;
+ }
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/FalconKeyPairGenerator.cs b/crypto/src/pqc/crypto/falcon/FalconKeyPairGenerator.cs
new file mode 100644
index 000000000..018dcd3d2
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FalconKeyPairGenerator.cs
@@ -0,0 +1,55 @@
+using Org.BouncyCastle.Crypto;
+using Org.BouncyCastle.Security;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ public class FalconKeyPairGenerator
+ : IAsymmetricCipherKeyPairGenerator
+ {
+ private FalconKeyGenerationParameters parameters;
+ private SecureRandom random;
+ private FalconNIST nist;
+ private uint logn;
+ private uint noncelen;
+
+ private int pk_size;
+ private int sk_size;
+
+ public void Init(KeyGenerationParameters param)
+ {
+ this.parameters = (FalconKeyGenerationParameters)param;
+ this.random = param.Random;
+ this.logn = ((FalconKeyGenerationParameters)param).GetParameters().GetLogN();
+ this.noncelen = ((FalconKeyGenerationParameters)param).GetParameters().GetNonceLength();
+ this.nist = new FalconNIST(random, logn, noncelen);
+ int n = 1 << (int)this.logn;
+ int sk_coeff_size = 8;
+ if (n == 1024)
+ {
+ sk_coeff_size = 5;
+ }
+ else if (n == 256 || n == 512)
+ {
+ sk_coeff_size = 6;
+ }
+ else if (n == 64 || n == 128)
+ {
+ sk_coeff_size = 7;
+ }
+ this.pk_size = 1 + (14 * n / 8);
+ this.sk_size = 1 + (2 * sk_coeff_size * n / 8) + (n);
+ }
+
+ public AsymmetricCipherKeyPair GenerateKeyPair()
+ {
+ byte[] pk, sk;
+ pk = new byte[pk_size];
+ sk = new byte[sk_size];
+ nist.crypto_sign_keypair(pk, 0, sk, 0);
+ FalconParameters p = ((FalconKeyGenerationParameters)this.parameters).GetParameters();
+ FalconPrivateKeyParameters privk = new FalconPrivateKeyParameters(p, sk);
+ FalconPublicKeyParameters pubk = new FalconPublicKeyParameters(p, pk);
+ return new AsymmetricCipherKeyPair(pubk, privk);
+ }
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/FalconKeyParameters.cs b/crypto/src/pqc/crypto/falcon/FalconKeyParameters.cs
new file mode 100644
index 000000000..87b0eaec7
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FalconKeyParameters.cs
@@ -0,0 +1,22 @@
+using Org.BouncyCastle.Crypto;
+
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ public class FalconKeyParameters
+ : AsymmetricKeyParameter
+ {
+ private FalconParameters parameters;
+
+ public FalconKeyParameters(bool isprivate, FalconParameters parameters)
+ : base(isprivate)
+ {
+ this.parameters = parameters;
+ }
+
+ public FalconParameters GetParameters()
+ {
+ return parameters;
+ }
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/FalconKeygen.cs b/crypto/src/pqc/crypto/falcon/FalconKeygen.cs
new file mode 100644
index 000000000..7fe83056a
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FalconKeygen.cs
@@ -0,0 +1,3673 @@
+using System;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ class FalconKeygen
+ {
+ FPREngine fpre;
+ FalconFFT ffte;
+ FalconSmallPrime[] PRIMES;
+ FalconCodec codec;
+ FalconVrfy vrfy;
+ internal FalconKeygen() {
+ this.fpre = new FPREngine();
+ this.PRIMES = new FalconSmallPrimes().PRIMES;
+ this.ffte = new FalconFFT(this.fpre);
+ this.codec = new FalconCodec();
+ this.vrfy = new FalconVrfy();
+ }
+ internal FalconKeygen(FalconCodec codec, FalconVrfy vrfy) {
+ this.fpre = new FPREngine();
+ this.PRIMES = new FalconSmallPrimes().PRIMES;
+ this.ffte = new FalconFFT();
+ this.codec = codec;
+ this.vrfy = vrfy;
+ }
+
+ /*
+ * License from the reference C code (the code was copied then modified
+ * to function in C#):
+ * ==========================(LICENSE BEGIN)============================
+ *
+ * Copyright (c) 2017-2019 Falcon Project
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * ===========================(LICENSE END)=============================
+ */
+
+ /*
+ * Reduce a small signed integer modulo a small prime. The source
+ * value x MUST be such that -p < x < p.
+ */
+ uint modp_set(int x, uint p)
+ {
+ uint w;
+
+ w = (uint)x;
+ w += (uint)(p & -(w >> 31));
+ return w;
+ }
+
+ /*
+ * Normalize a modular integer around 0.
+ */
+ int modp_norm(uint x, uint p)
+ {
+ return (int)(x - (p & (((x - ((p + 1) >> 1)) >> 31) - 1)));
+ }
+
+ /*
+ * Compute -1/p mod 2^31. This works for all odd integers p that fit
+ * on 31 bits.
+ */
+ uint modp_ninv31(uint p)
+ {
+ uint y;
+
+ y = 2 - p;
+ y *= 2 - p * y;
+ y *= 2 - p * y;
+ y *= 2 - p * y;
+ y *= 2 - p * y;
+ return (uint)(0x7FFFFFFF & -y);
+ }
+
+ /*
+ * Compute R = 2^31 mod p.
+ */
+ uint modp_R(uint p)
+ {
+ /*
+ * Since 2^30 < p < 2^31, we know that 2^31 mod p is simply
+ * 2^31 - p.
+ */
+ return ((uint)1 << 31) - p;
+ }
+
+ /*
+ * Addition modulo p.
+ */
+ uint modp_add(uint a, uint b, uint p)
+ {
+ uint d;
+
+ d = a + b - p;
+ d += (uint)(p & -(d >> 31));
+ return d;
+ }
+
+ /*
+ * Subtraction modulo p.
+ */
+ uint modp_sub(uint a, uint b, uint p)
+ {
+ uint d;
+
+ d = a - b;
+ d += (uint)(p & -(d >> 31));
+ return d;
+ }
+
+ /*
+ * Halving modulo p.
+ */
+ /* unused
+ uint modp_half(uint a, uint p)
+ {
+ a += p & -(a & 1);
+ return a >> 1;
+ }
+ */
+
+ /*
+ * Montgomery multiplication modulo p. The 'p0i' value is -1/p mod 2^31.
+ * It is required that p is an odd integer.
+ */
+ uint modp_montymul(uint a, uint b, uint p, uint p0i)
+ {
+ ulong z, w;
+ uint d;
+
+ z = (ulong)a * (ulong)b;
+ w = ((z * p0i) & (ulong)0x7FFFFFFF) * p;
+ d = (uint)((z + w) >> 31) - p;
+ d += (uint)(p & -(d >> 31));
+ return d;
+ }
+
+ /*
+ * Compute R2 = 2^62 mod p.
+ */
+ uint modp_R2(uint p, uint p0i)
+ {
+ uint z;
+
+ /*
+ * Compute z = 2^31 mod p (this is the value 1 in Montgomery
+ * representation), then double it with an addition.
+ */
+ z = modp_R(p);
+ z = modp_add(z, z, p);
+
+ /*
+ * Square it five times to obtain 2^32 in Montgomery representation
+ * (i.e. 2^63 mod p).
+ */
+ z = modp_montymul(z, z, p, p0i);
+ z = modp_montymul(z, z, p, p0i);
+ z = modp_montymul(z, z, p, p0i);
+ z = modp_montymul(z, z, p, p0i);
+ z = modp_montymul(z, z, p, p0i);
+
+ /*
+ * Halve the value mod p to get 2^62.
+ */
+ z = (uint)((z + (p & -(z & 1))) >> 1);
+ return z;
+ }
+
+ /*
+ * Compute 2^(31*x) modulo p. This works for integers x up to 2^11.
+ * p must be prime such that 2^30 < p < 2^31; p0i must be equal to
+ * -1/p mod 2^31; R2 must be equal to 2^62 mod p.
+ */
+ uint modp_Rx(uint x, uint p, uint p0i, uint R2)
+ {
+ int i;
+ uint r, z;
+
+ /*
+ * 2^(31*x) = (2^31)*(2^(31*(x-1))); i.e. we want the Montgomery
+ * representation of (2^31)^e mod p, where e = x-1.
+ * R2 is 2^31 in Montgomery representation.
+ */
+ x --;
+ r = R2;
+ z = modp_R(p);
+ for (i = 0; (1U << i) <= x; i ++) {
+ if ((x & (1U << i)) != 0) {
+ z = modp_montymul(z, r, p, p0i);
+ }
+ r = modp_montymul(r, r, p, p0i);
+ }
+ return z;
+ }
+
+ /*
+ * Division modulo p. If the divisor (b) is 0, then 0 is returned.
+ * This function computes proper results only when p is prime.
+ * Parameters:
+ * a dividend
+ * b divisor
+ * p odd prime modulus
+ * p0i -1/p mod 2^31
+ * R 2^31 mod R
+ */
+ uint modp_div(uint a, uint b, uint p, uint p0i, uint R)
+ {
+ uint z, e;
+ int i;
+
+ e = p - 2;
+ z = R;
+ for (i = 30; i >= 0; i --) {
+ uint z2;
+
+ z = modp_montymul(z, z, p, p0i);
+ z2 = modp_montymul(z, b, p, p0i);
+ z ^= (uint)((z ^ z2) & -(uint)((e >> i) & 1));
+ }
+
+ /*
+ * The loop above just assumed that b was in Montgomery
+ * representation, i.e. really contained b*R; under that
+ * assumption, it returns 1/b in Montgomery representation,
+ * which is R/b. But we gave it b in normal representation,
+ * so the loop really returned R/(b/R) = R^2/b.
+ *
+ * We want a/b, so we need one Montgomery multiplication with a,
+ * which also remove one of the R factors, and another such
+ * multiplication to remove the second R factor.
+ */
+ z = modp_montymul(z, 1, p, p0i);
+ return modp_montymul(a, z, p, p0i);
+ }
+
+ /*
+ * Bit-reversal index table.
+ */
+ ushort[] REV10 = {
+ 0, 512, 256, 768, 128, 640, 384, 896, 64, 576, 320, 832,
+ 192, 704, 448, 960, 32, 544, 288, 800, 160, 672, 416, 928,
+ 96, 608, 352, 864, 224, 736, 480, 992, 16, 528, 272, 784,
+ 144, 656, 400, 912, 80, 592, 336, 848, 208, 720, 464, 976,
+ 48, 560, 304, 816, 176, 688, 432, 944, 112, 624, 368, 880,
+ 240, 752, 496, 1008, 8, 520, 264, 776, 136, 648, 392, 904,
+ 72, 584, 328, 840, 200, 712, 456, 968, 40, 552, 296, 808,
+ 168, 680, 424, 936, 104, 616, 360, 872, 232, 744, 488, 1000,
+ 24, 536, 280, 792, 152, 664, 408, 920, 88, 600, 344, 856,
+ 216, 728, 472, 984, 56, 568, 312, 824, 184, 696, 440, 952,
+ 120, 632, 376, 888, 248, 760, 504, 1016, 4, 516, 260, 772,
+ 132, 644, 388, 900, 68, 580, 324, 836, 196, 708, 452, 964,
+ 36, 548, 292, 804, 164, 676, 420, 932, 100, 612, 356, 868,
+ 228, 740, 484, 996, 20, 532, 276, 788, 148, 660, 404, 916,
+ 84, 596, 340, 852, 212, 724, 468, 980, 52, 564, 308, 820,
+ 180, 692, 436, 948, 116, 628, 372, 884, 244, 756, 500, 1012,
+ 12, 524, 268, 780, 140, 652, 396, 908, 76, 588, 332, 844,
+ 204, 716, 460, 972, 44, 556, 300, 812, 172, 684, 428, 940,
+ 108, 620, 364, 876, 236, 748, 492, 1004, 28, 540, 284, 796,
+ 156, 668, 412, 924, 92, 604, 348, 860, 220, 732, 476, 988,
+ 60, 572, 316, 828, 188, 700, 444, 956, 124, 636, 380, 892,
+ 252, 764, 508, 1020, 2, 514, 258, 770, 130, 642, 386, 898,
+ 66, 578, 322, 834, 194, 706, 450, 962, 34, 546, 290, 802,
+ 162, 674, 418, 930, 98, 610, 354, 866, 226, 738, 482, 994,
+ 18, 530, 274, 786, 146, 658, 402, 914, 82, 594, 338, 850,
+ 210, 722, 466, 978, 50, 562, 306, 818, 178, 690, 434, 946,
+ 114, 626, 370, 882, 242, 754, 498, 1010, 10, 522, 266, 778,
+ 138, 650, 394, 906, 74, 586, 330, 842, 202, 714, 458, 970,
+ 42, 554, 298, 810, 170, 682, 426, 938, 106, 618, 362, 874,
+ 234, 746, 490, 1002, 26, 538, 282, 794, 154, 666, 410, 922,
+ 90, 602, 346, 858, 218, 730, 474, 986, 58, 570, 314, 826,
+ 186, 698, 442, 954, 122, 634, 378, 890, 250, 762, 506, 1018,
+ 6, 518, 262, 774, 134, 646, 390, 902, 70, 582, 326, 838,
+ 198, 710, 454, 966, 38, 550, 294, 806, 166, 678, 422, 934,
+ 102, 614, 358, 870, 230, 742, 486, 998, 22, 534, 278, 790,
+ 150, 662, 406, 918, 86, 598, 342, 854, 214, 726, 470, 982,
+ 54, 566, 310, 822, 182, 694, 438, 950, 118, 630, 374, 886,
+ 246, 758, 502, 1014, 14, 526, 270, 782, 142, 654, 398, 910,
+ 78, 590, 334, 846, 206, 718, 462, 974, 46, 558, 302, 814,
+ 174, 686, 430, 942, 110, 622, 366, 878, 238, 750, 494, 1006,
+ 30, 542, 286, 798, 158, 670, 414, 926, 94, 606, 350, 862,
+ 222, 734, 478, 990, 62, 574, 318, 830, 190, 702, 446, 958,
+ 126, 638, 382, 894, 254, 766, 510, 1022, 1, 513, 257, 769,
+ 129, 641, 385, 897, 65, 577, 321, 833, 193, 705, 449, 961,
+ 33, 545, 289, 801, 161, 673, 417, 929, 97, 609, 353, 865,
+ 225, 737, 481, 993, 17, 529, 273, 785, 145, 657, 401, 913,
+ 81, 593, 337, 849, 209, 721, 465, 977, 49, 561, 305, 817,
+ 177, 689, 433, 945, 113, 625, 369, 881, 241, 753, 497, 1009,
+ 9, 521, 265, 777, 137, 649, 393, 905, 73, 585, 329, 841,
+ 201, 713, 457, 969, 41, 553, 297, 809, 169, 681, 425, 937,
+ 105, 617, 361, 873, 233, 745, 489, 1001, 25, 537, 281, 793,
+ 153, 665, 409, 921, 89, 601, 345, 857, 217, 729, 473, 985,
+ 57, 569, 313, 825, 185, 697, 441, 953, 121, 633, 377, 889,
+ 249, 761, 505, 1017, 5, 517, 261, 773, 133, 645, 389, 901,
+ 69, 581, 325, 837, 197, 709, 453, 965, 37, 549, 293, 805,
+ 165, 677, 421, 933, 101, 613, 357, 869, 229, 741, 485, 997,
+ 21, 533, 277, 789, 149, 661, 405, 917, 85, 597, 341, 853,
+ 213, 725, 469, 981, 53, 565, 309, 821, 181, 693, 437, 949,
+ 117, 629, 373, 885, 245, 757, 501, 1013, 13, 525, 269, 781,
+ 141, 653, 397, 909, 77, 589, 333, 845, 205, 717, 461, 973,
+ 45, 557, 301, 813, 173, 685, 429, 941, 109, 621, 365, 877,
+ 237, 749, 493, 1005, 29, 541, 285, 797, 157, 669, 413, 925,
+ 93, 605, 349, 861, 221, 733, 477, 989, 61, 573, 317, 829,
+ 189, 701, 445, 957, 125, 637, 381, 893, 253, 765, 509, 1021,
+ 3, 515, 259, 771, 131, 643, 387, 899, 67, 579, 323, 835,
+ 195, 707, 451, 963, 35, 547, 291, 803, 163, 675, 419, 931,
+ 99, 611, 355, 867, 227, 739, 483, 995, 19, 531, 275, 787,
+ 147, 659, 403, 915, 83, 595, 339, 851, 211, 723, 467, 979,
+ 51, 563, 307, 819, 179, 691, 435, 947, 115, 627, 371, 883,
+ 243, 755, 499, 1011, 11, 523, 267, 779, 139, 651, 395, 907,
+ 75, 587, 331, 843, 203, 715, 459, 971, 43, 555, 299, 811,
+ 171, 683, 427, 939, 107, 619, 363, 875, 235, 747, 491, 1003,
+ 27, 539, 283, 795, 155, 667, 411, 923, 91, 603, 347, 859,
+ 219, 731, 475, 987, 59, 571, 315, 827, 187, 699, 443, 955,
+ 123, 635, 379, 891, 251, 763, 507, 1019, 7, 519, 263, 775,
+ 135, 647, 391, 903, 71, 583, 327, 839, 199, 711, 455, 967,
+ 39, 551, 295, 807, 167, 679, 423, 935, 103, 615, 359, 871,
+ 231, 743, 487, 999, 23, 535, 279, 791, 151, 663, 407, 919,
+ 87, 599, 343, 855, 215, 727, 471, 983, 55, 567, 311, 823,
+ 183, 695, 439, 951, 119, 631, 375, 887, 247, 759, 503, 1015,
+ 15, 527, 271, 783, 143, 655, 399, 911, 79, 591, 335, 847,
+ 207, 719, 463, 975, 47, 559, 303, 815, 175, 687, 431, 943,
+ 111, 623, 367, 879, 239, 751, 495, 1007, 31, 543, 287, 799,
+ 159, 671, 415, 927, 95, 607, 351, 863, 223, 735, 479, 991,
+ 63, 575, 319, 831, 191, 703, 447, 959, 127, 639, 383, 895,
+ 255, 767, 511, 1023
+ };
+
+ /*
+ * Compute the roots for NTT and inverse NTT (binary case). Input
+ * parameter g is a primitive 2048-th root of 1 modulo p (i.e. g^1024 =
+ * -1 mod p). This fills gm[] and igm[] with powers of g and 1/g:
+ * gm[rev(i)] = g^i mod p
+ * igm[rev(i)] = (1/g)^i mod p
+ * where rev() is the "bit reversal" function over 10 bits. It fills
+ * the arrays only up to N = 2^logn values.
+ *
+ * The values stored in gm[] and igm[] are in Montgomery representation.
+ *
+ * p must be a prime such that p = 1 mod 2048.
+ */
+ void modp_mkgm2(uint[] gmsrc, int gm, uint[] igmsrc, int igm, uint logn,
+ uint g, uint p, uint p0i)
+ {
+ int u, n;
+ uint k;
+ uint ig, x1, x2, R2;
+
+ n = (int)1 << (int)logn;
+
+ /*
+ * We want g such that g^(2N) = 1 mod p, but the provided
+ * generator has order 2048. We must square it a few times.
+ */
+ R2 = modp_R2(p, p0i);
+ g = modp_montymul(g, R2, p, p0i);
+ for (k = logn; k < 10; k ++) {
+ g = modp_montymul(g, g, p, p0i);
+ }
+
+ ig = modp_div(R2, g, p, p0i, modp_R(p));
+ k = 10 - logn;
+ x1 = x2 = modp_R(p);
+ for (u = 0; u < n; u ++) {
+ int v;
+
+ v = REV10[u << (int)k];
+ gmsrc[gm+v] = x1;
+ igmsrc[igm+v] = x2;
+ x1 = modp_montymul(x1, g, p, p0i);
+ x2 = modp_montymul(x2, ig, p, p0i);
+ }
+ }
+
+ /*
+ * Compute the NTT over a polynomial (binary case). Polynomial elements
+ * are a[0], a[stride], a[2 * stride]...
+ */
+ void modp_NTT2_ext(uint[] asrc, int a, int stride, uint[] gmsrc, int gm, uint logn,
+ uint p, uint p0i)
+ {
+ int t, m, n;
+
+ if (logn == 0) {
+ return;
+ }
+ n = (int)1 << (int)logn;
+ t = n;
+ for (m = 1; m < n; m <<= 1) {
+ int ht, u, v1;
+
+ ht = t >> 1;
+ for (u = 0, v1 = 0; u < m; u ++, v1 += t) {
+ uint s;
+ int v;
+ int r1;
+ int r2;
+
+ s = gmsrc[gm+m + u];
+ r1 = a + v1 * stride;
+ r2 = r1 + ht * stride;
+ for (v = 0; v < ht; v ++, r1 += stride, r2 += stride) {
+ uint x, y;
+
+ x = asrc[r1];
+ y = modp_montymul(asrc[r2], s, p, p0i);
+ asrc[r1] = modp_add(x, y, p);
+ asrc[r2] = modp_sub(x, y, p);
+ }
+ }
+ t = ht;
+ }
+ }
+
+ /*
+ * Compute the inverse NTT over a polynomial (binary case).
+ */
+ void modp_iNTT2_ext(uint[] asrc, int a, int stride, uint[] igmsrc, int igm, uint logn,
+ uint p, uint p0i)
+ {
+ int t, m, n, k;
+ uint ni;
+ int r;
+
+ if (logn == 0) {
+ return;
+ }
+ n = (int)1 << (int)logn;
+ t = 1;
+ for (m = n; m > 1; m >>= 1) {
+ int hm, dt, u, v1;
+
+ hm = m >> 1;
+ dt = t << 1;
+ for (u = 0, v1 = 0; u < hm; u ++, v1 += dt) {
+ uint s;
+ int v;
+ int r1;
+ int r2;
+
+ s = igmsrc[igm+hm + u];
+ r1 = a + v1 * stride;
+ r2 = r1 + t * stride;
+ for (v = 0; v < t; v ++, r1 += stride, r2 += stride) {
+ uint x, y;
+
+ x = asrc[r1];
+ y = asrc[r2];
+ asrc[r1] = modp_add(x, y, p);
+ asrc[r2] = modp_montymul(
+ modp_sub(x, y, p), s, p, p0i);;
+ }
+ }
+ t = dt;
+ }
+
+ /*
+ * We need 1/n in Montgomery representation, i.e. R/n. Since
+ * 1 <= logn <= 10, R/n is an integer; morever, R/n <= 2^30 < p,
+ * thus a simple shift will do.
+ */
+ ni = (uint)1 << (int)(31 - logn);
+ for (k = 0, r = a; k < n; k ++, r += stride) {
+ asrc[r] = modp_montymul(asrc[r], ni, p, p0i);
+ }
+ }
+
+ /*
+ * Simplified macros for NTT and iNTT (binary case) when the elements
+ * are consecutive in RAM.
+ */
+ void modp_NTT2(uint[] asrc, int a, uint[] gmsrc, int gm, uint logn, uint p, uint p0i) {
+ this.modp_NTT2_ext(asrc, a, 1, gmsrc, gm, logn, p, p0i);
+ }
+ void modp_iNTT2(uint[] asrc, int a, uint[] igmsrc, int igm, uint logn, uint p, uint p0i) {
+ this.modp_iNTT2_ext(asrc, a, 1, igmsrc, igm, logn, p, p0i);
+ }
+
+ /*
+ * Given polynomial f in NTT representation modulo p, compute f' of degree
+ * less than N/2 such that f' = f0^2 - X*f1^2, where f0 and f1 are
+ * polynomials of degree less than N/2 such that f = f0(X^2) + X*f1(X^2).
+ *
+ * The new polynomial is written "in place" over the first N/2 elements
+ * of f.
+ *
+ * If applied logn times successively on a given polynomial, the resulting
+ * degree-0 polynomial is the resultant of f and X^N+1 modulo p.
+ *
+ * This function applies only to the binary case; it is invoked from
+ * solve_NTRU_binary_depth1().
+ */
+ void modp_poly_rec_res(uint[] fsrc, int f, uint logn,
+ uint p, uint p0i, uint R2)
+ {
+ int hn, u;
+
+ hn = (int)1 << (int)(logn - 1);
+ for (u = 0; u < hn; u ++) {
+ uint w0, w1;
+
+ w0 = fsrc[f + (u << 1) + 0];
+ w1 = fsrc[f + (u << 1) + 1];
+ fsrc[f + u] = modp_montymul(modp_montymul(w0, w1, p, p0i), R2, p, p0i);
+ }
+ }
+
+ /* ==================================================================== */
+ /*
+ * Custom bignum implementation.
+ *
+ * This is a very reduced set of functionalities. We need to do the
+ * following operations:
+ *
+ * - Rebuild the resultant and the polynomial coefficients from their
+ * values modulo small primes (of length 31 bits each).
+ *
+ * - Compute an extended GCD between the two computed resultants.
+ *
+ * - Extract top bits and add scaled values during the successive steps
+ * of Babai rounding.
+ *
+ * When rebuilding values using CRT, we must also recompute the product
+ * of the small prime factors. We always do it one small factor at a
+ * time, so the "complicated" operations can be done modulo the small
+ * prime with the modp_* functions. CRT coefficients (inverses) are
+ * precomputed.
+ *
+ * All values are positive until the last step: when the polynomial
+ * coefficients have been rebuilt, we normalize them around 0. But then,
+ * only additions and subtractions on the upper few bits are needed
+ * afterwards.
+ *
+ * We keep big integers as arrays of 31-bit words (in uint values);
+ * the top bit of each uint is kept equal to 0. Using 31-bit words
+ * makes it easier to keep track of carries. When negative values are
+ * used, two's complement is used.
+ */
+
+ /*
+ * Subtract integer b from integer a. Both integers are supposed to have
+ * the same size. The carry (0 or 1) is returned. Source arrays a and b
+ * MUST be distinct.
+ *
+ * The operation is performed as described above if ctr = 1. If
+ * ctl = 0, the value a[] is unmodified, but all memory accesses are
+ * still performed, and the carry is computed and returned.
+ */
+ uint zint_sub(uint[] asrc, int a, uint[] bsrc, int b, int len,
+ uint ctl)
+ {
+ int u;
+ uint cc, m;
+
+ cc = 0;
+ m = (uint)(-ctl);
+ for (u = 0; u < len; u ++) {
+ uint aw, w;
+
+ aw = asrc[a + u];
+ w = aw - bsrc[b + u] - cc;
+ cc = w >> 31;
+ aw ^= ((w & 0x7FFFFFFF) ^ aw) & m;
+ asrc[a + u] = aw;
+ }
+ return cc;
+ }
+
+ /*
+ * Mutiply the provided big integer m with a small value x.
+ * This function assumes that x < 2^31. The carry word is returned.
+ */
+ uint zint_mul_small(uint[] msrc, int m, int mlen, uint x)
+ {
+ int u;
+ uint cc;
+
+ cc = 0;
+ for (u = 0; u < mlen; u ++) {
+ ulong z;
+
+ z = (ulong)msrc[m+u] * (ulong)x + cc;
+ msrc[m+u] = (uint)z & 0x7FFFFFFF;
+ cc = (uint)(z >> 31);
+ }
+ return cc;
+ }
+
+ /*
+ * Reduce a big integer d modulo a small integer p.
+ * Rules:
+ * d is uint
+ * p is prime
+ * 2^30 < p < 2^31
+ * p0i = -(1/p) mod 2^31
+ * R2 = 2^62 mod p
+ */
+ uint zint_mod_small_uint(uint[] dsrc, int d, int dlen,
+ uint p, uint p0i, uint R2)
+ {
+ uint x;
+ int u;
+
+ /*
+ * Algorithm: we inject words one by one, starting with the high
+ * word. Each step is:
+ * - multiply x by 2^31
+ * - add new word
+ */
+ x = 0;
+ u = dlen;
+ while (u -- > 0) {
+ uint w;
+
+ x = modp_montymul(x, R2, p, p0i);
+ w = dsrc[d+u] - p;
+ w += (uint)(p & -(w >> 31));
+ x = modp_add(x, w, p);
+ }
+ return x;
+ }
+
+ /*
+ * Similar to zint_mod_small_uint(), except that d may be signed.
+ * Extra parameter is Rx = 2^(31*dlen) mod p.
+ */
+ uint zint_mod_small_signed(uint[] dsrc, int d, int dlen,
+ uint p, uint p0i, uint R2, uint Rx)
+ {
+ uint z;
+
+ if (dlen == 0) {
+ return 0;
+ }
+ z = zint_mod_small_uint(dsrc, d, dlen, p, p0i, R2);
+ z = modp_sub(z, (uint)(Rx & -(dsrc[d + dlen - 1] >> 30)), p);
+ return z;
+ }
+
+ /*
+ * Add y*s to x. x and y initially have length 'len' words; the new x
+ * has length 'len+1' words. 's' must fit on 31 bits. x[] and y[] must
+ * not overlap.
+ */
+ void zint_add_mul_small(uint[] xsrc, int x,
+ uint[] ysrc, int y, int len, uint s)
+ {
+ int u;
+ uint cc;
+
+ cc = 0;
+ for (u = 0; u < len; u ++) {
+ uint xw, yw;
+ ulong z;
+
+ xw = xsrc[x+u];
+ yw = ysrc[y+u];
+ z = (ulong)yw * (ulong)s + (ulong)xw + (ulong)cc;
+ xsrc[x+u] = (uint)z & 0x7FFFFFFF;
+ cc = (uint)(z >> 31);
+ }
+ xsrc[x+len] = cc;
+ }
+
+ /*
+ * Normalize a modular integer around 0: if x > p/2, then x is replaced
+ * with x - p (signed encoding with two's complement); otherwise, x is
+ * untouched. The two integers x and p are encoded over the same length.
+ */
+ void zint_norm_zero(uint[] xsrc, int x, uint[] psrc, int p, int len)
+ {
+ int u;
+ uint r, bb;
+
+ /*
+ * Compare x with p/2. We use the shifted version of p, and p
+ * is odd, so we really compare with (p-1)/2; we want to perform
+ * the subtraction if and only if x > (p-1)/2.
+ */
+ r = 0;
+ bb = 0;
+ u = len;
+ while (u -- > 0) {
+ uint wx, wp, cc;
+
+ /*
+ * Get the two words to compare in wx and wp (both over
+ * 31 bits exactly).
+ */
+ wx = xsrc[x+u];
+ wp = (psrc[p+u] >> 1) | (bb << 30);
+ bb = psrc[p+u] & 1;
+
+ /*
+ * We set cc to -1, 0 or 1, depending on whether wp is
+ * lower than, equal to, or greater than wx.
+ */
+ cc = wp - wx;
+ cc = (uint)(((uint)(-cc) >> 31) | (uint)-(cc >> 31));
+
+ /*
+ * If r != 0 then it is either 1 or -1, and we keep its
+ * value. Otherwise, if r = 0, then we replace it with cc.
+ */
+ r |= cc & ((r & 1) - 1);
+ }
+
+ /*
+ * At this point, r = -1, 0 or 1, depending on whether (p-1)/2
+ * is lower than, equal to, or greater than x. We thus want to
+ * do the subtraction only if r = -1.
+ */
+ zint_sub(xsrc, x, psrc, p, len, r >> 31);
+ }
+
+ /*
+ * Rebuild integers from their RNS representation. There are 'num'
+ * integers, and each consists in 'xlen' words. 'xx' points at that
+ * first word of the first integer; subsequent integers are accessed
+ * by adding 'xstride' repeatedly.
+ *
+ * The words of an integer are the RNS representation of that integer,
+ * using the provided 'primes' are moduli. This function replaces
+ * each integer with its multi-word value (little-endian order).
+ *
+ * If "normalize_signed" is non-zero, then the returned value is
+ * normalized to the -m/2..m/2 interval (where m is the product of all
+ * small prime moduli); two's complement is used for negative values.
+ */
+ void zint_rebuild_CRT(uint[] xxsrc, int xx, int xlen, int xstride,
+ int num, FalconSmallPrime[] primes, int normalize_signed,
+ uint[] tmpsrc, int tmp)
+ {
+ int u;
+ int x;
+
+ tmpsrc[tmp + 0] = primes[0].p;
+ for (u = 1; u < xlen; u ++) {
+ /*
+ * At the entry of each loop iteration:
+ * - the first u words of each array have been
+ * reassembled;
+ * - the first u words of tmp[] contains the
+ * product of the prime moduli processed so far.
+ *
+ * We call 'q' the product of all previous primes.
+ */
+ uint p, p0i, s, R2;
+ int v;
+
+ p = primes[u].p;
+ s = primes[u].s;
+ p0i = modp_ninv31(p);
+ R2 = modp_R2(p, p0i);
+
+ for (v = 0, x = xx; v < num; v ++, x += xstride) {
+ uint xp, xq, xr;
+ /*
+ * xp = the integer x modulo the prime p for this
+ * iteration
+ * xq = (x mod q) mod p
+ */
+ xp = xxsrc[x + u];
+ xq = zint_mod_small_uint(xxsrc, x, u, p, p0i, R2);
+
+ /*
+ * New value is (x mod q) + q * (s * (xp - xq) mod p)
+ */
+ xr = modp_montymul(s, modp_sub(xp, xq, p), p, p0i);
+ zint_add_mul_small(xxsrc, x, tmpsrc, tmp, u, xr);
+ }
+
+ /*
+ * Update product of primes in tmp[].
+ */
+ tmpsrc[tmp + u] = zint_mul_small(tmpsrc, tmp, u, p);
+ }
+
+ /*
+ * Normalize the reconstructed values around 0.
+ */
+ if (normalize_signed != 0) {
+ for (u = 0, x = xx; u < num; u ++, x += xstride) {
+ zint_norm_zero(xxsrc, x, tmpsrc, tmp, xlen);
+ }
+ }
+ }
+
+ /*
+ * Negate a big integer conditionally: value a is replaced with -a if
+ * and only if ctl = 1. Control value ctl must be 0 or 1.
+ */
+ void zint_negate(uint[] asrc, int a, int len, uint ctl)
+ {
+ int u;
+ uint cc, m;
+
+ /*
+ * If ctl = 1 then we flip the bits of a by XORing with
+ * 0x7FFFFFFF, and we add 1 to the value. If ctl = 0 then we XOR
+ * with 0 and add 0, which leaves the value unchanged.
+ */
+ cc = ctl;
+ m = ((uint)-ctl >> 1);
+ for (u = 0; u < len; u ++) {
+ uint aw;
+
+ aw = asrc[a+u];
+ aw = (aw ^ m) + cc;
+ asrc[a+u] = aw & 0x7FFFFFFF;
+ cc = aw >> 31;
+ }
+ }
+
+ /*
+ * Replace a with (a*xa+b*xb)/(2^31) and b with (a*ya+b*yb)/(2^31).
+ * The low bits are dropped (the caller should compute the coefficients
+ * such that these dropped bits are all zeros). If either or both
+ * yields a negative value, then the value is negated.
+ *
+ * Returned value is:
+ * 0 both values were positive
+ * 1 new a had to be negated
+ * 2 new b had to be negated
+ * 3 both new a and new b had to be negated
+ *
+ * Coefficients xa, xb, ya and yb may use the full signed 32-bit range.
+ */
+ uint zint_co_reduce(uint[] asrc, int a, uint[] bsrc, int b, int len,
+ long xa, long xb, long ya, long yb)
+ {
+ int u;
+ long cca, ccb;
+ uint nega, negb;
+
+ cca = 0;
+ ccb = 0;
+ for (u = 0; u < len; u ++) {
+ uint wa, wb;
+ ulong za, zb;
+
+ wa = asrc[a + u];
+ wb = bsrc[b + u];
+ za = (ulong)((long)wa * xa + (long)wb * xb + cca);
+ zb = (ulong)((long)wa * ya + (long)wb * yb + ccb);
+ if (u > 0) {
+ asrc[a + u - 1] = (uint)za & 0x7FFFFFFF;
+ bsrc[b + u - 1] = (uint)zb & 0x7FFFFFFF;
+ }
+ //cca = *(long *)&za >> 31;
+ cca = (long)za >> 31;
+ ccb = (long)zb >> 31;
+ //ccb = *(long *)&zb >> 31;
+ }
+ asrc[a + len - 1] = (uint)cca;
+ bsrc[b + len - 1] = (uint)ccb;
+
+ nega = (uint)((ulong)cca >> 63);
+ negb = (uint)((ulong)ccb >> 63);
+ zint_negate(asrc, a, len, nega);
+ zint_negate(bsrc, b, len, negb);
+ return nega | (negb << 1);
+ }
+
+ /*
+ * Finish modular reduction. Rules on input parameters:
+ *
+ * if neg = 1, then -m <= a < 0
+ * if neg = 0, then 0 <= a < 2*m
+ *
+ * If neg = 0, then the top word of a[] is allowed to use 32 bits.
+ *
+ * Modulus m must be odd.
+ */
+ void zint_finish_mod(uint[] asrc, int a, int len, uint[] msrc, int m, uint neg)
+ {
+ int u;
+ uint cc, xm, ym;
+
+ /*
+ * First pass: compare a (assumed nonnegative) with m. Note that
+ * if the top word uses 32 bits, subtracting m must yield a
+ * value less than 2^31 since a < 2*m.
+ */
+ cc = 0;
+ for (u = 0; u < len; u ++) {
+ cc = (asrc[a+u] - msrc[m+u] - cc) >> 31;
+ }
+
+ /*
+ * If neg = 1 then we must add m (regardless of cc)
+ * If neg = 0 and cc = 0 then we must subtract m
+ * If neg = 0 and cc = 1 then we must do nothing
+ *
+ * In the loop below, we conditionally subtract either m or -m
+ * from a. Word xm is a word of m (if neg = 0) or -m (if neg = 1);
+ * but if neg = 0 and cc = 1, then ym = 0 and it forces mw to 0.
+ */
+ xm = ((uint)-neg >> 1);
+ ym = (uint)(-(neg | (1 - cc)));
+ cc = neg;
+ for (u = 0; u < len; u ++) {
+ uint aw, mw;
+
+ aw = asrc[a+u];
+ mw = (msrc[m+u] ^ xm) & ym;
+ aw = aw - mw - cc;
+ asrc[a+u] = aw & 0x7FFFFFFF;
+ cc = aw >> 31;
+ }
+ }
+
+ /*
+ * Replace a with (a*xa+b*xb)/(2^31) mod m, and b with
+ * (a*ya+b*yb)/(2^31) mod m. Modulus m must be odd; m0i = -1/m[0] mod 2^31.
+ */
+ void zint_co_reduce_mod(uint[] asrc, int a, uint[] bsrc, int b, uint[] msrc, int m, int len,
+ uint m0i, long xa, long xb, long ya, long yb)
+ {
+ int u;
+ long cca, ccb;
+ uint fa, fb;
+
+ /*
+ * These are actually four combined Montgomery multiplications.
+ */
+ cca = 0;
+ ccb = 0;
+ fa = ((asrc[a + 0] * (uint)xa + bsrc[b + 0] * (uint)xb) * m0i) & 0x7FFFFFFF;
+ fb = ((asrc[a + 0] * (uint)ya + bsrc[b + 0] * (uint)yb) * m0i) & 0x7FFFFFFF;
+ for (u = 0; u < len; u ++) {
+ uint wa, wb;
+ ulong za, zb;
+
+ wa = asrc[a + u];
+ wb = bsrc[b + u];
+ //za = wa * (ulong)xa + wb * (ulong)xb
+ // + msrc[m + u] * (ulong)fa + (ulong)cca;
+ //zb = wa * (ulong)ya + wb * (ulong)yb
+ // + msrc[m + u] * (ulong)fb + (ulong)ccb;
+ za = (ulong)((long)wa * xa + (long)wb * xb
+ + (long)msrc[m + u] * fa + cca);
+ zb = (ulong)((long)wa * ya + (long)wb * yb
+ + (long)msrc[m + u] * fb + ccb);
+ if (u > 0) {
+ asrc[a + u - 1] = (uint)za & 0x7FFFFFFF;
+ bsrc[b + u - 1] = (uint)zb & 0x7FFFFFFF;
+ }
+ //cca = *(long *)&za >> 31;
+ //ccb = *(long *)&zb >> 31;
+ cca = (long)za >> 31;
+ ccb = (long)zb >> 31;
+ }
+ asrc[a + len - 1] = (uint)cca;
+ bsrc[b + len - 1] = (uint)ccb;
+
+ /*
+ * At this point:
+ * -m <= a < 2*m
+ * -m <= b < 2*m
+ * (this is a case of Montgomery reduction)
+ * The top words of 'a' and 'b' may have a 32-th bit set.
+ * We want to add or subtract the modulus, as required.
+ */
+ zint_finish_mod(asrc, a, len, msrc, m, (uint)((ulong)cca >> 63));
+ zint_finish_mod(bsrc, b, len, msrc, m, (uint)((ulong)ccb >> 63));
+ }
+
+ /*
+ * Compute a GCD between two positive big integers x and y. The two
+ * integers must be odd. Returned value is 1 if the GCD is 1, 0
+ * otherwise. When 1 is returned, arrays u and v are filled with values
+ * such that:
+ * 0 <= u <= y
+ * 0 <= v <= x
+ * x*u - y*v = 1
+ * x[] and y[] are unmodified. Both input values must have the same
+ * encoded length. Temporary array must be large enough to accommodate 4
+ * extra values of that length. Arrays u, v and tmp may not overlap with
+ * each other, or with either x or y.
+ */
+ int zint_bezout(uint[] usrc, int u, uint[] vsrc, int v,
+ uint[] xsrc, int x, uint[] ysrc, int y,
+ int len, uint[] tmpsrc, int tmp)
+ {
+ /*
+ * Algorithm is an extended binary GCD. We maintain 6 values
+ * a, b, u0, u1, v0 and v1 with the following invariants:
+ *
+ * a = x*u0 - y*v0
+ * b = x*u1 - y*v1
+ * 0 <= a <= x
+ * 0 <= b <= y
+ * 0 <= u0 < y
+ * 0 <= v0 < x
+ * 0 <= u1 <= y
+ * 0 <= v1 < x
+ *
+ * Initial values are:
+ *
+ * a = x u0 = 1 v0 = 0
+ * b = y u1 = y v1 = x-1
+ *
+ * Each iteration reduces either a or b, and maintains the
+ * invariants. Algorithm stops when a = b, at which point their
+ * common value is GCD(a,b) and (u0,v0) (or (u1,v1)) contains
+ * the values (u,v) we want to return.
+ *
+ * The formal definition of the algorithm is a sequence of steps:
+ *
+ * - If a is even, then:
+ * a <- a/2
+ * u0 <- u0/2 mod y
+ * v0 <- v0/2 mod x
+ *
+ * - Otherwise, if b is even, then:
+ * b <- b/2
+ * u1 <- u1/2 mod y
+ * v1 <- v1/2 mod x
+ *
+ * - Otherwise, if a > b, then:
+ * a <- (a-b)/2
+ * u0 <- (u0-u1)/2 mod y
+ * v0 <- (v0-v1)/2 mod x
+ *
+ * - Otherwise:
+ * b <- (b-a)/2
+ * u1 <- (u1-u0)/2 mod y
+ * v1 <- (v1-v0)/2 mod y
+ *
+ * We can show that the operations above preserve the invariants:
+ *
+ * - If a is even, then u0 and v0 are either both even or both
+ * odd (since a = x*u0 - y*v0, and x and y are both odd).
+ * If u0 and v0 are both even, then (u0,v0) <- (u0/2,v0/2).
+ * Otherwise, (u0,v0) <- ((u0+y)/2,(v0+x)/2). Either way,
+ * the a = x*u0 - y*v0 invariant is preserved.
+ *
+ * - The same holds for the case where b is even.
+ *
+ * - If a and b are odd, and a > b, then:
+ *
+ * a-b = x*(u0-u1) - y*(v0-v1)
+ *
+ * In that situation, if u0 < u1, then x*(u0-u1) < 0, but
+ * a-b > 0; therefore, it must be that v0 < v1, and the
+ * first part of the update is: (u0,v0) <- (u0-u1+y,v0-v1+x),
+ * which preserves the invariants. Otherwise, if u0 > u1,
+ * then u0-u1 >= 1, thus x*(u0-u1) >= x. But a <= x and
+ * b >= 0, hence a-b <= x. It follows that, in that case,
+ * v0-v1 >= 0. The first part of the update is then:
+ * (u0,v0) <- (u0-u1,v0-v1), which again preserves the
+ * invariants.
+ *
+ * Either way, once the subtraction is done, the new value of
+ * a, which is the difference of two odd values, is even,
+ * and the remaining of this step is a subcase of the
+ * first algorithm case (i.e. when a is even).
+ *
+ * - If a and b are odd, and b > a, then the a similar
+ * argument holds.
+ *
+ * The values a and b start at x and y, respectively. Since x
+ * and y are odd, their GCD is odd, and it is easily seen that
+ * all steps conserve the GCD (GCD(a-b,b) = GCD(a, b);
+ * GCD(a/2,b) = GCD(a,b) if GCD(a,b) is odd). Moreover, either a
+ * or b is reduced by at least one bit at each iteration, so
+ * the algorithm necessarily converges on the case a = b, at
+ * which point the common value is the GCD.
+ *
+ * In the algorithm expressed above, when a = b, the fourth case
+ * applies, and sets b = 0. Since a contains the GCD of x and y,
+ * which are both odd, a must be odd, and subsequent iterations
+ * (if any) will simply divide b by 2 repeatedly, which has no
+ * consequence. Thus, the algorithm can run for more iterations
+ * than necessary; the final GCD will be in a, and the (u,v)
+ * coefficients will be (u0,v0).
+ *
+ *
+ * The presentation above is bit-by-bit. It can be sped up by
+ * noticing that all decisions are taken based on the low bits
+ * and high bits of a and b. We can extract the two top words
+ * and low word of each of a and b, and compute reduction
+ * parameters pa, pb, qa and qb such that the new values for
+ * a and b are:
+ * a' = (a*pa + b*pb) / (2^31)
+ * b' = (a*qa + b*qb) / (2^31)
+ * the two divisions being exact. The coefficients are obtained
+ * just from the extracted words, and may be slightly off, requiring
+ * an optional correction: if a' < 0, then we replace pa with -pa
+ * and pb with -pb. Each such step will reduce the total length
+ * (sum of lengths of a and b) by at least 30 bits at each
+ * iteration.
+ */
+ int u0, u1, v0, v1, a, b;
+ uint x0i, y0i;
+ uint num, rc;
+ int j;
+
+ if (len == 0) {
+ return 0;
+ }
+
+ /*
+ * u0 and v0 are the u and v result buffers; the four other
+ * values (u1, v1, a and b) are taken from tmp[].
+ */
+ u0 = u; // usrc
+ v0 = v; // vsrc
+ u1 = tmp; // tmpsrc
+ v1 = u1 + len; // tmpsrc
+ a = v1 + len; // tmpsrc
+ b = a + len; // tmpsrc
+
+ /*
+ * We'll need the Montgomery reduction coefficients.
+ */
+ x0i = modp_ninv31(xsrc[x + 0]);
+ y0i = modp_ninv31(ysrc[y + 0]);
+
+ /*
+ * Initialize a, b, u0, u1, v0 and v1.
+ * a = x u0 = 1 v0 = 0
+ * b = y u1 = y v1 = x-1
+ * Note that x is odd, so computing x-1 is easy.
+ */
+ // memcpy(a, x, len * sizeof *x);
+ Array.Copy(xsrc, x, tmpsrc, a, len);
+ // memcpy(b, y, len * sizeof *y);
+ Array.Copy(ysrc, y, tmpsrc, b, len);
+ usrc[u0+0] = 1;
+ // memset(u0 + 1, 0, (len - 1) * sizeof *u0);
+ // memset(v0, 0, len * sizeof *v0);
+ for (int i = 1; i < len; i++) {
+ usrc[u0+i] = 0;
+ vsrc[v0+i] = 0;
+ }
+ vsrc[v0+0] = 0;
+ // memcpy(u1, y, len * sizeof *u1);
+ Array.Copy(ysrc, y, tmpsrc, u1, len);
+ // memcpy(v1, x, len * sizeof *v1);
+ Array.Copy(xsrc, x, tmpsrc, v1, len);
+ tmpsrc[v1+0] --;
+
+ /*
+ * Each input operand may be as large as 31*len bits, and we
+ * reduce the total length by at least 30 bits at each iteration.
+ */
+ for (num = 62 * (uint)len + 30; num >= 30; num -= 30) {
+ uint c0, c1;
+ uint a0, a1, b0, b1;
+ ulong a_hi, b_hi;
+ uint a_lo, b_lo;
+ long pa, pb, qa, qb;
+ int i;
+ uint r;
+
+ /*
+ * Extract the top words of a and b. If j is the highest
+ * index >= 1 such that a[j] != 0 or b[j] != 0, then we
+ * want (a[j] << 31) + a[j-1] and (b[j] << 31) + b[j-1].
+ * If a and b are down to one word each, then we use
+ * a[0] and b[0].
+ */
+ //c0 = (uint)-1;
+ //c1 = (uint)-1;
+ c0 = uint.MaxValue;
+ c1 = uint.MaxValue;
+ a0 = 0;
+ a1 = 0;
+ b0 = 0;
+ b1 = 0;
+ j = len;
+ while (j -- > 0) {
+ uint aw, bw;
+
+ aw = tmpsrc[a+j];
+ bw = tmpsrc[b+j];
+ a0 ^= (a0 ^ aw) & c0;
+ a1 ^= (a1 ^ aw) & c1;
+ b0 ^= (b0 ^ bw) & c0;
+ b1 ^= (b1 ^ bw) & c1;
+ c1 = c0;
+ c0 &= (((aw | bw) + 0x7FFFFFFF) >> 31) - (uint)1;
+ }
+
+ /*
+ * If c1 = 0, then we grabbed two words for a and b.
+ * If c1 != 0 but c0 = 0, then we grabbed one word. It
+ * is not possible that c1 != 0 and c0 != 0, because that
+ * would mean that both integers are zero.
+ */
+ a1 |= a0 & c1;
+ a0 &= ~c1;
+ b1 |= b0 & c1;
+ b0 &= ~c1;
+ a_hi = ((ulong)a0 << 31) + a1;
+ b_hi = ((ulong)b0 << 31) + b1;
+ a_lo = tmpsrc[a+0];
+ b_lo = tmpsrc[b+0];
+
+ /*
+ * Compute reduction factors:
+ *
+ * a' = a*pa + b*pb
+ * b' = a*qa + b*qb
+ *
+ * such that a' and b' are both multiple of 2^31, but are
+ * only marginally larger than a and b.
+ */
+ pa = 1;
+ pb = 0;
+ qa = 0;
+ qb = 1;
+ for (i = 0; i < 31; i ++) {
+ /*
+ * At each iteration:
+ *
+ * a <- (a-b)/2 if: a is odd, b is odd, a_hi > b_hi
+ * b <- (b-a)/2 if: a is odd, b is odd, a_hi <= b_hi
+ * a <- a/2 if: a is even
+ * b <- b/2 if: a is odd, b is even
+ *
+ * We multiply a_lo and b_lo by 2 at each
+ * iteration, thus a division by 2 really is a
+ * non-multiplication by 2.
+ */
+ uint rt, oa, ob, cAB, cBA, cA;
+ ulong rz;
+
+ /*
+ * rt = 1 if a_hi > b_hi, 0 otherwise.
+ */
+ rz = b_hi - a_hi;
+ rt = (uint)((rz ^ ((a_hi ^ b_hi)
+ & (a_hi ^ rz))) >> 63);
+
+ /*
+ * cAB = 1 if b must be subtracted from a
+ * cBA = 1 if a must be subtracted from b
+ * cA = 1 if a must be divided by 2
+ *
+ * Rules:
+ *
+ * cAB and cBA cannot both be 1.
+ * If a is not divided by 2, b is.
+ */
+ oa = (a_lo >> i) & 1;
+ ob = (b_lo >> i) & 1;
+ cAB = oa & ob & rt;
+ cBA = (uint)(oa & ob & ~(int)rt);
+ cA = cAB | (oa ^ 1);
+
+ /*
+ * Conditional subtractions.
+ */
+ a_lo -= (uint)(b_lo & -cAB);
+ a_hi -= b_hi & (ulong)-(long)cAB;
+ pa -= (qa & -(long)cAB);
+ pb -= (qb & -(long)cAB);
+ b_lo -= (uint)(a_lo & -cBA);
+ b_hi -= a_hi & (ulong)-(long)cBA;
+ qa -= pa & -(long)cBA;
+ qb -= pb & -(long)cBA;
+
+ /*
+ * Shifting.
+ */
+ a_lo += a_lo & (cA - 1);
+ pa += pa & ((long)cA - 1);
+ pb += pb & ((long)cA - 1);
+ a_hi ^= (a_hi ^ (a_hi >> 1)) & (ulong)-(long)cA;
+ b_lo += (uint)(b_lo & -cA);
+ qa += qa & -(long)cA;
+ qb += qb & -(long)cA;
+ b_hi ^= (b_hi ^ (b_hi >> 1)) & ((ulong)cA - 1);
+ }
+
+ /*
+ * Apply the computed parameters to our values. We
+ * may have to correct pa and pb depending on the
+ * returned value of zint_co_reduce() (when a and/or b
+ * had to be negated).
+ */
+ r = zint_co_reduce(tmpsrc, a, tmpsrc, b, len, pa, pb, qa, qb);
+ pa -= (pa + pa) & -(long)(r & 1);
+ pb -= (pb + pb) & -(long)(r & 1);
+ qa -= (qa + qa) & -(long)(r >> 1);
+ qb -= (qb + qb) & -(long)(r >> 1);
+ zint_co_reduce_mod(usrc, u0, tmpsrc, u1, ysrc, y, len, y0i, pa, pb, qa, qb);
+ zint_co_reduce_mod(vsrc, v0, tmpsrc, v1, xsrc, x, len, x0i, pa, pb, qa, qb);
+ }
+
+ /*
+ * At that point, array a[] should contain the GCD, and the
+ * results (u,v) should already be set. We check that the GCD
+ * is indeed 1. We also check that the two operands x and y
+ * are odd.
+ */
+ rc = tmpsrc[a+0] ^ 1;
+ for (j = 1; j < len; j ++) {
+ rc |= tmpsrc[a+j];
+ }
+ return (int)((1 - ((rc | -rc) >> 31)) & xsrc[x+0] & ysrc[y+0]);
+ }
+
+ /*
+ * Add k*y*2^sc to x. The result is assumed to fit in the array of
+ * size xlen (truncation is applied if necessary).
+ * Scale factor 'sc' is provided as sch and scl, such that:
+ * sch = sc / 31
+ * scl = sc % 31
+ * xlen MUST NOT be lower than ylen.
+ *
+ * x[] and y[] are both signed integers, using two's complement for
+ * negative values.
+ */
+ void zint_add_scaled_mul_small(uint[] xsrc, int x, int xlen,
+ uint[] ysrc, int y, int ylen, int k,
+ uint sch, uint scl)
+ {
+ int u;
+ uint ysign, tw;
+ int cc;
+
+ if (ylen == 0) {
+ return;
+ }
+
+ ysign = ((uint)-(ysrc[y + ylen - 1] >> 30) >> 1);
+ tw = 0;
+ cc = 0;
+ for (u = (int)sch; u < xlen; u ++) {
+ int v;
+ uint wy, wys, ccu;
+ ulong z;
+
+ /*
+ * Get the next word of y (scaled).
+ */
+ v = u - (int)sch;
+ wy = v < ylen ? ysrc[y + v] : ysign;
+ wys = ((wy << (int)scl) & 0x7FFFFFFF) | tw;
+ tw = wy >> (31 - (int)scl);
+
+ /*
+ * The expression below does not overflow.
+ */
+ z = (ulong)((long)wys * (long)k + (long)xsrc[x+u] + cc);
+ xsrc[x+u] = (uint)z & 0x7FFFFFFF;
+
+ /*
+ * Right-shifting the signed value z would yield
+ * implementation-defined results (arithmetic shift is
+ * not guaranteed). However, we can cast to uint,
+ * and get the next carry as an uint word. We can
+ * then convert it back to signed by using the guaranteed
+ * fact that 'int' uses two's complement with no
+ * trap representation or padding bit, and with a layout
+ * compatible with that of 'uint'.
+ */
+ ccu = (uint)(z >> 31);
+ //cc = *(int *)&ccu;
+ cc = (int)ccu;
+ }
+ }
+
+ /*
+ * Subtract y*2^sc from x. The result is assumed to fit in the array of
+ * size xlen (truncation is applied if necessary).
+ * Scale factor 'sc' is provided as sch and scl, such that:
+ * sch = sc / 31
+ * scl = sc % 31
+ * xlen MUST NOT be lower than ylen.
+ *
+ * x[] and y[] are both signed integers, using two's complement for
+ * negative values.
+ */
+ void zint_sub_scaled(uint[] xsrc, int x, int xlen,
+ uint[] ysrc, int y, int ylen, uint sch, uint scl)
+ {
+ int u;
+ uint ysign, tw;
+ uint cc;
+
+ if (ylen == 0) {
+ return;
+ }
+
+ ysign = (uint)(-(ysrc[y + ylen - 1] >> 30) >> 1);
+ tw = 0;
+ cc = 0;
+ for (u = (int)sch; u < xlen; u ++) {
+ int v;
+ uint w, wy, wys;
+
+ /*
+ * Get the next word of y (scaled).
+ */
+ v = u - (int)sch;
+ wy = v < ylen ? ysrc[y + v] : ysign;
+ wys = ((wy << (int)scl) & 0x7FFFFFFF) | tw;
+ tw = wy >> (int)(31 - scl);
+
+ w = xsrc[x+u] - wys - cc;
+ xsrc[x+u] = w & 0x7FFFFFFF;
+ cc = w >> 31;
+ }
+ }
+
+ /*
+ * Convert a one-word signed big integer into a signed value.
+ */
+ int zint_one_to_plain(uint[] xsrc, int x)
+ {
+ uint w;
+
+ w = xsrc[x+0];
+ w |= (w & 0x40000000) << 1;
+ //return *(int *)&w;
+ return (int)w;
+ }
+
+ /* ==================================================================== */
+
+ /*
+ * Convert a polynomial to floating-point values.
+ *
+ * Each coefficient has length flen words, and starts fstride words after
+ * the previous.
+ *
+ * IEEE-754 binary64 values can represent values in a finite range,
+ * roughly 2^(-1023) to 2^(+1023); thus, if coefficients are too large,
+ * they should be "trimmed" by pointing not to the lowest word of each,
+ * but upper.
+ */
+ void poly_big_to_fp(FalconFPR[] dsrc, int d, uint[] fsrc, int f, int flen, int fstride,
+ uint logn)
+ {
+ int n, u;
+
+ n = (int)1 << (int)logn;
+ if (flen == 0) {
+ for (u = 0; u < n; u ++) {
+ dsrc[d + u] = this.fpre.fpr_zero;
+ }
+ return;
+ }
+ for (u = 0; u < n; u ++, f += fstride) {
+ int v;
+ uint neg, cc, xm;
+ FalconFPR x, fsc;
+
+ /*
+ * Get sign of the integer; if it is negative, then we
+ * will load its absolute value instead, and negate the
+ * result.
+ */
+ neg = (uint)(-(fsrc[f + flen - 1] >> 30));
+ xm = neg >> 1;
+ cc = neg & 1;
+ x = this.fpre.fpr_zero;
+ fsc = this.fpre.fpr_one;
+ for (v = 0; v < flen; v ++, fsc = this.fpre.fpr_mul(fsc, this.fpre.fpr_ptwo31)) {
+ uint w;
+
+ w = (fsrc[f + v] ^ xm) + cc;
+ cc = w >> 31;
+ w &= 0x7FFFFFFF;
+ w -= (w << 1) & neg;
+ //x = this.fpre.fpr_add(x, this.fpre.fpr_mul(this.fpre.fpr_of(*(int*)&w), fsc));
+ x = this.fpre.fpr_add(x, this.fpre.fpr_mul(this.fpre.fpr_of((int)w), fsc));
+ }
+ dsrc[d + u] = x;
+ }
+ }
+
+ /*
+ * Convert a polynomial to small integers. Source values are supposed
+ * to be one-word integers, signed over 31 bits. Returned value is 0
+ * if any of the coefficients exceeds the provided limit (in absolute
+ * value), or 1 on success.
+ *
+ * This is not constant-time; this is not a problem here, because on
+ * any failure, the NTRU-solving process will be deemed to have failed
+ * and the (f,g) polynomials will be discarded.
+ */
+ int poly_big_to_small(sbyte[] dsrc, int d, uint[] ssrc, int s, int lim, uint logn)
+ {
+ int n, u;
+
+ n = (int)1 << (int)logn;
+ for (u = 0; u < n; u ++) {
+ int z;
+
+ z = zint_one_to_plain(ssrc, s + u);
+ if (z < -lim || z > lim) {
+ return 0;
+ }
+ dsrc[d+u] = (sbyte)z;
+ }
+ return 1;
+ }
+
+ /*
+ * Subtract k*f from F, where F, f and k are polynomials modulo X^N+1.
+ * Coefficients of polynomial k are small integers (signed values in the
+ * -2^31..2^31 range) scaled by 2^sc. Value sc is provided as sch = sc / 31
+ * and scl = sc % 31.
+ *
+ * This function implements the basic quadratic multiplication algorithm,
+ * which is efficient in space (no extra buffer needed) but slow at
+ * high degree.
+ */
+ void poly_sub_scaled(uint[] Fsrc, int F, int Flen, int Fstride,
+ uint[] fsrc, int f, int flen, int fstride,
+ int[] ksrc, int k, uint sch, uint scl, uint logn)
+ {
+ int n, u;
+
+ n = (int)1 << (int)logn;
+ for (u = 0; u < n; u ++) {
+ int kf;
+ int v;
+ int x;
+ int y;
+
+ kf = -ksrc[k+u];
+ x = F + u * Fstride;
+ y = f;
+ for (v = 0; v < n; v ++) {
+ zint_add_scaled_mul_small(
+ Fsrc, x, Flen, fsrc, y, flen, kf, sch, scl);
+ if (u + v == n - 1) {
+ x = F;
+ kf = -kf;
+ } else {
+ x += Fstride;
+ }
+ y += fstride;
+ }
+ }
+ }
+
+ /*
+ * Subtract k*f from F. Coefficients of polynomial k are small integers
+ * (signed values in the -2^31..2^31 range) scaled by 2^sc. This function
+ * assumes that the degree is large, and integers relatively small.
+ * The value sc is provided as sch = sc / 31 and scl = sc % 31.
+ */
+ void poly_sub_scaled_ntt(uint[] Fsrc, int F, int Flen, int Fstride,
+ uint[] fsrc, int f, int flen, int fstride,
+ int[] ksrc, int k, uint sch, uint scl, uint logn,
+ uint[] tmpsrc, int tmp)
+ {
+ int gm, igm, fk, t1, x;
+ int y;
+ int n, u, tlen;
+ FalconSmallPrime[] primes;
+
+ n = (int)1 << (int)logn;
+ tlen = flen + 1;
+ gm = tmp;
+ igm = gm + n;
+ fk = igm + n;
+ t1 = fk + n * tlen;
+
+ primes = this.PRIMES;
+
+ /*
+ * Compute k*f in fk[], in RNS notation.
+ */
+ for (u = 0; u < tlen; u ++) {
+ uint p, p0i, R2, Rx;
+ int v;
+
+ p = primes[u].p;
+ p0i = modp_ninv31(p);
+ R2 = modp_R2(p, p0i);
+ Rx = modp_Rx((uint)flen, p, p0i, R2);
+ modp_mkgm2(tmpsrc, gm, tmpsrc, igm, logn, primes[u].g, p, p0i);
+
+ for (v = 0; v < n; v ++) {
+ tmpsrc[t1+v] = modp_set(ksrc[k+v], p);
+ }
+ modp_NTT2(tmpsrc, t1, tmpsrc, gm, logn, p, p0i);
+ for (v = 0, y = f, x = fk + u;
+ v < n; v ++, y += fstride, x += tlen)
+ {
+ tmpsrc[x] = zint_mod_small_signed(tmpsrc, y, flen, p, p0i, R2, Rx);
+ }
+ modp_NTT2_ext(tmpsrc, fk + u, tlen, tmpsrc, gm, logn, p, p0i);
+ for (v = 0, x = fk + u; v < n; v ++, x += tlen) {
+ tmpsrc[x] = modp_montymul(
+ modp_montymul(tmpsrc[t1+v], tmpsrc[x], p, p0i), R2, p, p0i);
+ }
+ modp_iNTT2_ext(tmpsrc, fk + u, tlen, tmpsrc, igm, logn, p, p0i);
+ }
+
+ /*
+ * Rebuild k*f.
+ */
+ zint_rebuild_CRT(tmpsrc, fk, tlen, tlen, n, primes, 1, tmpsrc, t1);
+
+ /*
+ * Subtract k*f, scaled, from F.
+ */
+ for (u = 0, x = F, y = fk; u < n; u ++, x += Fstride, y += tlen) {
+ zint_sub_scaled(tmpsrc, x, Flen, tmpsrc, y, tlen, sch, scl);
+ }
+ }
+
+ /* ==================================================================== */
+
+ /*
+ * Get a random 8-byte integer from a SHAKE-based RNG. This function
+ * ensures consistent interpretation of the SHAKE output so that
+ * the same values will be obtained over different platforms, in case
+ * a known seed is used.
+ */
+ ulong get_rng_u64(SHAKE256 rng)
+ {
+ /*
+ * We enforce little-endian representation.
+ */
+
+ byte[] tmp = new byte[8];
+
+ rng.i_shake256_extract(tmp, 0, 8);
+ return (ulong)tmp[0]
+ | ((ulong)tmp[1] << 8)
+ | ((ulong)tmp[2] << 16)
+ | ((ulong)tmp[3] << 24)
+ | ((ulong)tmp[4] << 32)
+ | ((ulong)tmp[5] << 40)
+ | ((ulong)tmp[6] << 48)
+ | ((ulong)tmp[7] << 56);
+ }
+
+
+ /*
+ * Table below incarnates a discrete Gaussian distribution:
+ * D(x) = exp(-(x^2)/(2*sigma^2))
+ * where sigma = 1.17*sqrt(q/(2*N)), q = 12289, and N = 1024.
+ * Element 0 of the table is P(x = 0).
+ * For k > 0, element k is P(x >= k+1 | x > 0).
+ * Probabilities are scaled up by 2^63.
+ */
+ ulong[] gauss_1024_12289 = {
+ 1283868770400643928u, 6416574995475331444u, 4078260278032692663u,
+ 2353523259288686585u, 1227179971273316331u, 575931623374121527u,
+ 242543240509105209u, 91437049221049666u, 30799446349977173u,
+ 9255276791179340u, 2478152334826140u, 590642893610164u,
+ 125206034929641u, 23590435911403u, 3948334035941u,
+ 586753615614u, 77391054539u, 9056793210u,
+ 940121950u, 86539696u, 7062824u,
+ 510971u, 32764u, 1862u,
+ 94u, 4u, 0u
+ };
+
+ /*
+ * Generate a random value with a Gaussian distribution centered on 0.
+ * The RNG must be ready for extraction (already flipped).
+ *
+ * Distribution has standard deviation 1.17*sqrt(q/(2*N)). The
+ * precomputed table is for N = 1024. Since the sum of two independent
+ * values of standard deviation sigma has standard deviation
+ * sigma*sqrt(2), then we can just generate more values and add them
+ * together for lower dimensions.
+ */
+ int mkgauss(SHAKE256 rng, uint logn)
+ {
+ uint u, g;
+ int val;
+
+ g = 1U << (int)(10 - logn);
+ val = 0;
+ for (u = 0; u < g; u ++) {
+ /*
+ * Each iteration generates one value with the
+ * Gaussian distribution for N = 1024.
+ *
+ * We use two random 64-bit values. First value
+ * decides on whether the generated value is 0, and,
+ * if not, the sign of the value. Second random 64-bit
+ * word is used to generate the non-zero value.
+ *
+ * For constant-time code we have to read the complete
+ * table. This has negligible cost, compared with the
+ * remainder of the keygen process (solving the NTRU
+ * equation).
+ */
+ ulong r;
+ uint f, v, k, neg;
+
+ /*
+ * First value:
+ * - flag 'neg' is randomly selected to be 0 or 1.
+ * - flag 'f' is set to 1 if the generated value is zero,
+ * or set to 0 otherwise.
+ */
+ r = get_rng_u64(rng);
+ neg = (uint)(r >> 63);
+ r &= ~((ulong)1 << 63);
+ f = (uint)((r - gauss_1024_12289[0]) >> 63);
+
+ /*
+ * We produce a new random 63-bit integer r, and go over
+ * the array, starting at index 1. We store in v the
+ * index of the first array element which is not greater
+ * than r, unless the flag f was already 1.
+ */
+ v = 0;
+ r = get_rng_u64(rng);
+ r &= ~((ulong)1 << 63);
+ for (k = 1; k < gauss_1024_12289.Length; k ++)
+ {
+ uint t;
+
+ t = (uint)((r - gauss_1024_12289[k]) >> 63) ^ 1;
+ v |= (uint)(k & -(t & (f ^ 1)));
+ f |= t;
+ }
+
+ /*
+ * We apply the sign ('neg' flag). If the value is zero,
+ * the sign has no effect.
+ */
+ v = (uint)((v ^ -neg) + neg);
+
+ /*
+ * Generated value is added to val.
+ */
+ //val += *(int *)&v;
+ val += (int)v;
+ }
+ return val;
+ }
+
+ /*
+ * The MAX_BL_SMALL[] and MAX_BL_LARGE[] contain the lengths, in 31-bit
+ * words, of intermediate values in the computation:
+ *
+ * MAX_BL_SMALL[depth]: length for the input f and g at that depth
+ * MAX_BL_LARGE[depth]: length for the unreduced F and G at that depth
+ *
+ * Rules:
+ *
+ * - Within an array, values grow.
+ *
+ * - The 'SMALL' array must have an entry for maximum depth, corresponding
+ * to the size of values used in the binary GCD. There is no such value
+ * for the 'LARGE' array (the binary GCD yields already reduced
+ * coefficients).
+ *
+ * - MAX_BL_LARGE[depth] >= MAX_BL_SMALL[depth + 1].
+ *
+ * - Values must be large enough to handle the common cases, with some
+ * margins.
+ *
+ * - Values must not be "too large" either because we will convert some
+ * integers into floating-point values by considering the top 10 words,
+ * i.e. 310 bits; hence, for values of length more than 10 words, we
+ * should take care to have the length centered on the expected size.
+ *
+ * The following average lengths, in bits, have been measured on thousands
+ * of random keys (fg = max length of the absolute value of coefficients
+ * of f and g at that depth; FG = idem for the unreduced F and G; for the
+ * maximum depth, F and G are the output of binary GCD, multiplied by q;
+ * for each value, the average and standard deviation are provided).
+ *
+ * Binary case:
+ * depth: 10 fg: 6307.52 (24.48) FG: 6319.66 (24.51)
+ * depth: 9 fg: 3138.35 (12.25) FG: 9403.29 (27.55)
+ * depth: 8 fg: 1576.87 ( 7.49) FG: 4703.30 (14.77)
+ * depth: 7 fg: 794.17 ( 4.98) FG: 2361.84 ( 9.31)
+ * depth: 6 fg: 400.67 ( 3.10) FG: 1188.68 ( 6.04)
+ * depth: 5 fg: 202.22 ( 1.87) FG: 599.81 ( 3.87)
+ * depth: 4 fg: 101.62 ( 1.02) FG: 303.49 ( 2.38)
+ * depth: 3 fg: 50.37 ( 0.53) FG: 153.65 ( 1.39)
+ * depth: 2 fg: 24.07 ( 0.25) FG: 78.20 ( 0.73)
+ * depth: 1 fg: 10.99 ( 0.08) FG: 39.82 ( 0.41)
+ * depth: 0 fg: 4.00 ( 0.00) FG: 19.61 ( 0.49)
+ *
+ * Integers are actually represented either in binary notation over
+ * 31-bit words (signed, using two's complement), or in RNS, modulo
+ * many small primes. These small primes are close to, but slightly
+ * lower than, 2^31. Use of RNS loses less than two bits, even for
+ * the largest values.
+ *
+ * IMPORTANT: if these values are modified, then the temporary buffer
+ * sizes (FALCON_KEYGEN_TEMP_*, in inner.h) must be recomputed
+ * accordingly.
+ */
+
+ int[] MAX_BL_SMALL = {
+ 1, 1, 2, 2, 4, 7, 14, 27, 53, 106, 209
+ };
+
+ int[] MAX_BL_LARGE = {
+ 2, 2, 5, 7, 12, 21, 40, 78, 157, 308
+ };
+
+ /*
+ * Average and standard deviation for the maximum size (in bits) of
+ * coefficients of (f,g), depending on depth. These values are used
+ * to compute bounds for Babai's reduction.
+ */
+ int[] BITLENGTH_avg = { // BITLENGTH[i][0] = avg, [i][1] = std
+ 4,
+ 11,
+ 24,
+ 50,
+ 102,
+ 202,
+ 401,
+ 794,
+ 1577,
+ 3138,
+ 6308,
+ };
+ int[] BITLENGTH_std = { // BITLENGTH[i][0] = avg, [i][1] = std
+ 0,
+ 1,
+ 1,
+ 1,
+ 1,
+ 2,
+ 4,
+ 5,
+ 8,
+ 13,
+ 25
+ };
+
+ /*
+ * Minimal recursion depth at which we rebuild intermediate values
+ * when reconstructing f and g.
+ */
+ const int DEPTH_INT_FG = 4;
+
+ /*
+ * Compute squared norm of a short vector. Returned value is saturated to
+ * 2^32-1 if it is not lower than 2^31.
+ */
+ uint poly_small_sqnorm(sbyte[] fsrc, int f, uint logn)
+ {
+ int n, u;
+ uint s, ng;
+
+ n = (int)1 << (int)logn;
+ s = 0;
+ ng = 0;
+ for (u = 0; u < n; u ++) {
+ int z;
+
+ z = fsrc[f+u];
+ s += (uint)(z * z);
+ ng |= s;
+ }
+ return (uint)(s | -(ng >> 31));
+ }
+
+ /*
+ * Convert a small vector to floating point.
+ */
+ void poly_small_to_fp(FalconFPR[] xsrc, int x, sbyte[] fsrc, int f, uint logn)
+ {
+ int n, u;
+
+ n = (int)1 << (int)logn;
+ for (u = 0; u < n; u ++) {
+ xsrc[x + u] = this.fpre.fpr_of(fsrc[f + u]);
+ }
+ }
+
+ /*
+ * Input: f,g of degree N = 2^logn; 'depth' is used only to get their
+ * individual length.
+ *
+ * Output: f',g' of degree N/2, with the length for 'depth+1'.
+ *
+ * Values are in RNS; input and/or output may also be in NTT.
+ */
+ void make_fg_step(uint[] datasrc, int data, uint logn, uint depth,
+ int in_ntt, int out_ntt)
+ {
+ int n, hn, u;
+ int slen, tlen;
+ int fd, gd;
+ int fs, gs;
+ int gm, igm, t1;
+ FalconSmallPrime[] primes;
+
+ n = (int)1 << (int)logn;
+ hn = n >> 1;
+ slen = MAX_BL_SMALL[depth];
+ tlen = MAX_BL_SMALL[depth + 1];
+ primes = this.PRIMES;
+
+ /*
+ * Prepare room for the result.
+ */
+ fd = data;
+ gd = fd + hn * tlen;
+ fs = gd + hn * tlen;
+ gs = fs + n * slen;
+ gm = gs + n * slen;
+ igm = gm + n;
+ t1 = igm + n;
+ // memmove(fs, data, 2 * n * slen * sizeof *data);
+ Array.Copy(datasrc, data, datasrc, fs, 2 * n * slen);
+
+ /*
+ * First slen words: we use the input values directly, and apply
+ * inverse NTT as we go.
+ */
+ for (u = 0; u < slen; u ++) {
+ uint p, p0i, R2;
+ int v;
+ int x;
+
+ p = primes[u].p;
+ p0i = modp_ninv31(p);
+ R2 = modp_R2(p, p0i);
+ modp_mkgm2(datasrc, gm, datasrc, igm, logn, primes[u].g, p, p0i);
+
+ for (v = 0, x = fs + u; v < n; v ++, x += slen) {
+ datasrc[t1 + v] = datasrc[x];
+ }
+ if (in_ntt == 0) {
+ modp_NTT2(datasrc, t1, datasrc, gm, logn, p, p0i);
+ }
+ for (v = 0, x = fd + u; v < hn; v ++, x += tlen) {
+ uint w0, w1;
+
+ w0 = datasrc[t1 + (v << 1) + 0];
+ w1 = datasrc[t1 + (v << 1) + 1];
+ datasrc[x] = modp_montymul(
+ modp_montymul(w0, w1, p, p0i), R2, p, p0i);
+ }
+ if (in_ntt != 0) {
+ modp_iNTT2_ext(datasrc, fs + u, slen, datasrc, igm, logn, p, p0i);
+ }
+
+ for (v = 0, x = gs + u; v < n; v ++, x += slen) {
+ datasrc[t1 + v] = datasrc[x];
+ }
+ if (in_ntt == 0) {
+ modp_NTT2(datasrc, t1, datasrc, gm, logn, p, p0i);
+ }
+ for (v = 0, x = gd + u; v < hn; v ++, x += tlen) {
+ uint w0, w1;
+
+ w0 = datasrc[t1 + (v << 1) + 0];
+ w1 = datasrc[t1 + (v << 1) + 1];
+ datasrc[x] = modp_montymul(
+ modp_montymul(w0, w1, p, p0i), R2, p, p0i);
+ }
+ if (in_ntt != 0) {
+ modp_iNTT2_ext(datasrc, gs + u, slen, datasrc, igm, logn, p, p0i);
+ }
+
+ if (out_ntt == 0) {
+ modp_iNTT2_ext(datasrc, fd + u, tlen, datasrc, igm, logn - 1, p, p0i);
+ modp_iNTT2_ext(datasrc, gd + u, tlen, datasrc, igm, logn - 1, p, p0i);
+ }
+ }
+
+ /*
+ * Since the fs and gs words have been de-NTTized, we can use the
+ * CRT to rebuild the values.
+ */
+ zint_rebuild_CRT(datasrc, fs, slen, slen, n, primes, 1, datasrc, gm);
+ zint_rebuild_CRT(datasrc, gs, slen, slen, n, primes, 1, datasrc, gm);
+
+ /*
+ * Remaining words: use modular reductions to extract the values.
+ */
+ for (u = slen; u < tlen; u ++) {
+ uint p, p0i, R2, Rx;
+ int v;
+ int x;
+
+ p = primes[u].p;
+ p0i = modp_ninv31(p);
+ R2 = modp_R2(p, p0i);
+ Rx = modp_Rx((uint)slen, p, p0i, R2);
+ modp_mkgm2(datasrc, gm, datasrc, igm, logn, primes[u].g, p, p0i);
+ for (v = 0, x = fs; v < n; v ++, x += slen) {
+ datasrc[t1 + v] = zint_mod_small_signed(datasrc, x, slen, p, p0i, R2, Rx);
+ }
+ modp_NTT2(datasrc, t1, datasrc, gm, logn, p, p0i);
+ for (v = 0, x = fd + u; v < hn; v ++, x += tlen) {
+ uint w0, w1;
+
+ w0 = datasrc[t1 + (v << 1) + 0];
+ w1 = datasrc[t1 + (v << 1) + 1];
+ datasrc[x] = modp_montymul(
+ modp_montymul(w0, w1, p, p0i), R2, p, p0i);
+ }
+ for (v = 0, x = gs; v < n; v ++, x += slen) {
+ datasrc[t1 + v] = zint_mod_small_signed(datasrc, x, slen, p, p0i, R2, Rx);
+ }
+ modp_NTT2(datasrc, t1, datasrc, gm, logn, p, p0i);
+ for (v = 0, x = gd + u; v < hn; v ++, x += tlen) {
+ uint w0, w1;
+
+ w0 = datasrc[t1 + (v << 1) + 0];
+ w1 = datasrc[t1 + (v << 1) + 1];
+ datasrc[x] = modp_montymul(
+ modp_montymul(w0, w1, p, p0i), R2, p, p0i);
+ }
+
+ if (out_ntt == 0) {
+ modp_iNTT2_ext(datasrc, fd + u, tlen, datasrc, igm, logn - 1, p, p0i);
+ modp_iNTT2_ext(datasrc, gd + u, tlen, datasrc, igm, logn - 1, p, p0i);
+ }
+ }
+ }
+
+ /*
+ * Compute f and g at a specific depth, in RNS notation.
+ *
+ * Returned values are stored in the data[] array, at slen words per integer.
+ *
+ * Conditions:
+ * 0 <= depth <= logn
+ *
+ * Space use in data[]: enough room for any two successive values (f', g',
+ * f and g).
+ */
+ void make_fg(uint[] datasrc, int data, sbyte[] fsrc, int f, sbyte[] gsrc, int g,
+ uint logn, uint depth, int out_ntt)
+ {
+ int n, u;
+ int ft, gt;
+ uint p0;
+ uint d;
+ FalconSmallPrime[] primes;
+
+ n = (int)1 << (int)logn;
+ ft = data;
+ gt = ft + n;
+ primes = this.PRIMES;
+ p0 = primes[0].p;
+ for (u = 0; u < n; u ++) {
+ datasrc[ft + u] = modp_set(fsrc[f+u], p0);
+ datasrc[gt + u] = modp_set(gsrc[g+u], p0);
+ }
+
+ if (depth == 0 && out_ntt != 0) {
+ int gm, igm;
+ uint p, p0i;
+
+ p = primes[0].p;
+ p0i = modp_ninv31(p);
+ gm = gt + n;
+ igm = gm + n;
+ modp_mkgm2(datasrc, gm, datasrc, igm, logn, primes[0].g, p, p0i);
+ modp_NTT2(datasrc, ft, datasrc, gm, logn, p, p0i);
+ modp_NTT2(datasrc, gt, datasrc, gm, logn, p, p0i);
+ return;
+ }
+
+ for (d = 0; d < depth; d ++) {
+ make_fg_step(datasrc, data, logn - d, d,
+ d != 0 ? 1 : 0, ((d + 1) < depth || out_ntt != 0)? 1 : 0);
+ }
+ }
+
+ /*
+ * Solving the NTRU equation, deepest level: compute the resultants of
+ * f and g with X^N+1, and use binary GCD. The F and G values are
+ * returned in tmp[].
+ *
+ * Returned value: 1 on success, 0 on error.
+ */
+ int solve_NTRU_deepest(uint logn_top,
+ sbyte[] fsrc, int f, sbyte[] gsrc, int g, uint[] tmpsrc, int tmp)
+ {
+ int len;
+ int Fp, Gp;
+ int fp, gp;
+ int t1;
+ uint q;
+ FalconSmallPrime[] primes;
+
+ len = MAX_BL_SMALL[logn_top];
+ primes = this.PRIMES;
+
+ Fp = tmp;
+ Gp = Fp + len;
+ fp = Gp + len;
+ gp = fp + len;
+ t1 = gp + len;
+
+ make_fg(tmpsrc, fp, fsrc, f, gsrc, g, logn_top, logn_top, 0);
+
+ /*
+ * We use the CRT to rebuild the resultants as big integers.
+ * There are two such big integers. The resultants are always
+ * nonnegative.
+ */
+ zint_rebuild_CRT(tmpsrc, fp, len, len, 2, primes, 0, tmpsrc, t1);
+
+ /*
+ * Apply the binary GCD. The zint_bezout() function works only
+ * if both inputs are odd.
+ *
+ * We can test on the result and return 0 because that would
+ * imply failure of the NTRU solving equation, and the (f,g)
+ * values will be abandoned in that case.
+ */
+ if (zint_bezout(tmpsrc, Gp, tmpsrc, Fp, tmpsrc, fp, tmpsrc, gp, len, tmpsrc, t1) == 0) {
+ return 0;
+ }
+
+ /*
+ * Multiply the two values by the target value q. Values must
+ * fit in the destination arrays.
+ * We can again test on the returned words: a non-zero output
+ * of zint_mul_small() means that we exceeded our array
+ * capacity, and that implies failure and rejection of (f,g).
+ */
+ q = 12289;
+ if (zint_mul_small(tmpsrc, Fp, len, q) != 0
+ || zint_mul_small(tmpsrc, Gp, len, q) != 0)
+ {
+ return 0;
+ }
+
+ return 1;
+ }
+
+ /*
+ * Solving the NTRU equation, intermediate level. Upon entry, the F and G
+ * from the previous level should be in the tmp[] array.
+ * This function MAY be invoked for the top-level (in which case depth = 0).
+ *
+ * Returned value: 1 on success, 0 on error.
+ */
+ int solve_NTRU_intermediate(uint logn_top,
+ sbyte[] fsrc, int f, sbyte[] gsrc, int g, uint depth, uint[] tmpsrc, int tmp)
+ {
+ /*
+ * In this function, 'logn' is the log2 of the degree for
+ * this step. If N = 2^logn, then:
+ * - the F and G values already in fk->tmp (from the deeper
+ * levels) have degree N/2;
+ * - this function should return F and G of degree N.
+ */
+ uint logn;
+ int n, hn, slen, dlen, llen, rlen, FGlen, u;
+ int Fd, Gd;
+ int Ft, Gt;
+ int ft, gt, t1;
+ FalconFPR[] rt1; FalconFPR[] rt2;
+ FalconFPR[] rt3; FalconFPR[] rt4; FalconFPR[] rt5;
+ int scale_fg, minbl_fg, maxbl_fg, maxbl_FG, scale_k;
+ int x, y;
+ int[] k;
+ FalconSmallPrime[] primes;
+
+ logn = logn_top - depth;
+ n = (int)1 << (int)logn;
+ hn = n >> 1;
+
+ /*
+ * slen = size for our input f and g; also size of the reduced
+ * F and G we return (degree N)
+ *
+ * dlen = size of the F and G obtained from the deeper level
+ * (degree N/2 or N/3)
+ *
+ * llen = size for intermediary F and G before reduction (degree N)
+ *
+ * We build our non-reduced F and G as two independent halves each,
+ * of degree N/2 (F = F0 + X*F1, G = G0 + X*G1).
+ */
+ slen = MAX_BL_SMALL[depth];
+ dlen = MAX_BL_SMALL[depth + 1];
+ llen = MAX_BL_LARGE[depth];
+ primes = this.PRIMES;
+
+ /*
+ * Fd and Gd are the F and G from the deeper level.
+ */
+ Fd = tmp;
+ Gd = Fd + dlen * hn;
+
+ /*
+ * Compute the input f and g for this level. Note that we get f
+ * and g in RNS + NTT representation.
+ */
+ ft = Gd + dlen * hn;
+ make_fg(tmpsrc, ft, fsrc, f, gsrc, g, logn_top, depth, 1);
+
+ /*
+ * Move the newly computed f and g to make room for our candidate
+ * F and G (unreduced).
+ */
+ Ft = tmp;
+ Gt = Ft + n * llen;
+ t1 = Gt + n * llen;
+ // memmove(t1, ft, 2 * n * slen * sizeof *ft);
+ Array.Copy(tmpsrc, ft, tmpsrc, t1, 2 * n * slen);
+ ft = t1;
+ gt = ft + slen * n;
+ t1 = gt + slen * n;
+
+ /*
+ * Move Fd and Gd _after_ f and g.
+ */
+ // memmove(t1, Fd, 2 * hn * dlen * sizeof *Fd);
+ Array.Copy(tmpsrc, Fd, tmpsrc, t1, 2 * hn * dlen);
+ Fd = t1;
+ Gd = Fd + hn * dlen;
+
+ /*
+ * We reduce Fd and Gd modulo all the small primes we will need,
+ * and store the values in Ft and Gt (only n/2 values in each).
+ */
+ for (u = 0; u < llen; u ++) {
+ uint p, p0i, R2, Rx;
+ int v;
+ int xs, ys, xd, yd;
+
+ p = primes[u].p;
+ p0i = modp_ninv31(p);
+ R2 = modp_R2(p, p0i);
+ Rx = modp_Rx((uint)dlen, p, p0i, R2);
+ for (v = 0, xs = Fd, ys = Gd, xd = Ft + u, yd = Gt + u;
+ v < hn;
+ v ++, xs += dlen, ys += dlen, xd += llen, yd += llen)
+ {
+ tmpsrc[xd] = zint_mod_small_signed(tmpsrc, xs, dlen, p, p0i, R2, Rx);
+ tmpsrc[yd] = zint_mod_small_signed(tmpsrc, ys, dlen, p, p0i, R2, Rx);
+ }
+ }
+
+ /*
+ * We do not need Fd and Gd after that point.
+ */
+
+ /*
+ * Compute our F and G modulo sufficiently many small primes.
+ */
+ for (u = 0; u < llen; u ++) {
+ uint p, p0i, R2;
+ int gm, igm;
+ int fx, gx;
+ int Fp, Gp;
+ int v;
+
+ /*
+ * All computations are done modulo p.
+ */
+ p = primes[u].p;
+ p0i = modp_ninv31(p);
+ R2 = modp_R2(p, p0i);
+
+ /*
+ * If we processed slen words, then f and g have been
+ * de-NTTized, and are in RNS; we can rebuild them.
+ */
+ if (u == slen) {
+ zint_rebuild_CRT(tmpsrc, ft, slen, slen, n, primes, 1, tmpsrc, t1);
+ zint_rebuild_CRT(tmpsrc, gt, slen, slen, n, primes, 1, tmpsrc, t1);
+ }
+
+ gm = t1;
+ igm = gm + n;
+ fx = igm + n;
+ gx = fx + n;
+
+ modp_mkgm2(tmpsrc, gm, tmpsrc, igm, logn, primes[u].g, p, p0i);
+
+ if (u < slen) {
+ for (v = 0, x = ft + u, y = gt + u;
+ v < n; v ++, x += slen, y += slen)
+ {
+ tmpsrc[fx+v] = tmpsrc[x];
+ tmpsrc[gx+v] = tmpsrc[y];
+ }
+ modp_iNTT2_ext(tmpsrc, ft + u, slen, tmpsrc, igm, logn, p, p0i);
+ modp_iNTT2_ext(tmpsrc, gt + u, slen, tmpsrc, igm, logn, p, p0i);
+ } else {
+ uint Rx;
+
+ Rx = modp_Rx((uint)slen, p, p0i, R2);
+ for (v = 0, x = ft, y = gt;
+ v < n; v ++, x += slen, y += slen)
+ {
+ tmpsrc[fx+v] = zint_mod_small_signed(tmpsrc, x, slen,
+ p, p0i, R2, Rx);
+ tmpsrc[gx+v] = zint_mod_small_signed(tmpsrc, y, slen,
+ p, p0i, R2, Rx);
+ }
+ modp_NTT2(tmpsrc, fx, tmpsrc, gm, logn, p, p0i);
+ modp_NTT2(tmpsrc, gx, tmpsrc, gm, logn, p, p0i);
+ }
+
+ /*
+ * Get F' and G' modulo p and in NTT representation
+ * (they have degree n/2). These values were computed in
+ * a previous step, and stored in Ft and Gt.
+ */
+ Fp = gx + n;
+ Gp = Fp + hn;
+ for (v = 0, x = Ft + u, y = Gt + u;
+ v < hn; v ++, x += llen, y += llen)
+ {
+ tmpsrc[Fp+v] = tmpsrc[x];
+ tmpsrc[Gp+v] = tmpsrc[y];
+ }
+ modp_NTT2(tmpsrc, Fp, tmpsrc, gm, logn - 1, p, p0i);
+ modp_NTT2(tmpsrc, Gp, tmpsrc, gm, logn - 1, p, p0i);
+
+ /*
+ * Compute our F and G modulo p.
+ *
+ * General case:
+ *
+ * we divide degree by d = 2 or 3
+ * f'(x^d) = N(f)(x^d) = f * adj(f)
+ * g'(x^d) = N(g)(x^d) = g * adj(g)
+ * f'*G' - g'*F' = q
+ * F = F'(x^d) * adj(g)
+ * G = G'(x^d) * adj(f)
+ *
+ * We compute things in the NTT. We group roots of phi
+ * such that all roots x in a group share the same x^d.
+ * If the roots in a group are x_1, x_2... x_d, then:
+ *
+ * N(f)(x_1^d) = f(x_1)*f(x_2)*...*f(x_d)
+ *
+ * Thus, we have:
+ *
+ * G(x_1) = f(x_2)*f(x_3)*...*f(x_d)*G'(x_1^d)
+ * G(x_2) = f(x_1)*f(x_3)*...*f(x_d)*G'(x_1^d)
+ * ...
+ * G(x_d) = f(x_1)*f(x_2)*...*f(x_{d-1})*G'(x_1^d)
+ *
+ * In all cases, we can thus compute F and G in NTT
+ * representation by a few simple multiplications.
+ * Moreover, in our chosen NTT representation, roots
+ * from the same group are consecutive in RAM.
+ */
+ for (v = 0, x = Ft + u, y = Gt + u; v < hn;
+ v ++, x += (llen << 1), y += (llen << 1))
+ {
+ uint ftA, ftB, gtA, gtB;
+ uint mFp, mGp;
+
+ ftA = tmpsrc[fx + (v << 1) + 0];
+ ftB = tmpsrc[fx + (v << 1) + 1];
+ gtA = tmpsrc[gx + (v << 1) + 0];
+ gtB = tmpsrc[gx + (v << 1) + 1];
+ mFp = modp_montymul(tmpsrc[Fp+v], R2, p, p0i);
+ mGp = modp_montymul(tmpsrc[Gp+v], R2, p, p0i);
+ tmpsrc[x+0] = modp_montymul(gtB, mFp, p, p0i);
+ tmpsrc[x+llen] = modp_montymul(gtA, mFp, p, p0i);
+ tmpsrc[y+0] = modp_montymul(ftB, mGp, p, p0i);
+ tmpsrc[y+llen] = modp_montymul(ftA, mGp, p, p0i);
+ }
+ modp_iNTT2_ext(tmpsrc, Ft + u, llen, tmpsrc, igm, logn, p, p0i);
+ modp_iNTT2_ext(tmpsrc, Gt + u, llen, tmpsrc, igm, logn, p, p0i);
+ }
+
+ /*
+ * Rebuild F and G with the CRT.
+ */
+ zint_rebuild_CRT(tmpsrc, Ft, llen, llen, n, primes, 1, tmpsrc, t1);
+ zint_rebuild_CRT(tmpsrc, Gt, llen, llen, n, primes, 1, tmpsrc, t1);
+
+ /*
+ * At that point, Ft, Gt, ft and gt are consecutive in RAM (in that
+ * order).
+ */
+
+ /*
+ * Apply Babai reduction to bring back F and G to size slen.
+ *
+ * We use the FFT to compute successive approximations of the
+ * reduction coefficient. We first isolate the top bits of
+ * the coefficients of f and g, and convert them to floating
+ * point; with the FFT, we compute adj(f), adj(g), and
+ * 1/(f*adj(f)+g*adj(g)).
+ *
+ * Then, we repeatedly apply the following:
+ *
+ * - Get the top bits of the coefficients of F and G into
+ * floating point, and use the FFT to compute:
+ * (F*adj(f)+G*adj(g))/(f*adj(f)+g*adj(g))
+ *
+ * - Convert back that value into normal representation, and
+ * round it to the nearest integers, yielding a polynomial k.
+ * Proper scaling is applied to f, g, F and G so that the
+ * coefficients fit on 32 bits (signed).
+ *
+ * - Subtract k*f from F and k*g from G.
+ *
+ * Under normal conditions, this process reduces the size of F
+ * and G by some bits at each iteration. For constant-time
+ * operation, we do not want to measure the actual length of
+ * F and G; instead, we do the following:
+ *
+ * - f and g are converted to floating-point, with some scaling
+ * if necessary to keep values in the representable range.
+ *
+ * - For each iteration, we _assume_ a maximum size for F and G,
+ * and use the values at that size. If we overreach, then
+ * we get zeros, which is harmless: the resulting coefficients
+ * of k will be 0 and the value won't be reduced.
+ *
+ * - We conservatively assume that F and G will be reduced by
+ * at least 25 bits at each iteration.
+ *
+ * Even when reaching the bottom of the reduction, reduction
+ * coefficient will remain low. If it goes out-of-range, then
+ * something wrong occurred and the whole NTRU solving fails.
+ */
+
+ /*
+ * Memory layout:
+ * - We need to compute and keep adj(f), adj(g), and
+ * 1/(f*adj(f)+g*adj(g)) (sizes N, N and N/2 fp numbers,
+ * respectively).
+ * - At each iteration we need two extra fp buffer (N fp values),
+ * and produce a k (N 32-bit words). k will be shared with one
+ * of the fp buffers.
+ * - To compute k*f and k*g efficiently (with the NTT), we need
+ * some extra room; we reuse the space of the temporary buffers.
+ *
+ * Arrays of 'fpr' are obtained from the temporary array itself.
+ * We ensure that the base is at a properly aligned offset (the
+ * source array tmp[] is supposed to be already aligned).
+ */
+
+ // rt3 = align_fpr(tmp, t1);
+ rt1 = new FalconFPR[n];
+ rt2 = new FalconFPR[n];
+ rt3 = new FalconFPR[n];
+ rt4 = new FalconFPR[n];
+ rt5 = new FalconFPR[n >> 1];
+ k = new int[n];
+ /*
+ * Get f and g into rt3 and rt4 as floating-point approximations.
+ *
+ * We need to "scale down" the floating-point representation of
+ * coefficients when they are too big. We want to keep the value
+ * below 2^310 or so. Thus, when values are larger than 10 words,
+ * we consider only the top 10 words. Array lengths have been
+ * computed so that average maximum length will fall in the
+ * middle or the upper half of these top 10 words.
+ */
+ rlen = (slen > 10) ? 10 : slen;
+ poly_big_to_fp(rt3, 0, tmpsrc, ft + slen - rlen, rlen, slen, logn);
+ poly_big_to_fp(rt4, 0, tmpsrc, gt + slen - rlen, rlen, slen, logn);
+
+ /*
+ * Values in rt3 and rt4 are downscaled by 2^(scale_fg).
+ */
+ scale_fg = 31 * (int)(slen - rlen);
+
+ /*
+ * Estimated boundaries for the maximum size (in bits) of the
+ * coefficients of (f,g). We use the measured average, and
+ * allow for a deviation of at most six times the standard
+ * deviation.
+ */
+ minbl_fg = BITLENGTH_avg[depth] - 6 * BITLENGTH_std[depth];
+ maxbl_fg = BITLENGTH_avg[depth] + 6 * BITLENGTH_std[depth];
+
+ /*
+ * Compute 1/(f*adj(f)+g*adj(g)) in rt5. We also keep adj(f)
+ * and adj(g) in rt3 and rt4, respectively.
+ */
+ this.ffte.FFT(rt3, 0, logn);
+ this.ffte.FFT(rt4, 0, logn);
+ this.ffte.poly_invnorm2_fft(rt5, 0, rt3, 0, rt4, 0, logn);
+ this.ffte.poly_adj_fft(rt3, 0, logn);
+ this.ffte.poly_adj_fft(rt4, 0, logn);
+
+ /*
+ * Reduce F and G repeatedly.
+ *
+ * The expected maximum bit length of coefficients of F and G
+ * is kept in maxbl_FG, with the corresponding word length in
+ * FGlen.
+ */
+ FGlen = llen;
+ maxbl_FG = 31 * (int)llen;
+
+ /*
+ * Each reduction operation computes the reduction polynomial
+ * "k". We need that polynomial to have coefficients that fit
+ * on 32-bit signed integers, with some scaling; thus, we use
+ * a descending sequence of scaling values, down to zero.
+ *
+ * The size of the coefficients of k is (roughly) the difference
+ * between the size of the coefficients of (F,G) and the size
+ * of the coefficients of (f,g). Thus, the maximum size of the
+ * coefficients of k is, at the start, maxbl_FG - minbl_fg;
+ * this is our starting scale value for k.
+ *
+ * We need to estimate the size of (F,G) during the execution of
+ * the algorithm; we are allowed some overestimation but not too
+ * much (poly_big_to_fp() uses a 310-bit window). Generally
+ * speaking, after applying a reduction with k scaled to
+ * scale_k, the size of (F,G) will be size(f,g) + scale_k + dd,
+ * where 'dd' is a few bits to account for the fact that the
+ * reduction is never perfect (intuitively, dd is on the order
+ * of sqrt(N), so at most 5 bits; we here allow for 10 extra
+ * bits).
+ *
+ * The size of (f,g) is not known exactly, but maxbl_fg is an
+ * upper bound.
+ */
+ scale_k = maxbl_FG - minbl_fg;
+
+ for (;;) {
+ int scale_FG, dc, new_maxbl_FG;
+ uint scl, sch;
+ FalconFPR pdc, pt;
+
+ /*
+ * Convert current F and G into floating-point. We apply
+ * scaling if the current length is more than 10 words.
+ */
+ rlen = (FGlen > 10) ? 10 : FGlen;
+ scale_FG = 31 * (int)(FGlen - rlen);
+ poly_big_to_fp(rt1, 0, tmpsrc, Ft + FGlen - rlen, rlen, llen, logn);
+ poly_big_to_fp(rt2, 0, tmpsrc, Gt + FGlen - rlen, rlen, llen, logn);
+
+ /*
+ * Compute (F*adj(f)+G*adj(g))/(f*adj(f)+g*adj(g)) in rt2.
+ */
+ this.ffte.FFT(rt1, 0, logn);
+ this.ffte.FFT(rt2, 0, logn);
+ this.ffte.poly_mul_fft(rt1, 0, rt3, 0, logn);
+ this.ffte.poly_mul_fft(rt2, 0, rt4, 0, logn);
+ this.ffte.poly_add(rt2, 0, rt1, 0, logn);
+ this.ffte.poly_mul_autoadj_fft(rt2, 0, rt5, 0, logn);
+ this.ffte.iFFT(rt2, 0, logn);
+
+ /*
+ * (f,g) are scaled by 'scale_fg', meaning that the
+ * numbers in rt3/rt4 should be multiplied by 2^(scale_fg)
+ * to have their true mathematical value.
+ *
+ * (F,G) are similarly scaled by 'scale_FG'. Therefore,
+ * the value we computed in rt2 is scaled by
+ * 'scale_FG-scale_fg'.
+ *
+ * We want that value to be scaled by 'scale_k', hence we
+ * apply a corrective scaling. After scaling, the values
+ * should fit in -2^31-1..+2^31-1.
+ */
+ dc = scale_k - scale_FG + scale_fg;
+
+ /*
+ * We will need to multiply values by 2^(-dc). The value
+ * 'dc' is not secret, so we can compute 2^(-dc) with a
+ * non-constant-time process.
+ * (We could use ldexp(), but we prefer to avoid any
+ * dependency on libm. When using FP emulation, we could
+ * use our this.fpre.fpr_ldexp(), which is constant-time.)
+ */
+ if (dc < 0) {
+ dc = -dc;
+ pt = this.fpre.fpr_two;
+ } else {
+ pt = this.fpre.fpr_onehalf;
+ }
+ pdc = this.fpre.fpr_one;
+ while (dc != 0) {
+ if ((dc & 1) != 0) {
+ pdc = this.fpre.fpr_mul(pdc, pt);
+ }
+ dc >>= 1;
+ pt = this.fpre.fpr_sqr(pt);
+ }
+
+ for (u = 0; u < n; u ++) {
+ FalconFPR xv;
+
+ xv = this.fpre.fpr_mul(rt2[u], pdc);
+
+ /*
+ * Sometimes the values can be out-of-bounds if
+ * the algorithm fails; we must not call
+ * this.fpre.fpr_rint() (and cast to int) if the value
+ * is not in-bounds. Note that the test does not
+ * break constant-time discipline, since any
+ * failure here implies that we discard the current
+ * secret key (f,g).
+ */
+ if (!this.fpre.fpr_lt(this.fpre.fpr_mtwo31m1, xv)
+ || !this.fpre.fpr_lt(xv, this.fpre.fpr_ptwo31m1))
+ {
+ return 0;
+ }
+ k[u] = (int)this.fpre.fpr_rint(xv);
+ }
+
+ /*
+ * Values in k[] are integers. They really are scaled
+ * down by maxbl_FG - minbl_fg bits.
+ *
+ * If we are at low depth, then we use the NTT to
+ * compute k*f and k*g.
+ */
+ sch = (uint)(scale_k / 31);
+ scl = (uint)(scale_k % 31);
+ if (depth <= DEPTH_INT_FG) {
+ poly_sub_scaled_ntt(tmpsrc, Ft, FGlen, llen, tmpsrc, ft, slen, slen,
+ k, 0, sch, scl, logn, tmpsrc, t1);
+ poly_sub_scaled_ntt(tmpsrc, Gt, FGlen, llen, tmpsrc, gt, slen, slen,
+ k, 0, sch, scl, logn, tmpsrc, t1);
+ } else {
+ poly_sub_scaled(tmpsrc, Ft, FGlen, llen, tmpsrc, ft, slen, slen,
+ k, 0, sch, scl, logn);
+ poly_sub_scaled(tmpsrc, Gt, FGlen, llen, tmpsrc, gt, slen, slen,
+ k, 0, sch, scl, logn);
+ }
+
+ /*
+ * We compute the new maximum size of (F,G), assuming that
+ * (f,g) has _maximal_ length (i.e. that reduction is
+ * "late" instead of "early". We also adjust FGlen
+ * accordingly.
+ */
+ new_maxbl_FG = scale_k + maxbl_fg + 10;
+ if (new_maxbl_FG < maxbl_FG) {
+ maxbl_FG = new_maxbl_FG;
+ if ((int)FGlen * 31 >= maxbl_FG + 31) {
+ FGlen --;
+ }
+ }
+
+ /*
+ * We suppose that scaling down achieves a reduction by
+ * at least 25 bits per iteration. We stop when we have
+ * done the loop with an unscaled k.
+ */
+ if (scale_k <= 0) {
+ break;
+ }
+ scale_k -= 25;
+ if (scale_k < 0) {
+ scale_k = 0;
+ }
+ }
+
+ /*
+ * If (F,G) length was lowered below 'slen', then we must take
+ * care to re-extend the sign.
+ */
+ if (FGlen < slen) {
+ for (u = 0; u < n; u ++, Ft += llen, Gt += llen) {
+ int v;
+ uint sw;
+
+ sw = ((uint)-(tmpsrc[Ft+FGlen - 1] >> 30) >> 1);
+ for (v = FGlen; v < slen; v ++) {
+ tmpsrc[Ft+v] = sw;
+ }
+ sw = ((uint)-(tmpsrc[Gt+FGlen - 1] >> 30) >> 1);
+ for (v = FGlen; v < slen; v ++) {
+ tmpsrc[Gt+v] = sw;
+ }
+ }
+ }
+
+ /*
+ * Compress encoding of all values to 'slen' words (this is the
+ * expected output format).
+ */
+ for (u = 0, x = tmp, y = tmp;
+ u < (n << 1); u ++, x += slen, y += llen)
+ {
+ // memmove(x, y, slen * sizeof *y);
+ Array.Copy(tmpsrc, y, tmpsrc, x, slen);
+ }
+ return 1;
+ }
+
+ /*
+ * Solving the NTRU equation, binary case, depth = 1. Upon entry, the
+ * F and G from the previous level should be in the tmp[] array.
+ *
+ * Returned value: 1 on success, 0 on error.
+ */
+ int solve_NTRU_binary_depth1(uint logn_top,
+ sbyte[] fsrc, int f, sbyte[] gsrc, int g, uint[] tmpsrc, int tmp)
+ {
+ /*
+ * The first half of this function is a copy of the corresponding
+ * part in solve_NTRU_intermediate(), for the reconstruction of
+ * the unreduced F and G. The second half (Babai reduction) is
+ * done differently, because the unreduced F and G fit in 53 bits
+ * of precision, allowing a much simpler process with lower RAM
+ * usage.
+ */
+ uint depth, logn;
+ int n_top, n, hn, slen, dlen, llen, u;
+ int Fd, Gd, Ft, Gt;
+ int ft, gt, t1;
+ FalconFPR[] rt1; FalconFPR[] rt2; FalconFPR[] rt3;
+ FalconFPR[] rt4; FalconFPR[] rt5; FalconFPR[] rt6;
+ int x, y;
+
+ depth = 1;
+ n_top = (int)1 << (int)logn_top;
+ logn = logn_top - depth;
+ n = (int)1 << (int)logn;
+ hn = n >> 1;
+
+ /*
+ * Equations are:
+ *
+ * f' = f0^2 - X^2*f1^2
+ * g' = g0^2 - X^2*g1^2
+ * F' and G' are a solution to f'G' - g'F' = q (from deeper levels)
+ * F = F'*(g0 - X*g1)
+ * G = G'*(f0 - X*f1)
+ *
+ * f0, f1, g0, g1, f', g', F' and G' are all "compressed" to
+ * degree N/2 (their odd-indexed coefficients are all zero).
+ */
+
+ /*
+ * slen = size for our input f and g; also size of the reduced
+ * F and G we return (degree N)
+ *
+ * dlen = size of the F and G obtained from the deeper level
+ * (degree N/2)
+ *
+ * llen = size for intermediary F and G before reduction (degree N)
+ *
+ * We build our non-reduced F and G as two independent halves each,
+ * of degree N/2 (F = F0 + X*F1, G = G0 + X*G1).
+ */
+ slen = MAX_BL_SMALL[depth];
+ dlen = MAX_BL_SMALL[depth + 1];
+ llen = MAX_BL_LARGE[depth];
+
+ /*
+ * Fd and Gd are the F and G from the deeper level. Ft and Gt
+ * are the destination arrays for the unreduced F and G.
+ */
+ Fd = tmp;
+ Gd = Fd + dlen * hn;
+ Ft = Gd + dlen * hn;
+ Gt = Ft + llen * n;
+
+ /*
+ * We reduce Fd and Gd modulo all the small primes we will need,
+ * and store the values in Ft and Gt.
+ */
+ for (u = 0; u < llen; u ++) {
+ uint p, p0i, R2, Rx;
+ int v;
+ int xs, ys;
+ int xd, yd;
+
+ p = this.PRIMES[u].p;
+ p0i = modp_ninv31(p);
+ R2 = modp_R2(p, p0i);
+ Rx = modp_Rx((uint)dlen, p, p0i, R2);
+ for (v = 0, xs = Fd, ys = Gd, xd = Ft + u, yd = Gt + u;
+ v < hn;
+ v ++, xs += dlen, ys += dlen, xd += llen, yd += llen)
+ {
+ tmpsrc[xd] = zint_mod_small_signed(tmpsrc, xs, dlen, p, p0i, R2, Rx);
+ tmpsrc[yd] = zint_mod_small_signed(tmpsrc, ys, dlen, p, p0i, R2, Rx);
+ }
+ }
+
+ /*
+ * Now Fd and Gd are not needed anymore; we can squeeze them out.
+ */
+ // memmove(tmp, Ft, llen * n * sizeof(uint));
+ Array.Copy(tmpsrc, Ft, tmpsrc, tmp, llen * n);
+ Ft = tmp;
+ // memmove(Ft + llen * n, Gt, llen * n * sizeof(uint));
+ Array.Copy(tmpsrc, Gt, tmpsrc, Ft + llen * n, llen * n);
+ Gt = Ft + llen * n;
+ ft = Gt + llen * n;
+ gt = ft + slen * n;
+
+ t1 = gt + slen * n;
+
+ /*
+ * Compute our F and G modulo sufficiently many small primes.
+ */
+ for (u = 0; u < llen; u ++) {
+ uint p, p0i, R2;
+ int gm, igm;
+ int fx, gx;
+ int Fp, Gp;
+ uint e;
+ int v;
+
+ /*
+ * All computations are done modulo p.
+ */
+ p = this.PRIMES[u].p;
+ p0i = modp_ninv31(p);
+ R2 = modp_R2(p, p0i);
+
+ /*
+ * We recompute things from the source f and g, of full
+ * degree. However, we will need only the n first elements
+ * of the inverse NTT table (igm); the call to modp_mkgm()
+ * below will fill n_top elements in igm[] (thus overflowing
+ * into fx[]) but later code will overwrite these extra
+ * elements.
+ */
+ gm = t1;
+ igm = gm + n_top;
+ fx = igm + n;
+ gx = fx + n_top;
+ modp_mkgm2(tmpsrc, gm, tmpsrc, igm, logn_top, this.PRIMES[u].g, p, p0i);
+
+ /*
+ * Set ft and gt to f and g modulo p, respectively.
+ */
+ for (v = 0; v < n_top; v ++) {
+ tmpsrc[fx+v] = modp_set(fsrc[f+v], p);
+ tmpsrc[gx+v] = modp_set(gsrc[g+v], p);
+ }
+
+ /*
+ * Convert to NTT and compute our f and g.
+ */
+ modp_NTT2(tmpsrc, fx, tmpsrc, gm, logn_top, p, p0i);
+ modp_NTT2(tmpsrc, gx, tmpsrc, gm, logn_top, p, p0i);
+ for (e = logn_top; e > logn; e --) {
+ modp_poly_rec_res(tmpsrc, fx, e, p, p0i, R2);
+ modp_poly_rec_res(tmpsrc, gx, e, p, p0i, R2);
+ }
+
+ /*
+ * From that point onward, we only need tables for
+ * degree n, so we can save some space.
+ */
+ if (depth > 0) { /* always true */
+ // memmove(gm + n, igm, n * sizeof *igm);
+ Array.Copy(tmpsrc, igm, tmpsrc, gm + n, n);
+ igm = gm + n;
+ // memmove(igm + n, fx, n * sizeof *ft);
+ Array.Copy(tmpsrc, fx, tmpsrc, igm + n, n);
+ fx = igm + n;
+ // memmove(fx + n, gx, n * sizeof *gt);
+ Array.Copy(tmpsrc, gx, tmpsrc, fx + n, n);
+ gx = fx + n;
+ }
+
+ /*
+ * Get F' and G' modulo p and in NTT representation
+ * (they have degree n/2). These values were computed
+ * in a previous step, and stored in Ft and Gt.
+ */
+ Fp = gx + n;
+ Gp = Fp + hn;
+ for (v = 0, x = Ft + u, y = Gt + u;
+ v < hn; v ++, x += llen, y += llen)
+ {
+ tmpsrc[Fp+v] = tmpsrc[x];
+ tmpsrc[Gp+v] = tmpsrc[y];
+ }
+ modp_NTT2(tmpsrc, Fp, tmpsrc, gm, logn - 1, p, p0i);
+ modp_NTT2(tmpsrc, Gp, tmpsrc, gm, logn - 1, p, p0i);
+
+ /*
+ * Compute our F and G modulo p.
+ *
+ * Equations are:
+ *
+ * f'(x^2) = N(f)(x^2) = f * adj(f)
+ * g'(x^2) = N(g)(x^2) = g * adj(g)
+ *
+ * f'*G' - g'*F' = q
+ *
+ * F = F'(x^2) * adj(g)
+ * G = G'(x^2) * adj(f)
+ *
+ * The NTT representation of f is f(w) for all w which
+ * are roots of phi. In the binary case, as well as in
+ * the ternary case for all depth except the deepest,
+ * these roots can be grouped in pairs (w,-w), and we
+ * then have:
+ *
+ * f(w) = adj(f)(-w)
+ * f(-w) = adj(f)(w)
+ *
+ * and w^2 is then a root for phi at the half-degree.
+ *
+ * At the deepest level in the ternary case, this still
+ * holds, in the following sense: the roots of x^2-x+1
+ * are (w,-w^2) (for w^3 = -1, and w != -1), and we
+ * have:
+ *
+ * f(w) = adj(f)(-w^2)
+ * f(-w^2) = adj(f)(w)
+ *
+ * In all case, we can thus compute F and G in NTT
+ * representation by a few simple multiplications.
+ * Moreover, the two roots for each pair are consecutive
+ * in our bit-reversal encoding.
+ */
+ for (v = 0, x = Ft + u, y = Gt + u;
+ v < hn; v ++, x += (llen << 1), y += (llen << 1))
+ {
+ uint ftA, ftB, gtA, gtB;
+ uint mFp, mGp;
+
+ ftA = tmpsrc[fx + (v << 1) + 0];
+ ftB = tmpsrc[fx + (v << 1) + 1];
+ gtA = tmpsrc[gx + (v << 1) + 0];
+ gtB = tmpsrc[gx + (v << 1) + 1];
+ mFp = modp_montymul(tmpsrc[Fp+v], R2, p, p0i);
+ mGp = modp_montymul(tmpsrc[Gp+v], R2, p, p0i);
+ tmpsrc[x+0] = modp_montymul(gtB, mFp, p, p0i);
+ tmpsrc[x+llen] = modp_montymul(gtA, mFp, p, p0i);
+ tmpsrc[y+0] = modp_montymul(ftB, mGp, p, p0i);
+ tmpsrc[y+llen] = modp_montymul(ftA, mGp, p, p0i);
+ }
+ modp_iNTT2_ext(tmpsrc, Ft + u, llen, tmpsrc, igm, logn, p, p0i);
+ modp_iNTT2_ext(tmpsrc, Gt + u, llen, tmpsrc, igm, logn, p, p0i);
+
+ /*
+ * Also save ft and gt (only up to size slen).
+ */
+ if (u < slen) {
+ modp_iNTT2(tmpsrc, fx, tmpsrc, igm, logn, p, p0i);
+ modp_iNTT2(tmpsrc, gx, tmpsrc, igm, logn, p, p0i);
+ for (v = 0, x = ft + u, y = gt + u;
+ v < n; v ++, x += slen, y += slen)
+ {
+ tmpsrc[x] = tmpsrc[fx+v];
+ tmpsrc[y] = tmpsrc[gx+v];
+ }
+ }
+ }
+
+ /*
+ * Rebuild f, g, F and G with the CRT. Note that the elements of F
+ * and G are consecutive, and thus can be rebuilt in a single
+ * loop; similarly, the elements of f and g are consecutive.
+ */
+ zint_rebuild_CRT(tmpsrc, Ft, llen, llen, n << 1, this.PRIMES, 1, tmpsrc, t1);
+ zint_rebuild_CRT(tmpsrc, ft, slen, slen, n << 1, this.PRIMES, 1, tmpsrc, t1);
+
+ /*
+ * Here starts the Babai reduction, specialized for depth = 1.
+ *
+ * Candidates F and G (from Ft and Gt), and base f and g (ft and gt),
+ * are converted to floating point. There is no scaling, and a
+ * single pass is sufficient.
+ */
+
+ /*
+ * Convert F and G into floating point (rt1 and rt2).
+ */
+ rt1 = new FalconFPR[n];
+ rt2 = new FalconFPR[n];
+ poly_big_to_fp(rt1, 0, tmpsrc, Ft, llen, llen, logn);
+ poly_big_to_fp(rt2, 0, tmpsrc, Gt, llen, llen, logn);
+
+ /*
+ * Integer representation of F and G is no longer needed, we
+ * can remove it.
+ */
+ // memmove(tmp, ft, 2 * slen * n * sizeof *ft);
+ Array.Copy(tmpsrc, ft, tmpsrc, tmp, 2 * slen * n);
+ ft = tmp;
+ gt = ft + slen * n;
+ rt3 = new FalconFPR[n];
+ rt4 = new FalconFPR[n];
+
+ /*
+ * Convert f and g into floating point (rt3 and rt4).
+ */
+ poly_big_to_fp(rt3, 0, tmpsrc, ft, slen, slen, logn);
+ poly_big_to_fp(rt4, 0, tmpsrc, gt, slen, slen, logn);
+
+ /*
+ * We now have:
+ * rt1 = F
+ * rt2 = G
+ * rt3 = f
+ * rt4 = g
+ * in that order in RAM. We convert all of them to FFT.
+ */
+ this.ffte.FFT(rt1, 0, logn);
+ this.ffte.FFT(rt2, 0, logn);
+ this.ffte.FFT(rt3, 0, logn);
+ this.ffte.FFT(rt4, 0, logn);
+
+ /*
+ * Compute:
+ * rt5 = F*adj(f) + G*adj(g)
+ * rt6 = 1 / (f*adj(f) + g*adj(g))
+ * (Note that rt6 is half-length.)
+ */
+ rt5 = new FalconFPR[n];
+ rt6 = new FalconFPR[n];
+ this.ffte.poly_add_muladj_fft(rt5, 0, rt1, 0, rt2, 0, rt3, 0, rt4, 0, logn);
+ this.ffte.poly_invnorm2_fft(rt6, 0, rt3, 0, rt4, 0, logn);
+
+ /*
+ * Compute:
+ * rt5 = (F*adj(f)+G*adj(g)) / (f*adj(f)+g*adj(g))
+ */
+ this.ffte.poly_mul_autoadj_fft(rt5, 0, rt6, 0, logn);
+
+ /*
+ * Compute k as the rounded version of rt5. Check that none of
+ * the values is larger than 2^63-1 (in absolute value)
+ * because that would make the this.fpre.fpr_rint() do something undefined;
+ * note that any out-of-bounds value here implies a failure and
+ * (f,g) will be discarded, so we can make a simple test.
+ */
+ this.ffte.iFFT(rt5, 0, logn);
+ for (u = 0; u < n; u ++) {
+ FalconFPR z;
+
+ z = rt5[u];
+ if (!this.fpre.fpr_lt(z, this.fpre.fpr_ptwo63m1) || !this.fpre.fpr_lt(this.fpre.fpr_mtwo63m1, z)) {
+ return 0;
+ }
+ rt5[u] = this.fpre.fpr_of(this.fpre.fpr_rint(z));
+ }
+ this.ffte.FFT(rt5, 0, logn);
+
+ /*
+ * Subtract k*f from F, and k*g from G.
+ */
+ this.ffte.poly_mul_fft(rt3, 0, rt5, 0, logn);
+ this.ffte.poly_mul_fft(rt4, 0, rt5, 0, logn);
+ this.ffte.poly_sub(rt1, 0, rt3, 0, logn);
+ this.ffte.poly_sub(rt2, 0, rt4, 0, logn);
+ this.ffte.iFFT(rt1, 0, logn);
+ this.ffte.iFFT(rt2, 0, logn);
+
+ /*
+ * Convert back F and G to integers, and return.
+ */
+ Ft = tmp;
+ Gt = Ft + n;
+ for (u = 0; u < n; u ++) {
+ tmpsrc[Ft+u] = (uint)this.fpre.fpr_rint(rt1[u]);
+ tmpsrc[Gt+u] = (uint)this.fpre.fpr_rint(rt2[u]);
+ }
+
+ return 1;
+ }
+
+ /*
+ * Solving the NTRU equation, top level. Upon entry, the F and G
+ * from the previous level should be in the tmp[] array.
+ *
+ * Returned value: 1 on success, 0 on error.
+ */
+ int solve_NTRU_binary_depth0(uint logn,
+ sbyte[] fsrc, int f, sbyte[] gsrc, int g, uint[] tmpsrc, int tmp)
+ {
+ int n, hn, u;
+ uint p, p0i, R2;
+ int Fp, Gp;
+ int t1, t2, t3, t4, t5;
+ int gm, igm, ft, gt;
+ int rt2, rt3;
+
+ n = (int)1 << (int)logn;
+ hn = n >> 1;
+
+ /*
+ * Equations are:
+ *
+ * f' = f0^2 - X^2*f1^2
+ * g' = g0^2 - X^2*g1^2
+ * F' and G' are a solution to f'G' - g'F' = q (from deeper levels)
+ * F = F'*(g0 - X*g1)
+ * G = G'*(f0 - X*f1)
+ *
+ * f0, f1, g0, g1, f', g', F' and G' are all "compressed" to
+ * degree N/2 (their odd-indexed coefficients are all zero).
+ *
+ * Everything should fit in 31-bit integers, hence we can just use
+ * the first small prime p = 2147473409.
+ */
+ p = this.PRIMES[0].p;
+ p0i = modp_ninv31(p);
+ R2 = modp_R2(p, p0i);
+
+ Fp = tmp;
+ Gp = Fp + hn;
+ ft = Gp + hn;
+ gt = ft + n;
+ gm = gt + n;
+ igm = gm + n;
+
+ modp_mkgm2(tmpsrc, gm, tmpsrc, igm, logn, PRIMES[0].g, p, p0i);
+
+ /*
+ * Convert F' anf G' in NTT representation.
+ */
+ for (u = 0; u < hn; u ++) {
+ tmpsrc[Fp+u] = modp_set(zint_one_to_plain(tmpsrc, Fp + u), p);
+ tmpsrc[Gp+u] = modp_set(zint_one_to_plain(tmpsrc, Gp + u), p);
+ }
+ modp_NTT2(tmpsrc, Fp, tmpsrc, gm, logn - 1, p, p0i);
+ modp_NTT2(tmpsrc, Gp, tmpsrc, gm, logn - 1, p, p0i);
+
+ /*
+ * Load f and g and convert them to NTT representation.
+ */
+ for (u = 0; u < n; u ++) {
+ tmpsrc[ft+u] = modp_set(fsrc[f+u], p);
+ tmpsrc[gt+u] = modp_set(gsrc[g+u], p);
+ }
+ modp_NTT2(tmpsrc, ft, tmpsrc, gm, logn, p, p0i);
+ modp_NTT2(tmpsrc, gt, tmpsrc, gm, logn, p, p0i);
+
+ /*
+ * Build the unreduced F,G in ft and gt.
+ */
+ for (u = 0; u < n; u += 2) {
+ uint ftA, ftB, gtA, gtB;
+ uint mFp, mGp;
+
+ ftA = tmpsrc[ft + u + 0];
+ ftB = tmpsrc[ft + u + 1];
+ gtA = tmpsrc[gt + u + 0];
+ gtB = tmpsrc[gt + u + 1];
+ mFp = modp_montymul(tmpsrc[Fp + (u >> 1)], R2, p, p0i);
+ mGp = modp_montymul(tmpsrc[Gp + (u >> 1)], R2, p, p0i);
+ tmpsrc[ft + u + 0] = modp_montymul(gtB, mFp, p, p0i);
+ tmpsrc[ft + u + 1] = modp_montymul(gtA, mFp, p, p0i);
+ tmpsrc[gt + u + 0] = modp_montymul(ftB, mGp, p, p0i);
+ tmpsrc[gt + u + 1] = modp_montymul(ftA, mGp, p, p0i);
+ }
+ modp_iNTT2(tmpsrc, ft, tmpsrc, igm, logn, p, p0i);
+ modp_iNTT2(tmpsrc, gt, tmpsrc, igm, logn, p, p0i);
+
+ Gp = Fp + n;
+ t1 = Gp + n;
+ // memmove(Fp, ft, 2 * n * sizeof *ft);
+ Array.Copy(tmpsrc, ft, tmpsrc, Fp, 2 * n);
+
+ /*
+ * We now need to apply the Babai reduction. At that point,
+ * we have F and G in two n-word arrays.
+ *
+ * We can compute F*adj(f)+G*adj(g) and f*adj(f)+g*adj(g)
+ * modulo p, using the NTT. We still move memory around in
+ * order to save RAM.
+ */
+ t2 = t1 + n;
+ t3 = t2 + n;
+ t4 = t3 + n;
+ t5 = t4 + n;
+
+ /*
+ * Compute the NTT tables in t1 and t2. We do not keep t2
+ * (we'll recompute it later on).
+ */
+ modp_mkgm2(tmpsrc, t1, tmpsrc, t2, logn, PRIMES[0].g, p, p0i);
+
+ /*
+ * Convert F and G to NTT.
+ */
+ modp_NTT2(tmpsrc, Fp, tmpsrc, t1, logn, p, p0i);
+ modp_NTT2(tmpsrc, Gp, tmpsrc, t1, logn, p, p0i);
+
+ /*
+ * Load f and adj(f) in t4 and t5, and convert them to NTT
+ * representation.
+ */
+ tmpsrc[t4+0] = tmpsrc[t5+0] = modp_set(fsrc[f + 0], p);
+ for (u = 1; u < n; u ++) {
+ tmpsrc[t4+u] = modp_set(fsrc[f + u], p);
+ tmpsrc[t5+n - u] = modp_set(-fsrc[f + u], p);
+ }
+ modp_NTT2(tmpsrc, t4, tmpsrc, t1, logn, p, p0i);
+ modp_NTT2(tmpsrc, t5, tmpsrc, t1, logn, p, p0i);
+
+ /*
+ * Compute F*adj(f) in t2, and f*adj(f) in t3.
+ */
+ for (u = 0; u < n; u ++) {
+ uint w;
+
+ w = modp_montymul(tmpsrc[t5+u], R2, p, p0i);
+ tmpsrc[t2+u] = modp_montymul(w, tmpsrc[Fp+u], p, p0i);
+ tmpsrc[t3+u] = modp_montymul(w, tmpsrc[t4+u], p, p0i);
+ }
+
+ /*
+ * Load g and adj(g) in t4 and t5, and convert them to NTT
+ * representation.
+ */
+ tmpsrc[t4+0] = tmpsrc[t5+0] = modp_set(gsrc[g + 0], p);
+ for (u = 1; u < n; u ++) {
+ tmpsrc[t4+u] = modp_set(gsrc[g + u], p);
+ tmpsrc[t5+n - u] = modp_set(-gsrc[g + u], p);
+ }
+ modp_NTT2(tmpsrc, t4, tmpsrc, t1, logn, p, p0i);
+ modp_NTT2(tmpsrc, t5, tmpsrc, t1, logn, p, p0i);
+
+ /*
+ * Add G*adj(g) to t2, and g*adj(g) to t3.
+ */
+ for (u = 0; u < n; u ++) {
+ uint w;
+
+ w = modp_montymul(tmpsrc[t5+u], R2, p, p0i);
+ tmpsrc[t2+u] = modp_add(tmpsrc[t2+u],
+ modp_montymul(w, tmpsrc[Gp+u], p, p0i), p);
+ tmpsrc[t3+u] = modp_add(tmpsrc[t3+u],
+ modp_montymul(w, tmpsrc[t4+u], p, p0i), p);
+ }
+
+ /*
+ * Convert back t2 and t3 to normal representation (normalized
+ * around 0), and then
+ * move them to t1 and t2. We first need to recompute the
+ * inverse table for NTT.
+ */
+ modp_mkgm2(tmpsrc, t1, tmpsrc, t4, logn, this.PRIMES[0].g, p, p0i);
+ modp_iNTT2(tmpsrc, t2, tmpsrc, t4, logn, p, p0i);
+ modp_iNTT2(tmpsrc, t3, tmpsrc, t4, logn, p, p0i);
+ for (u = 0; u < n; u ++) {
+ tmpsrc[t1+u] = (uint)modp_norm(tmpsrc[t2+u], p);
+ tmpsrc[t2+u] = (uint)modp_norm(tmpsrc[t3+u], p);
+ }
+
+ /*
+ * At that point, array contents are:
+ *
+ * F (NTT representation) (Fp)
+ * G (NTT representation) (Gp)
+ * F*adj(f)+G*adj(g) (t1)
+ * f*adj(f)+g*adj(g) (t2)
+ *
+ * We want to divide t1 by t2. The result is not integral; it
+ * must be rounded. We thus need to use the FFT.
+ */
+
+ /*
+ * Get f*adj(f)+g*adj(g) in FFT representation. Since this
+ * polynomial is auto-adjoint, all its coordinates in FFT
+ * representation are actually real, so we can truncate off
+ * the imaginary parts.
+ */
+ FalconFPR[] rtmp = new FalconFPR[2 * n];
+ rt3 = n;
+ for (u = 0; u < n; u ++) {
+ rtmp[rt3+u] = this.fpre.fpr_of((int)tmpsrc[t2+u]);
+ }
+ this.ffte.FFT(rtmp, rt3, logn);
+ rt2 = 0;
+ // memmove(rt2, rt3, hn * sizeof *rt3);
+ Array.Copy(rtmp, rt3, rtmp, rt2, hn);
+
+ /*
+ * Convert F*adj(f)+G*adj(g) in FFT representation.
+ */
+ rt3 = rt2 + hn;
+ for (u = 0; u < n; u ++) {
+ rtmp[rt3+u] = this.fpre.fpr_of((int)tmpsrc[t1 + u]);
+ }
+ this.ffte.FFT(rtmp, rt3, logn);
+
+ /*
+ * Compute (F*adj(f)+G*adj(g))/(f*adj(f)+g*adj(g)) and get
+ * its rounded normal representation in t1.
+ */
+ this.ffte.poly_div_autoadj_fft(rtmp, rt3, rtmp, rt2, logn);
+ this.ffte.iFFT(rtmp, rt3, logn);
+ for (u = 0; u < n; u ++) {
+ tmpsrc[t1+u] = modp_set((int)this.fpre.fpr_rint(rtmp[rt3+u]), p);
+ }
+
+ /*
+ * RAM contents are now:
+ *
+ * F (NTT representation) (Fp)
+ * G (NTT representation) (Gp)
+ * k (t1)
+ *
+ * We want to compute F-k*f, and G-k*g.
+ */
+ t2 = t1 + n;
+ t3 = t2 + n;
+ t4 = t3 + n;
+ t5 = t4 + n;
+ modp_mkgm2(tmpsrc, t2, tmpsrc, t3, logn, this.PRIMES[0].g, p, p0i);
+ for (u = 0; u < n; u ++) {
+ tmpsrc[t4+u] = modp_set(fsrc[f+u], p);
+ tmpsrc[t5+u] = modp_set(gsrc[g+u], p);
+ }
+ modp_NTT2(tmpsrc, t1, tmpsrc, t2, logn, p, p0i);
+ modp_NTT2(tmpsrc, t4, tmpsrc, t2, logn, p, p0i);
+ modp_NTT2(tmpsrc, t5, tmpsrc, t2, logn, p, p0i);
+ for (u = 0; u < n; u ++) {
+ uint kw;
+
+ kw = modp_montymul(tmpsrc[t1+u], R2, p, p0i);
+ tmpsrc[Fp+u] = modp_sub(tmpsrc[Fp+u],
+ modp_montymul(kw, tmpsrc[t4+u], p, p0i), p);
+ tmpsrc[Gp+u] = modp_sub(tmpsrc[Gp+u],
+ modp_montymul(kw, tmpsrc[t5+u], p, p0i), p);
+ }
+ modp_iNTT2(tmpsrc, Fp, tmpsrc, t3, logn, p, p0i);
+ modp_iNTT2(tmpsrc, Gp, tmpsrc, t3, logn, p, p0i);
+ for (u = 0; u < n; u ++) {
+ tmpsrc[Fp+u] = (uint)modp_norm(tmpsrc[Fp+u], p);
+ tmpsrc[Gp+u] = (uint)modp_norm(tmpsrc[Gp+u], p);
+ }
+
+ return 1;
+ }
+
+ /*
+ * Solve the NTRU equation. Returned value is 1 on success, 0 on error.
+ * G can be NULL, in which case that value is computed but not returned.
+ * If any of the coefficients of F and G exceeds lim (in absolute value),
+ * then 0 is returned.
+ */
+ int solve_NTRU(uint logn, sbyte[] Fsrc, int F, sbyte[] Gsrc, int G,
+ sbyte[] fsrc, int f, sbyte[] gsrc, int g, int lim, uint[] tmpsrc, int tmp)
+ {
+ int n, u;
+ int ft, gt, Ft, Gt, gm;
+ uint p, p0i, r;
+ FalconSmallPrime[] primes;
+
+ n = (int)1 << (int)logn;
+
+ if (solve_NTRU_deepest(logn, fsrc, f, gsrc, g, tmpsrc, tmp) == 0) {
+ return 0;
+ }
+
+ /*
+ * For logn <= 2, we need to use solve_NTRU_intermediate()
+ * directly, because coefficients are a bit too large and
+ * do not fit the hypotheses in solve_NTRU_binary_depth0().
+ */
+ if (logn <= 2) {
+ uint depth;
+
+ depth = logn;
+ while (depth -- > 0) {
+ if (solve_NTRU_intermediate(logn, fsrc, f, gsrc, g, depth, tmpsrc, tmp) == 0) {
+ return 0;
+ }
+ }
+ } else {
+ uint depth;
+
+ depth = logn;
+ while (depth -- > 2) {
+ // TODO check what causes this to fail
+ if (solve_NTRU_intermediate(logn, fsrc, f, gsrc, g, depth, tmpsrc, tmp) == 0) {
+ return 0;
+ }
+ }
+ if (solve_NTRU_binary_depth1(logn, fsrc, f, gsrc, g, tmpsrc, tmp) == 0) {
+ return 0;
+ }
+ if (solve_NTRU_binary_depth0(logn, fsrc, f, gsrc, g, tmpsrc, tmp) == 0) {
+ return 0;
+ }
+ }
+
+ /*
+ * If no buffer has been provided for G, use a temporary one.
+ */
+ if (Gsrc == null) {
+ G = 0;
+ Gsrc = new sbyte[n];
+ }
+
+ /*
+ * Final F and G are in fk->tmp, one word per coefficient
+ * (signed value over 31 bits).
+ */
+ if (poly_big_to_small(Fsrc, F, tmpsrc, tmp, lim, logn) == 0
+ || poly_big_to_small(Gsrc, G, tmpsrc, tmp + n, lim, logn) == 0)
+ {
+ return 0;
+ }
+
+ /*
+ * Verify that the NTRU equation is fulfilled. Since all elements
+ * have short lengths, verifying modulo a small prime p works, and
+ * allows using the NTT.
+ *
+ * We put Gt[] first in tmp[], and process it first, so that it does
+ * not overlap with G[] in case we allocated it ourselves.
+ */
+ Gt = tmp;
+ ft = Gt + n;
+ gt = ft + n;
+ Ft = gt + n;
+ gm = Ft + n;
+
+ primes = this.PRIMES;
+ p = primes[0].p;
+ p0i = modp_ninv31(p);
+ modp_mkgm2(tmpsrc, gm, tmpsrc, tmp, logn, primes[0].g, p, p0i);
+ for (u = 0; u < n; u ++) {
+ tmpsrc[Gt+u] = modp_set(Gsrc[G+u], p);
+ }
+ for (u = 0; u < n; u ++) {
+ tmpsrc[ft+u] = modp_set(fsrc[f+u], p);
+ tmpsrc[gt+u] = modp_set(gsrc[g+u], p);
+ tmpsrc[Ft+u] = modp_set(Fsrc[F+u], p);
+ }
+ modp_NTT2(tmpsrc, ft, tmpsrc, gm, logn, p, p0i);
+ modp_NTT2(tmpsrc, gt, tmpsrc, gm, logn, p, p0i);
+ modp_NTT2(tmpsrc, Ft, tmpsrc, gm, logn, p, p0i);
+ modp_NTT2(tmpsrc, Gt, tmpsrc, gm, logn, p, p0i);
+ r = modp_montymul(12289, 1, p, p0i);
+ for (u = 0; u < n; u ++) {
+ uint z;
+
+ z = modp_sub(modp_montymul(tmpsrc[ft+u], tmpsrc[Gt+u], p, p0i),
+ modp_montymul(tmpsrc[gt+u], tmpsrc[Ft+u], p, p0i), p);
+ if (z != r) {
+ return 0;
+ }
+ }
+
+ return 1;
+ }
+
+ /*
+ * Generate a random polynomial with a Gaussian distribution. This function
+ * also makes sure that the resultant of the polynomial with phi is odd.
+ */
+ void poly_small_mkgauss(SHAKE256 rng, sbyte[] fsrc, int f, uint logn)
+ {
+ int n, u;
+ uint mod2;
+
+ n = (int)1 << (int)logn;
+ mod2 = 0;
+ for (u = 0; u < n; u ++) {
+ int s;
+
+ for(;;) {
+ s = mkgauss(rng, logn);
+
+ /*
+ * We need the coefficient to fit within -127..+127;
+ * realistically, this is always the case except for
+ * the very low degrees (N = 2 or 4), for which there
+ * is no real security anyway.
+ */
+ if (s < -127 || s > 127) {
+ continue; // restart
+ }
+
+ /*
+ * We need the sum of all coefficients to be 1; otherwise,
+ * the resultant of the polynomial with X^N+1 will be even,
+ * and the binary GCD will fail.
+ */
+ if (u == n - 1) {
+ if ((mod2 ^ (uint)(s & 1)) == 0) {
+ continue; // restart
+ }
+ } else {
+ mod2 ^= (uint)(s & 1);
+ }
+ fsrc[f+u] = (sbyte)s;
+ break; // end
+ }
+ }
+ }
+
+ internal void keygen(SHAKE256 rng,
+ sbyte[] fsrc, int f, sbyte[] gsrc, int g, sbyte[] Fsrc, int F, sbyte[] Gsrc, int G, ushort[] hsrc, int h,
+ uint logn)
+ {
+ /*
+ * Algorithm is the following:
+ *
+ * - Generate f and g with the Gaussian distribution.
+ *
+ * - If either Res(f,phi) or Res(g,phi) is even, try again.
+ *
+ * - If ||(f,g)|| is too large, try again.
+ *
+ * - If ||B~_{f,g}|| is too large, try again.
+ *
+ * - If f is not invertible mod phi mod q, try again.
+ *
+ * - Compute h = g/f mod phi mod q.
+ *
+ * - Solve the NTRU equation fG - gF = q; if the solving fails,
+ * try again. Usual failure condition is when Res(f,phi)
+ * and Res(g,phi) are not prime to each other.
+ */
+ int n, u;
+ int h2, tmp2;
+ SHAKE256 rc;
+
+ n = (int)1 << (int)logn;
+ rc = rng;
+
+ /*
+ * We need to generate f and g randomly, until we find values
+ * such that the norm of (g,-f), and of the orthogonalized
+ * vector, are satisfying. The orthogonalized vector is:
+ * (q*adj(f)/(f*adj(f)+g*adj(g)), q*adj(g)/(f*adj(f)+g*adj(g)))
+ * (it is actually the (N+1)-th row of the Gram-Schmidt basis).
+ *
+ * In the binary case, coefficients of f and g are generated
+ * independently of each other, with a discrete Gaussian
+ * distribution of standard deviation 1.17*sqrt(q/(2*N)). Then,
+ * the two vectors have expected norm 1.17*sqrt(q), which is
+ * also our acceptance bound: we require both vectors to be no
+ * larger than that (this will be satisfied about 1/4th of the
+ * time, thus we expect sampling new (f,g) about 4 times for that
+ * step).
+ *
+ * We require that Res(f,phi) and Res(g,phi) are both odd (the
+ * NTRU equation solver requires it).
+ */
+ for (;;) {
+ int rt1, rt2, rt3;
+ FalconFPR bnorm;
+ uint normf, normg, norm;
+ int lim;
+
+ /*
+ * The poly_small_mkgauss() function makes sure
+ * that the sum of coefficients is 1 modulo 2
+ * (i.e. the resultant of the polynomial with phi
+ * will be odd).
+ */
+ poly_small_mkgauss(rc, fsrc, f, logn);
+ poly_small_mkgauss(rc, gsrc, g, logn);
+
+ /*
+ * Verify that all coefficients are within the bounds
+ * defined in max_fg_bits. This is the case with
+ * overwhelming probability; this guarantees that the
+ * key will be encodable with FALCON_COMP_TRIM.
+ */
+ lim = 1 << (this.codec.max_fg_bits[logn] - 1);
+ for (u = 0; u < n; u ++) {
+ /*
+ * We can use non-CT tests since on any failure
+ * we will discard f and g.
+ */
+ if (fsrc[f+u] >= lim || fsrc[f+u] <= -lim
+ || gsrc[g+u] >= lim || gsrc[g+u] <= -lim)
+ {
+ lim = -1;
+ break;
+ }
+ }
+ if (lim < 0) {
+ continue;
+ }
+
+ /*
+ * Bound is 1.17*sqrt(q). We compute the squared
+ * norms. With q = 12289, the squared bound is:
+ * (1.17^2)* 12289 = 16822.4121
+ * Since f and g are integral, the squared norm
+ * of (g,-f) is an integer.
+ */
+ normf = poly_small_sqnorm(fsrc, f, logn);
+ normg = poly_small_sqnorm(gsrc, g, logn);
+ norm = (uint)((normf + normg) | -((normf | normg) >> 31));
+ if (norm >= 16823) {
+ continue;
+ }
+
+ /*
+ * We compute the orthogonalized vector norm.
+ */
+ FalconFPR[] rtmp = new FalconFPR[3 * n];
+ rt1 = 0;
+ rt2 = rt1 + n;
+ rt3 = rt2 + n;
+ poly_small_to_fp(rtmp, rt1, fsrc, f, logn);
+ poly_small_to_fp(rtmp, rt2, gsrc, g, logn);
+ this.ffte.FFT(rtmp, rt1, logn);
+ this.ffte.FFT(rtmp, rt2, logn);
+ this.ffte.poly_invnorm2_fft(rtmp, rt3, rtmp, rt1, rtmp, rt2, logn);
+ this.ffte.poly_adj_fft(rtmp, rt1, logn);
+ this.ffte.poly_adj_fft(rtmp, rt2, logn);
+ this.ffte.poly_mulconst(rtmp, rt1, this.fpre.fpr_q, logn);
+ this.ffte.poly_mulconst(rtmp, rt2, this.fpre.fpr_q, logn);
+ this.ffte.poly_mul_autoadj_fft(rtmp, rt1, rtmp, rt3, logn);
+ this.ffte.poly_mul_autoadj_fft(rtmp, rt2, rtmp, rt3, logn);
+ this.ffte.iFFT(rtmp, rt1, logn);
+ this.ffte.iFFT(rtmp, rt2, logn);
+ bnorm = this.fpre.fpr_zero;
+ for (u = 0; u < n; u ++) {
+ bnorm = this.fpre.fpr_add(bnorm, this.fpre.fpr_sqr(rtmp[rt1+u]));
+ bnorm = this.fpre.fpr_add(bnorm, this.fpre.fpr_sqr(rtmp[rt2+u]));
+ }
+ if (!this.fpre.fpr_lt(bnorm, this.fpre.fpr_bnorm_max)) {
+ continue;
+ }
+
+ /*
+ * Compute public key h = g/f mod X^N+1 mod q. If this
+ * fails, we must restart.
+ */
+ ushort[] htmp;
+ ushort[] h2src;
+ if (hsrc == null) {
+ htmp = new ushort[2 * n];
+ h2 = 0;
+ h2src = htmp;
+ tmp2 = h2 + n;
+ } else {
+ htmp = new ushort[n];
+ h2 = h;
+ h2src = hsrc;
+ tmp2 = 0;
+ }
+ if (vrfy.compute_public(h2src, h2, fsrc, f, gsrc, g, logn, htmp, tmp2) == 0) {
+ continue;
+ }
+
+ /*
+ * Solve the NTRU equation to get F and G.
+ */
+ uint[] itmp = logn > 2 ? new uint[28 * n] : new uint[28 * n * 3];
+ lim = (1 << (this.codec.max_FG_bits[logn] - 1)) - 1;
+ if (solve_NTRU(logn, Fsrc, F, Gsrc, G, fsrc, f, gsrc, g, lim, itmp, 0) == 0) {
+ continue;
+ }
+
+ /*
+ * Key pair is generated.
+ */
+ break;
+ }
+ }
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/FalconNIST.cs b/crypto/src/pqc/crypto/falcon/FalconNIST.cs
new file mode 100644
index 000000000..50459532f
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FalconNIST.cs
@@ -0,0 +1,303 @@
+using System;
+using Org.BouncyCastle.Security;
+using Org.BouncyCastle.Utilities;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ class FalconNIST
+ {
+ private FalconCodec codec;
+ private FalconVrfy vrfy;
+ private FalconCommon common;
+ private SecureRandom random;
+ private uint logn;
+ private uint noncelen;
+ private int CRYPTO_BYTES;
+ private int CRYPTO_PUBLICKEYBYTES;
+ private int CRYPTO_SECRETKEYBYTES;
+
+ internal uint GetNonceLength() {
+ return this.noncelen;
+ }
+ internal uint GetLogn() {
+ return this.logn;
+ }
+ internal int GetCryptoBytes() {
+ return this.CRYPTO_BYTES;
+ }
+
+ internal FalconNIST(SecureRandom random, uint logn, uint noncelen) {
+ this.logn = logn;
+ this.codec = new FalconCodec();
+ this.common = new FalconCommon();
+ this.vrfy = new FalconVrfy(this.common);
+ this.random = random;
+ this.noncelen = noncelen;
+ int n = (int)1 << (int)logn;
+ this.CRYPTO_PUBLICKEYBYTES = 1 + (14 * n / 8);
+ if (logn == 10)
+ {
+ this.CRYPTO_SECRETKEYBYTES = 2305;
+ this.CRYPTO_BYTES = 1330;
+ }
+ else if (logn == 9 || logn == 8)
+ {
+ this.CRYPTO_SECRETKEYBYTES = 1 + (6 * n * 2 / 8) + n;
+ this.CRYPTO_BYTES = 690; // TODO find what the byte length is here when not at degree 9 or 10
+ }
+ else if (logn == 7 || logn == 6)
+ {
+ this.CRYPTO_SECRETKEYBYTES = 1 + (7 * n * 2 / 8) + n;
+ this.CRYPTO_BYTES = 690;
+ }
+ else
+ {
+ this.CRYPTO_SECRETKEYBYTES = 1 + (n * 2) + n;
+ this.CRYPTO_BYTES = 690;
+ }
+ }
+
+ internal int crypto_sign_keypair(byte[] pksrc, int pk, byte[] sksrc, int sk)
+ {
+ int n = (int)1 << (int)this.logn;
+ SHAKE256 rng = new SHAKE256();
+ sbyte[] f = new sbyte[n],
+ g = new sbyte[n],
+ F = new sbyte[n];
+ ushort[] h = new ushort[n];
+ byte[] seed = new byte[48];
+ int u, v;
+ FalconKeygen keygen = new FalconKeygen(this.codec, this.vrfy);
+
+ /*
+ * Generate key pair.
+ */
+ this.random.NextBytes(seed);
+ rng.i_shake256_init();
+ rng.i_shake256_inject(seed, 0, seed.Length);
+ rng.i_shake256_flip();
+ keygen.keygen(rng, f, 0, g, 0, F, 0, null, 0, h, 0, this.logn);
+
+ /*
+ * Encode private key.
+ */
+ sksrc[sk+0] = (byte)(0x50 + this.logn);
+ u = 1;
+ v = this.codec.trim_i8_encode(sksrc, sk + u, CRYPTO_SECRETKEYBYTES - u,
+ f, 0, this.logn, this.codec.max_fg_bits[this.logn]);
+ if (v == 0) {
+ // TODO check which exception types to use here
+ throw new InvalidOperationException("f encode failed");
+ }
+ u += v;
+ v = this.codec.trim_i8_encode(sksrc, sk + u, CRYPTO_SECRETKEYBYTES - u,
+ g, 0, this.logn, this.codec.max_fg_bits[this.logn]);
+ if (v == 0) {
+ throw new InvalidOperationException("g encode failed");
+ }
+ u += v;
+ v = this.codec.trim_i8_encode(sksrc, sk + u, CRYPTO_SECRETKEYBYTES - u,
+ F, 0, this.logn, this.codec.max_FG_bits[this.logn]);
+ if (v == 0) {
+ throw new InvalidOperationException("F encode failed");
+ }
+ u += v;
+ if (u != CRYPTO_SECRETKEYBYTES) {
+ throw new InvalidOperationException("secret key encoding failed");
+ }
+
+ /*
+ * Encode public key.
+ */
+ pksrc[pk+0] = (byte)(0x00 + this.logn);
+ v = this.codec.modq_encode(pksrc, pk + 1, CRYPTO_PUBLICKEYBYTES - 1, h, 0, this.logn);
+ if (v != CRYPTO_PUBLICKEYBYTES - 1) {
+ throw new InvalidOperationException("public key encoding failed");
+ }
+
+ return 0;
+ }
+
+ internal byte[] crypto_sign(byte[] sm,
+ byte[] msrc, int m, uint mlen,
+ byte[] sksrc, int sk)
+ {
+ // TEMPALLOC union {
+ // uint8_t b[72 * 1024];
+ // uint64_t dummy_u64;
+ // fpr dummy_fpr;
+ // } tmp;
+ int u, v, sig_len;
+ int n = (int)1 << (int)this.logn;
+ sbyte[] f = new sbyte[n],
+ g = new sbyte[n],
+ F = new sbyte[n],
+ G = new sbyte[n];
+ short[] sig = new short[n];
+ ushort[] hm = new ushort[n];
+ byte[] seed = new byte[48],
+ nonce = new byte[this.noncelen];
+ byte[] esig = new byte[this.CRYPTO_BYTES - 2 - this.noncelen];
+ SHAKE256 sc = new SHAKE256();
+ FalconSign signer = new FalconSign(this.common);
+
+ /*
+ * Decode the private key.
+ */
+ if (sksrc[sk+0] != 0x50 + this.logn) {
+ throw new ArgumentException("private key header incorrect");
+ }
+ u = 1;
+ v = this.codec.trim_i8_decode(f, 0, this.logn, this.codec.max_fg_bits[this.logn],
+ sksrc, sk + u, CRYPTO_SECRETKEYBYTES - u);
+ if (v == 0) {
+ throw new InvalidOperationException("f decode failed");
+ }
+ u += v;
+ v = this.codec.trim_i8_decode(g, 0, this.logn, this.codec.max_fg_bits[this.logn],
+ sksrc, sk + u, CRYPTO_SECRETKEYBYTES - u);
+ if (v == 0) {
+ throw new InvalidOperationException("g decode failed");
+ }
+ u += v;
+ v = this.codec.trim_i8_decode(F, 0, this.logn, this.codec.max_FG_bits[this.logn],
+ sksrc, sk + u, CRYPTO_SECRETKEYBYTES - u);
+ if (v == 0) {
+ throw new InvalidOperationException("F decode failed");
+ }
+ u += v;
+ if (u != CRYPTO_SECRETKEYBYTES) {
+ throw new InvalidOperationException("full Key not used");
+ }
+ if (this.vrfy.complete_private(G, 0, f, 0, g, 0, F, 0, this.logn, new ushort[2 * n],0) == 0) {
+ throw new InvalidOperationException("complete private failed");
+ }
+
+ /*
+ * Create a random nonce (40 bytes).
+ */
+ this.random.NextBytes(nonce);
+
+ /*
+ * Hash message nonce + message into a vector.
+ */
+ sc.i_shake256_init();
+ sc.i_shake256_inject(nonce,0,nonce.Length);
+ sc.i_shake256_inject(msrc,m, (int)mlen);
+ sc.i_shake256_flip();
+ this.common.hash_to_point_vartime(sc, hm, 0, this.logn);
+
+ /*
+ * Initialize a RNG.
+ */
+ this.random.NextBytes(seed);
+ sc.i_shake256_init();
+ sc.i_shake256_inject(seed, 0, seed.Length);
+ sc.i_shake256_flip();
+
+ /*
+ * Compute the signature.
+ */
+ signer.sign_dyn(sig, 0, sc, f, 0, g, 0, F, 0, G, 0, hm, 0, this.logn, new FalconFPR[10 * n], 0);
+
+ /*
+ * Encode the signature. Format is:
+ * signature header 1 bytes
+ * nonce 40 bytes
+ * signature slen bytes
+ */
+ esig[0] = (byte)(0x20 + logn);
+ sig_len = codec.comp_encode(esig, 1, esig.Length - 1, sig, 0, logn);
+ if (sig_len == 0)
+ {
+ throw new InvalidOperationException("signature failed to generate");
+ }
+ sig_len++;
+
+ // header
+ sm[0] = (byte)(0x30 + logn);
+ // nonce
+ Array.Copy(nonce, 0, sm, 1, noncelen);
+
+ // signature
+ Array.Copy(esig, 0, sm, 1 + noncelen, sig_len);
+
+ return Arrays.CopyOfRange(sm, 0, 1 + (int)noncelen + sig_len);
+ }
+
+ internal int crypto_sign_open(byte[] sig_encoded, byte[] nonce, byte[] m,
+ byte[] pksrc, int pk)
+ {
+ int sig_len, msg_len;
+ int n = (int)1 << (int)this.logn;
+ ushort[] h = new ushort[n],
+ hm = new ushort[n];
+ short[] sig = new short[n];
+ SHAKE256 sc = new SHAKE256();
+
+ /*
+ * Decode public key.
+ */
+ if (pksrc[pk+0] != 0x00 + this.logn) {
+ return -1;
+ }
+ if (this.codec.modq_decode(h, 0, this.logn, pksrc, pk + 1, CRYPTO_PUBLICKEYBYTES - 1)
+ != CRYPTO_PUBLICKEYBYTES - 1)
+ {
+ return -1;
+ }
+ this.vrfy.to_ntt_monty(h, 0, this.logn);
+
+ /*
+ * Find nonce, signature, message length.
+ */
+ // if (smlen < 2 + this.noncelen) {
+ // return -1;
+ // }
+ // sig_len = ((int)sm[0] << 8) | (int)sm[1];
+ sig_len = sig_encoded.Length;
+ // if (sig_len > (smlen - 2 - this.noncelen)) {
+ // return -1;
+ // }
+ // msg_len = smlen - 2 - this.noncelen - sig_len;
+ msg_len = m.Length;
+
+ /*
+ * Decode signature.
+ */
+ // esig = sm + 2 + this.noncelen + msg_len;
+ if (sig_len < 1 || sig_encoded[0] != (byte)(0x20 + this.logn)) {
+ return -1;
+ }
+ if (this.codec.comp_decode(sig, 0, this.logn, sig_encoded,
+ 1, sig_len - 1) != sig_len - 1)
+ {
+ return -1;
+ }
+
+ /*
+ * Hash nonce + message into a vector.
+ */
+ sc.i_shake256_init();
+ // sc.i_shake256_inject(sm + 2, this.noncelen + msg_len);
+ sc.i_shake256_inject(nonce, 0, (int)this.noncelen);
+ sc.i_shake256_inject(m, 0, m.Length);
+ sc.i_shake256_flip();
+ this.common.hash_to_point_vartime(sc, hm, 0, this.logn);
+
+ /*
+ * Verify signature.
+ */
+ if (!this.vrfy.verify_raw(hm, 0, sig, 0, h, 0, this.logn, new ushort[n], 0)) {
+ return -1;
+ }
+
+ /*
+ * Return plaintext. - not in use
+ */
+ // Array.Copy(sm + 2 + this.noncelen, m, msg_len);
+ // *mlen = msg_len;
+ return 0;
+ }
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/FalconParameters.cs b/crypto/src/pqc/crypto/falcon/FalconParameters.cs
new file mode 100644
index 000000000..313d25709
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FalconParameters.cs
@@ -0,0 +1,38 @@
+using System;
+using Org.BouncyCastle.Crypto;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ public class FalconParameters
+ : ICipherParameters
+ {
+ public static FalconParameters falcon_512 = new FalconParameters("falcon512", 9, 40);
+ public static FalconParameters falcon_1024 = new FalconParameters("falcon1024", 10, 40);
+
+ private String name;
+ private uint logn;
+ private uint nonce_length;
+
+ public FalconParameters(String name, uint logn, uint nonce_length)
+ {
+ this.name = name;
+ this.logn = logn;
+ this.nonce_length = nonce_length;
+ }
+
+ public uint GetLogN()
+ {
+ return logn;
+ }
+
+ public uint GetNonceLength()
+ {
+ return nonce_length;
+ }
+
+ public String GetName()
+ {
+ return name;
+ }
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/FalconPrivateKeyParameters.cs b/crypto/src/pqc/crypto/falcon/FalconPrivateKeyParameters.cs
new file mode 100644
index 000000000..448ba7275
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FalconPrivateKeyParameters.cs
@@ -0,0 +1,24 @@
+using Org.BouncyCastle.Utilities;
+
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ public class FalconPrivateKeyParameters
+ : FalconKeyParameters
+ {
+ private byte[] privateKey;
+
+ public byte[] PrivateKey => Arrays.Clone(privateKey);
+
+ public FalconPrivateKeyParameters(FalconParameters parameters, byte[] sk_encoded)
+ : base(true, parameters)
+ {
+ this.privateKey = Arrays.Clone(sk_encoded);
+ }
+
+ public byte[] GetEncoded()
+ {
+ return Arrays.Clone(privateKey);
+ }
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/FalconPublicKeyParameters.cs b/crypto/src/pqc/crypto/falcon/FalconPublicKeyParameters.cs
new file mode 100644
index 000000000..dace2e60f
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FalconPublicKeyParameters.cs
@@ -0,0 +1,23 @@
+using Org.BouncyCastle.Utilities;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ public class FalconPublicKeyParameters
+ : FalconKeyParameters
+ {
+ private byte[] publicKey;
+
+ public byte[] PublicKey => Arrays.Clone(publicKey);
+
+ public FalconPublicKeyParameters(FalconParameters parameters, byte[] pk_encoded)
+ : base(false, parameters)
+ {
+ this.publicKey = Arrays.Clone(pk_encoded);
+ }
+
+ public byte[] GetEncoded()
+ {
+ return Arrays.Clone(publicKey);
+ }
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/FalconRNG.cs b/crypto/src/pqc/crypto/falcon/FalconRNG.cs
new file mode 100644
index 000000000..31f04d5d7
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FalconRNG.cs
@@ -0,0 +1,261 @@
+using System;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ class FalconRNG
+ {
+ byte[] bd;
+ //ulong bdummy_u64;
+ byte[] sd;
+ //ulong sdummy_u64;
+ //int type;
+ int ptr;
+
+ FalconConversions convertor;
+
+ internal FalconRNG() {
+ this.bd = new byte[512];
+ this.sd = new byte[256];
+ this.convertor = new FalconConversions();
+ }
+
+ /*
+ * License from the reference C code (the code was copied then modified
+ * to function in C#):
+ * ==========================(LICENSE BEGIN)============================
+ *
+ * Copyright (c) 2017-2019 Falcon Project
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * ===========================(LICENSE END)=============================
+ */
+
+ internal void prng_init(SHAKE256 src)
+ {
+ /*
+ * To ensure reproducibility for a given seed, we
+ * must enforce little-endian interpretation of
+ * the state words.
+ */
+ byte[] tmp = new byte[56];
+ ulong th, tl;
+ int i;
+
+ src.i_shake256_extract(tmp,0, 56);
+ for (i = 0; i < 14; i ++) {
+ uint w;
+
+ w = (uint)tmp[(i << 2) + 0]
+ | ((uint)tmp[(i << 2) + 1] << 8)
+ | ((uint)tmp[(i << 2) + 2] << 16)
+ | ((uint)tmp[(i << 2) + 3] << 24);
+ //*(uint *)(this.sd + (i << 2)) = w;
+ Array.Copy(convertor.int_to_bytes((int)w), 0, this.sd, i << 2, 4);
+ }
+ // tl = *(uint32_t *)(p->state.d + 48);
+ tl = convertor.bytes_to_uint(this.sd, 48);
+ // th = *(uint32_t *)(p->state.d + 52);
+ th = convertor.bytes_to_uint(this.sd, 52);
+ Array.Copy(convertor.ulong_to_bytes(tl + (th << 32)), 0, this.sd, 48, 8);
+ this.prng_refill();
+ }
+
+ /*
+ * PRNG based on ChaCha20.
+ *
+ * State consists in key (32 bytes) then IV (16 bytes) and block counter
+ * (8 bytes). Normally, we should not care about local endianness (this
+ * is for a PRNG), but for the NIST competition we need reproducible KAT
+ * vectors that work across architectures, so we enforce little-endian
+ * interpretation where applicable. Moreover, output words are "spread
+ * out" over the output buffer with the interleaving pattern that is
+ * naturally obtained from the AVX2 implementation that runs eight
+ * ChaCha20 instances in parallel.
+ *
+ * The block counter is XORed into the first 8 bytes of the IV.
+ */
+ private void QROUND(uint[] state, int a, int b, int c, int d) {
+ state[a] += state[b];
+ state[d] ^= state[a];
+ state[d] = (state[d] << 16) | (state[d] >> 16);
+ state[c] += state[d];
+ state[b] ^= state[c];
+ state[b] = (state[b] << 12) | (state[b] >> 20);
+ state[a] += state[b];
+ state[d] ^= state[a];
+ state[d] = (state[d] << 8) | (state[d] >> 24);
+ state[c] += state[d];
+ state[b] ^= state[c];
+ state[b] = (state[b] << 7) | (state[b] >> 25);
+ }
+ void prng_refill()
+ {
+
+ uint[] CW = {
+ 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574
+ };
+
+ ulong cc;
+ int u;
+
+ /*
+ * State uses local endianness. Only the output bytes must be
+ * converted to little endian (if used on a big-endian machine).
+ */
+ //cc = *(ulong *)(this.sd + 48);
+ cc = convertor.bytes_to_ulong(this.sd, 48);
+ for (u = 0; u < 8; u ++) {
+ uint[] state = new uint[16];
+ int v;
+ int i;
+
+ // memcpy(&state[0], CW, sizeof CW);
+ Array.Copy(CW, 0, state, 0, 4);
+ // memcpy(&state[4], this.sd, 48);
+ Array.Copy(convertor.bytes_to_uint_array(this.sd, 0, 12), 0, state, 4, 12);
+
+ state[14] ^= (uint)cc;
+ state[15] ^= (uint)(cc >> 32);
+ for (i = 0; i < 10; i ++) {
+
+ QROUND(state, 0, 4, 8, 12);
+ QROUND(state, 1, 5, 9, 13);
+ QROUND(state, 2, 6, 10, 14);
+ QROUND(state, 3, 7, 11, 15);
+ QROUND(state, 0, 5, 10, 15);
+ QROUND(state, 1, 6, 11, 12);
+ QROUND(state, 2, 7, 8, 13);
+ QROUND(state, 3, 4, 9, 14);
+
+ }
+
+ for (v = 0; v < 4; v++)
+ {
+ state[v] += CW[v];
+ }
+ for (v = 4; v < 14; v++)
+ {
+ // state[v] += ((uint32_t *)p->state.d)[v - 4];
+ // we multiply the -4 by 4 to account for 4 bytes per int
+ state[v] += convertor.bytes_to_uint(sd, (4 * v) - 16);
+ }
+ // state[14] += ((uint32_t *)p->state.d)[10]
+ // ^ (uint32_t)cc;
+ state[14] += (uint)(convertor.bytes_to_uint(sd, 40) ^ ((int)cc));
+ // state[15] += ((uint32_t *)p->state.d)[11]
+ // ^ (uint32_t)(cc >> 32);
+ state[15] += (uint)(convertor.bytes_to_uint(sd, 44) ^ ((int)(cc >> 32)));
+ cc ++;
+
+ /*
+ * We mimic the interleaving that is used in the AVX2
+ * implementation.
+ */
+ for (v = 0; v < 16; v ++) {
+ this.bd[(u << 2) + (v << 5) + 0] =
+ (byte)state[v];
+ this.bd[(u << 2) + (v << 5) + 1] =
+ (byte)(state[v] >> 8);
+ this.bd[(u << 2) + (v << 5) + 2] =
+ (byte)(state[v] >> 16);
+ this.bd[(u << 2) + (v << 5) + 3] =
+ (byte)(state[v] >> 24);
+ }
+ }
+ //*(ulong *)(this.sd + 48) = cc;
+ Array.Copy(convertor.ulong_to_bytes(cc), 0, sd, 48, 8);
+
+
+ this.ptr = 0;
+ }
+
+ internal void prng_get_bytes( byte[] dstsrc, int dst, int len)
+ {
+ int buf;
+
+ buf = dst;
+ while (len > 0) {
+ int clen;
+
+ clen = (this.bd.Length) - this.ptr;
+ if (clen > len) {
+ clen = len;
+ }
+ // memcpy(buf, this.bd, clen);
+ Array.Copy(this.bd, 0, dstsrc, buf, clen);
+ buf += clen;
+ len -= clen;
+ this.ptr += clen;
+ if (this.ptr == this.bd.Length) {
+ this.prng_refill();
+ }
+ }
+ }
+
+ /*
+ * Get a 64-bit random value from a PRNG.
+ */
+ internal ulong prng_get_u64()
+ {
+ int u;
+
+ /*
+ * If there are less than 9 bytes in the buffer, we refill it.
+ * This means that we may drop the last few bytes, but this allows
+ * for faster extraction code. Also, it means that we never leave
+ * an empty buffer.
+ */
+ u = this.ptr;
+ if (u >= (this.bd.Length) - 9) {
+ this.prng_refill();
+ u = 0;
+ }
+ this.ptr = u + 8;
+
+ /*
+ * On systems that use little-endian encoding and allow
+ * unaligned accesses, we can simply read the data where it is.
+ */
+ return (ulong)this.bd[u + 0]
+ | ((ulong)this.bd[u + 1] << 8)
+ | ((ulong)this.bd[u + 2] << 16)
+ | ((ulong)this.bd[u + 3] << 24)
+ | ((ulong)this.bd[u + 4] << 32)
+ | ((ulong)this.bd[u + 5] << 40)
+ | ((ulong)this.bd[u + 6] << 48)
+ | ((ulong)this.bd[u + 7] << 56);
+ }
+
+ /*
+ * Get an 8-bit random value from a PRNG.
+ */
+ internal uint prng_get_u8()
+ {
+ uint v;
+
+ v = this.bd[this.ptr ++];
+ if (this.ptr == this.bd.Length) {
+ this.prng_refill();
+ }
+ return v;
+ }
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/FalconSign.cs b/crypto/src/pqc/crypto/falcon/FalconSign.cs
new file mode 100644
index 000000000..613ef498b
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FalconSign.cs
@@ -0,0 +1,974 @@
+using System;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ class FalconSign
+ {
+
+ FalconFFT ffte;
+ FPREngine fpre;
+ FalconCommon common;
+
+ internal FalconSign(FalconCommon common) {
+ this.ffte = new FalconFFT();
+ this.fpre = new FPREngine();
+ this.common = common;
+ }
+
+ /*
+ * License from the reference C code (the code was copied then modified
+ * to function in C#):
+ * ==========================(LICENSE BEGIN)============================
+ *
+ * Copyright (c) 2017-2019 Falcon Project
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * ===========================(LICENSE END)=============================
+ */
+
+ /*
+ * Binary case:
+ * N = 2^logn
+ * phi = X^N+1
+ */
+
+ /*
+ * Get the size of the LDL tree for an input with polynomials of size
+ * 2^logn. The size is expressed in the number of elements.
+ */
+ internal uint ffLDL_treesize(uint logn)
+ {
+ /*
+ * For logn = 0 (polynomials are constant), the "tree" is a
+ * single element. Otherwise, the tree node has size 2^logn, and
+ * has two child trees for size logn-1 each. Thus, treesize s()
+ * must fulfill these two relations:
+ *
+ * s(0) = 1
+ * s(logn) = (2^logn) + 2*s(logn-1)
+ */
+ return (logn + 1) << (int)logn;
+ }
+
+ /*
+ * Inner function for ffLDL_fft(). It expects the matrix to be both
+ * auto-adjoint and quasicyclic; also, it uses the source operands
+ * as modifiable temporaries.
+ *
+ * tmp[] must have room for at least one polynomial.
+ */
+ internal void ffLDL_fft_inner(FalconFPR[] treesrc, int tree,
+ FalconFPR[] g0src, int g0, FalconFPR[] g1src, int g1, uint logn, FalconFPR[] tmpsrc, int tmp)
+ {
+ int n, hn;
+
+ n = (int)1 << (int)logn;
+ if (n == 1) {
+ treesrc[tree+0] = g0src[g0 + 0];
+ return;
+ }
+ hn = n >> 1;
+
+ /*
+ * The LDL decomposition yields L (which is written in the tree)
+ * and the diagonal of D. Since d00 = g0, we just write d11
+ * into tmp.
+ */
+ this.ffte.poly_LDLmv_fft(tmpsrc, tmp, treesrc, tree, g0src, g0, g1src, g1, g0src, g0, logn);
+
+ /*
+ * Split d00 (currently in g0) and d11 (currently in tmp). We
+ * reuse g0 and g1 as temporary storage spaces:
+ * d00 splits into g1, g1+hn
+ * d11 splits into g0, g0+hn
+ */
+ this.ffte.poly_split_fft(g1src, g1, g1src, g1 + hn, g0src, g0, logn);
+ this.ffte.poly_split_fft(g0src, g0, g0src, g0 + hn, tmpsrc, tmp, logn);
+
+ /*
+ * Each split result is the first row of a new auto-adjoint
+ * quasicyclic matrix for the next recursive step.
+ */
+ ffLDL_fft_inner(treesrc, tree + n,
+ g1src, g1, g1src, g1 + hn, logn - 1, tmpsrc, tmp);
+ ffLDL_fft_inner(treesrc, tree + n + (int)ffLDL_treesize(logn - 1),
+ g0src, g0, g0src, g0 + hn, logn - 1, tmpsrc, tmp);
+ }
+
+ /*
+ * Compute the ffLDL tree of an auto-adjoint matrix G. The matrix
+ * is provided as three polynomials (FFT representation).
+ *
+ * The "tree" array is filled with the computed tree, of size
+ * (logn+1)*(2^logn) elements (see ffLDL_treesize()).
+ *
+ * Input arrays MUST NOT overlap, except possibly the three unmodified
+ * arrays g00, g01 and g11. tmp[] should have room for at least three
+ * polynomials of 2^logn elements each.
+ */
+ internal void ffLDL_fft(FalconFPR[] treesrc, int tree, FalconFPR[] g00src, int g00,
+ FalconFPR[] g01src, int g01, FalconFPR[] g11src, int g11,
+ uint logn, FalconFPR[] tmpsrc, int tmp)
+ {
+ int n, hn;
+ int d00, d11;
+
+ n = (int)1 << (int)logn;
+ if (n == 1) {
+ treesrc[tree+0] = g00src[g00+0];
+ return;
+ }
+ hn = n >> 1;
+ d00 = tmp;
+ d11 = tmp + n;
+ tmp += n << 1;
+
+ // memcpy(d00, g00, n * sizeof *g00);
+ Array.Copy(g00src, g00, tmpsrc, d00, n);
+ this.ffte.poly_LDLmv_fft(tmpsrc, d11, treesrc, tree, g00src, g00, g01src, g01, g11src, g11, logn);
+
+ this.ffte.poly_split_fft(tmpsrc, tmp, tmpsrc, tmp + hn, tmpsrc, d00, logn);
+ this.ffte.poly_split_fft(tmpsrc, d00, tmpsrc, d00 + hn, tmpsrc, d11, logn);
+ // memcpy(d11, tmp, n * sizeof *tmp);
+ Array.Copy(tmpsrc, tmp, tmpsrc, d11, n);
+ ffLDL_fft_inner(treesrc, tree + n,
+ tmpsrc, d11, tmpsrc, d11 + hn, logn - 1, tmpsrc, tmp);
+ ffLDL_fft_inner(treesrc, tree + n + (int)ffLDL_treesize(logn - 1),
+ tmpsrc, d00, tmpsrc, d00 + hn, logn - 1, tmpsrc, tmp);
+ }
+
+ /*
+ * Normalize an ffLDL tree: each leaf of value x is replaced with
+ * sigma / sqrt(x).
+ */
+ internal void ffLDL_binary_normalize(FalconFPR[] treesrc, int tree, uint orig_logn, uint logn)
+ {
+ /*
+ * TODO: make an iterative version.
+ */
+ int n;
+
+ n = (int)1 << (int)logn;
+ if (n == 1) {
+ /*
+ * We actually store in the tree leaf the inverse of
+ * the value mandated by the specification: this
+ * saves a division both here and in the sampler.
+ */
+ treesrc[tree+0] = this.fpre.fpr_mul(this.fpre.fpr_sqrt(treesrc[tree+0]), this.fpre.fpr_inv_sigma[orig_logn]);
+ } else {
+ ffLDL_binary_normalize(treesrc, tree + n, orig_logn, logn - 1);
+ ffLDL_binary_normalize(treesrc, tree + n + (int)ffLDL_treesize(logn - 1),
+ orig_logn, logn - 1);
+ }
+ }
+
+ /* =================================================================== */
+
+ /*
+ * Convert an integer polynomial (with small values) into the
+ * representation with complex numbers.
+ */
+ internal void smallints_to_fpr(FalconFPR[] rsrc, int r, sbyte[] tsrc, int t, uint logn)
+ {
+ int n, u;
+
+ n = (int)1 << (int)logn;
+ for (u = 0; u < n; u ++) {
+ rsrc[r+u] = this.fpre.fpr_of(tsrc[t+u]);
+ }
+ }
+
+ /*
+ * The expanded private key contains:
+ * - The B0 matrix (four elements)
+ * - The ffLDL tree
+ */
+
+ int skoff_b00(uint logn)
+ {
+ return 0;
+ }
+
+ int skoff_b01(uint logn)
+ {
+ return (int)1 << (int)logn;
+ }
+
+ int skoff_b10(uint logn)
+ {
+ return 2 * (int)1 << (int)logn;
+ }
+
+ int skoff_b11(uint logn)
+ {
+ return 3 * (int)1 << (int)logn;
+ }
+
+ int skoff_tree(uint logn)
+ {
+ return 4 * (int)1 << (int)logn;
+ }
+
+ /*
+ * Perform Fast Fourier Sampling for target vector t. The Gram matrix
+ * is provided (G = [[g00, g01], [adj(g01), g11]]). The sampled vector
+ * is written over (t0,t1). The Gram matrix is modified as well. The
+ * tmp[] buffer must have room for four polynomials.
+ */
+ internal void ffSampling_fft_dyntree(SamplerZ samp,
+ FalconFPR[] t0src, int t0, FalconFPR[] t1src, int t1,
+ FalconFPR[] g00src, int g00, FalconFPR[] g01src, int g01, FalconFPR[] g11src, int g11,
+ uint orig_logn, uint logn, FalconFPR[] tmpsrc, int tmp)
+ {
+ int n, hn;
+ int z0, z1;
+
+ /*
+ * Deepest level: the LDL tree leaf value is just g00 (the
+ * array has length only 1 at this point); we normalize it
+ * with regards to sigma, then use it for sampling.
+ */
+ if (logn == 0) {
+ FalconFPR leaf;
+
+ leaf = g00src[g00+0];
+ leaf = this.fpre.fpr_mul(this.fpre.fpr_sqrt(leaf), this.fpre.fpr_inv_sigma[orig_logn]);
+ t0src[t0+0] = this.fpre.fpr_of(samp.Sample(t0src[t0+0], leaf));
+ t1src[t1+0] = this.fpre.fpr_of(samp.Sample(t1src[t1+0], leaf));
+ return;
+ }
+
+ n = (int)1 << (int)logn;
+ hn = n >> 1;
+
+ /*
+ * Decompose G into LDL. We only need d00 (identical to g00),
+ * d11, and l10; we do that in place.
+ */
+ this.ffte.poly_LDL_fft(g00src, g00, g01src, g01, g11src, g11, logn);
+
+ /*
+ * Split d00 and d11 and expand them into half-size quasi-cyclic
+ * Gram matrices. We also save l10 in tmp[].
+ */
+ this.ffte.poly_split_fft(tmpsrc, tmp, tmpsrc, tmp + hn, g00src, g00, logn);
+ // memcpy(g00, tmp, n * sizeof *tmp);
+ Array.Copy(tmpsrc, tmp, g00src, g00, n);
+ this.ffte.poly_split_fft(tmpsrc, tmp, tmpsrc, tmp + hn, g11src, g11, logn);
+ // memcpy(g11, tmp, n * sizeof *tmp);
+ // memcpy(tmp, g01, n * sizeof *g01);
+ // memcpy(g01, g00, hn * sizeof *g00);
+ // memcpy(g01 + hn, g11, hn * sizeof *g00);
+ Array.Copy(tmpsrc, tmp, g11src, g11, n);
+ Array.Copy(g01src, g01, tmpsrc, tmp, n);
+ Array.Copy(g00src, g00,g01src, g01, hn);
+ Array.Copy(g11src, g11, g01src, g01 + hn, hn);
+ /*
+ * The half-size Gram matrices for the recursive LDL tree
+ * building are now:
+ * - left sub-tree: g00, g00+hn, g01
+ * - right sub-tree: g11, g11+hn, g01+hn
+ * l10 is in tmp[].
+ */
+
+ /*
+ * We split t1 and use the first recursive call on the two
+ * halves, using the right sub-tree. The result is merged
+ * back into tmp + 2*n.
+ */
+ z1 = tmp + n;
+ this.ffte.poly_split_fft(tmpsrc, z1, tmpsrc, z1 + hn, tmpsrc, t1, logn);
+ ffSampling_fft_dyntree(samp, tmpsrc, z1, tmpsrc, z1 + hn,
+ g11src, g11, g11src, g11 + hn, g01src, g01 + hn, orig_logn, logn - 1, tmpsrc, z1 + n);
+ this.ffte.poly_merge_fft(tmpsrc, tmp + (n << 1), tmpsrc, z1, tmpsrc, z1 + hn, logn);
+
+ /*
+ * Compute tb0 = t0 + (t1 - z1) * l10.
+ * At that point, l10 is in tmp, t1 is unmodified, and z1 is
+ * in tmp + (n << 1). The buffer in z1 is free.
+ *
+ * In the end, z1 is written over t1, and tb0 is in t0.
+ */
+ // memcpy(z1, t1, n * sizeof *t1);
+ Array.Copy(tmpsrc, t1, tmpsrc, z1, n);
+ this.ffte.poly_sub(tmpsrc, z1, tmpsrc, tmp + (n << 1), logn);
+ // memcpy(t1, tmp + (n << 1), n * sizeof *tmp);
+ Array.Copy(tmpsrc, tmp + (n << 1), tmpsrc, t1, n);
+ this.ffte.poly_mul_fft(tmpsrc, tmp, tmpsrc, z1, logn);
+ this.ffte.poly_add(tmpsrc, t0, tmpsrc, tmp, logn);
+
+ /*
+ * Second recursive invocation, on the split tb0 (currently in t0)
+ * and the left sub-tree.
+ */
+ z0 = tmp;
+ this.ffte.poly_split_fft(tmpsrc, z0, tmpsrc, z0 + hn, tmpsrc, t0, logn);
+ ffSampling_fft_dyntree(samp, tmpsrc, z0, tmpsrc, z0 + hn,
+ g00src, g00, g00src, g00 + hn, g01src, g01, orig_logn, logn - 1, tmpsrc, z0 + n);
+ this.ffte.poly_merge_fft(tmpsrc, t0, tmpsrc, z0, tmpsrc, z0 + hn, logn);
+ }
+
+ /*
+ * Perform Fast Fourier Sampling for target vector t and LDL tree T.
+ * tmp[] must have size for at least two polynomials of size 2^logn.
+ */
+ internal void ffSampling_fft(SamplerZ samp,
+ FalconFPR[] z0src, int z0, FalconFPR[] z1src, int z1,
+ FalconFPR[] treesrc, int tree,
+ FalconFPR[] t0src, int t0, FalconFPR[] t1src, int t1, uint logn,
+ FalconFPR[] tmpsrc, int tmp)
+ {
+ int n, hn;
+ int tree0, tree1;
+
+ /*
+ * When logn == 2, we inline the last two recursion levels.
+ */
+ if (logn == 2) {
+ FalconFPR x0, x1, y0, y1, w0, w1, w2, w3, sigma;
+ FalconFPR a_re, a_im, b_re, b_im, c_re, c_im;
+
+ tree0 = tree + 4;
+ tree1 = tree + 8;
+
+ /*
+ * We split t1 into w*, then do the recursive invocation,
+ * with output in w*. We finally merge back into z1.
+ */
+ a_re = t1src[t1+0];
+ a_im = t1src[t1 + 2];
+ b_re = t1src[t1 + 1];
+ b_im = t1src[t1 + 3];
+ c_re = this.fpre.fpr_add(a_re, b_re);
+ c_im = this.fpre.fpr_add(a_im, b_im);
+ w0 = this.fpre.fpr_half(c_re);
+ w1 = this.fpre.fpr_half(c_im);
+ c_re = this.fpre.fpr_sub(a_re, b_re);
+ c_im = this.fpre.fpr_sub(a_im, b_im);
+ w2 = this.fpre.fpr_mul(this.fpre.fpr_add(c_re, c_im), this.fpre.fpr_invsqrt8);
+ w3 = this.fpre.fpr_mul(this.fpre.fpr_sub(c_im, c_re), this.fpre.fpr_invsqrt8);
+
+ x0 = w2;
+ x1 = w3;
+ sigma = treesrc[tree1 + 3];
+ w2 = this.fpre.fpr_of(samp.Sample(x0, sigma));
+ w3 = this.fpre.fpr_of(samp.Sample(x1, sigma));
+ a_re = this.fpre.fpr_sub(x0, w2);
+ a_im = this.fpre.fpr_sub(x1, w3);
+ b_re = treesrc[tree1 + 0];
+ b_im = treesrc[tree1 + 1];
+ c_re = this.fpre.fpr_sub(this.fpre.fpr_mul(a_re, b_re), this.fpre.fpr_mul(a_im, b_im));
+ c_im = this.fpre.fpr_add(this.fpre.fpr_mul(a_re, b_im), this.fpre.fpr_mul(a_im, b_re));
+ x0 = this.fpre.fpr_add(c_re, w0);
+ x1 = this.fpre.fpr_add(c_im, w1);
+ sigma = treesrc[tree1 + 2];
+ w0 = this.fpre.fpr_of(samp.Sample(x0, sigma));
+ w1 = this.fpre.fpr_of(samp.Sample(x1, sigma));
+
+ a_re = w0;
+ a_im = w1;
+ b_re = w2;
+ b_im = w3;
+ c_re = this.fpre.fpr_mul(this.fpre.fpr_sub(b_re, b_im), this.fpre.fpr_invsqrt2);
+ c_im = this.fpre.fpr_mul(this.fpre.fpr_add(b_re, b_im), this.fpre.fpr_invsqrt2);
+ z1src[z1 + 0] = w0 = this.fpre.fpr_add(a_re, c_re);
+ z1src[z1 + 2] = w2 = this.fpre.fpr_add(a_im, c_im);
+ z1src[z1 + 1] = w1 = this.fpre.fpr_sub(a_re, c_re);
+ z1src[z1 + 3] = w3 = this.fpre.fpr_sub(a_im, c_im);
+
+ /*
+ * Compute tb0 = t0 + (t1 - z1) * L. Value tb0 ends up in w*.
+ */
+ w0 = this.fpre.fpr_sub(t1src[t1+0], w0);
+ w1 = this.fpre.fpr_sub(t1src[t1 + 1], w1);
+ w2 = this.fpre.fpr_sub(t1src[t1 + 2], w2);
+ w3 = this.fpre.fpr_sub(t1src[t1 + 3], w3);
+
+ a_re = w0;
+ a_im = w2;
+ b_re = treesrc[tree+0];
+ b_im = treesrc[tree + 2];
+ w0 = this.fpre.fpr_sub(this.fpre.fpr_mul(a_re, b_re), this.fpre.fpr_mul(a_im, b_im));
+ w2 = this.fpre.fpr_add(this.fpre.fpr_mul(a_re, b_im), this.fpre.fpr_mul(a_im, b_re));
+ a_re = w1;
+ a_im = w3;
+ b_re = treesrc[tree + 1];
+ b_im = treesrc[tree + 3];
+ w1 = this.fpre.fpr_sub(this.fpre.fpr_mul(a_re, b_re), this.fpre.fpr_mul(a_im, b_im));
+ w3 = this.fpre.fpr_add(this.fpre.fpr_mul(a_re, b_im), this.fpre.fpr_mul(a_im, b_re));
+
+ w0 = this.fpre.fpr_add(w0, t0src[t0+0]);
+ w1 = this.fpre.fpr_add(w1, t0src[t0 + 1]);
+ w2 = this.fpre.fpr_add(w2, t0src[t0 + 2]);
+ w3 = this.fpre.fpr_add(w3, t0src[t0 + 3]);
+
+ /*
+ * Second recursive invocation.
+ */
+ a_re = w0;
+ a_im = w2;
+ b_re = w1;
+ b_im = w3;
+ c_re = this.fpre.fpr_add(a_re, b_re);
+ c_im = this.fpre.fpr_add(a_im, b_im);
+ w0 = this.fpre.fpr_half(c_re);
+ w1 = this.fpre.fpr_half(c_im);
+ c_re = this.fpre.fpr_sub(a_re, b_re);
+ c_im = this.fpre.fpr_sub(a_im, b_im);
+ w2 = this.fpre.fpr_mul(this.fpre.fpr_add(c_re, c_im), this.fpre.fpr_invsqrt8);
+ w3 = this.fpre.fpr_mul(this.fpre.fpr_sub(c_im, c_re), this.fpre.fpr_invsqrt8);
+
+ x0 = w2;
+ x1 = w3;
+ sigma = treesrc[tree0 + 3];
+ w2 = y0 = this.fpre.fpr_of(samp.Sample(x0, sigma));
+ w3 = y1 = this.fpre.fpr_of(samp.Sample(x1, sigma));
+ a_re = this.fpre.fpr_sub(x0, y0);
+ a_im = this.fpre.fpr_sub(x1, y1);
+ b_re = treesrc[tree0 + 0];
+ b_im = treesrc[tree0 + 1];
+ c_re = this.fpre.fpr_sub(this.fpre.fpr_mul(a_re, b_re), this.fpre.fpr_mul(a_im, b_im));
+ c_im = this.fpre.fpr_add(this.fpre.fpr_mul(a_re, b_im), this.fpre.fpr_mul(a_im, b_re));
+ x0 = this.fpre.fpr_add(c_re, w0);
+ x1 = this.fpre.fpr_add(c_im, w1);
+ sigma = treesrc[tree0 + 2];
+ w0 = this.fpre.fpr_of(samp.Sample(x0, sigma));
+ w1 = this.fpre.fpr_of(samp.Sample(x1, sigma));
+
+ a_re = w0;
+ a_im = w1;
+ b_re = w2;
+ b_im = w3;
+ c_re = this.fpre.fpr_mul(this.fpre.fpr_sub(b_re, b_im), this.fpre.fpr_invsqrt2);
+ c_im = this.fpre.fpr_mul(this.fpre.fpr_add(b_re, b_im), this.fpre.fpr_invsqrt2);
+ z0src[z0 + 0] = this.fpre.fpr_add(a_re, c_re);
+ z0src[z0 + 2] = this.fpre.fpr_add(a_im, c_im);
+ z0src[z0 + 1] = this.fpre.fpr_sub(a_re, c_re);
+ z0src[z0 + 3] = this.fpre.fpr_sub(a_im, c_im);
+
+ return;
+ }
+
+ /*
+ * Case logn == 1 is reachable only when using Falcon-2 (the
+ * smallest size for which Falcon is mathematically defined, but
+ * of course way too insecure to be of any use).
+ */
+ if (logn == 1) {
+ FalconFPR x0, x1, y0, y1, sigma;
+ FalconFPR a_re, a_im, b_re, b_im, c_re, c_im;
+
+ x0 = t1src[t1+0];
+ x1 = t1src[t1 + 1];
+ sigma = treesrc[tree + 3];
+ z1src[z1 + 0] = y0 = this.fpre.fpr_of(samp.Sample(x0, sigma));
+ z1src[z1 + 1] = y1 = this.fpre.fpr_of(samp.Sample(x1, sigma));
+ a_re = this.fpre.fpr_sub(x0, y0);
+ a_im = this.fpre.fpr_sub(x1, y1);
+ b_re = treesrc[tree+0];
+ b_im = treesrc[tree + 1];
+ c_re = this.fpre.fpr_sub(this.fpre.fpr_mul(a_re, b_re), this.fpre.fpr_mul(a_im, b_im));
+ c_im = this.fpre.fpr_add(this.fpre.fpr_mul(a_re, b_im), this.fpre.fpr_mul(a_im, b_re));
+ x0 = this.fpre.fpr_add(c_re, t0src[t0+0]);
+ x1 = this.fpre.fpr_add(c_im, t0src[t0 + 1]);
+ sigma = treesrc[tree + 2];
+ z0src[z0 + 0] = this.fpre.fpr_of(samp.Sample(x0, sigma));
+ z0src[z0 + 1] = this.fpre.fpr_of(samp.Sample(x1, sigma));
+
+ return;
+ }
+
+ /*
+ * Normal end of recursion is for logn == 0. Since the last
+ * steps of the recursions were inlined in the blocks above
+ * (when logn == 1 or 2), this case is not reachable, and is
+ * retained here only for documentation purposes.
+
+ if (logn == 0) {
+ fpr x0, x1, sigma;
+
+ x0 = t0src[t0+0];
+ x1 = t1src[t1+0];
+ sigma = treesrc[tree+0];
+ z0[0] = this.fpre.fpr_of(samp.sample(x0, sigma));
+ z1src[z1 + 0] = this.fpre.fpr_of(samp.sample(x1, sigma));
+ return;
+ }
+
+ */
+
+ /*
+ * General recursive case (logn >= 3).
+ */
+
+ n = (int)1 << (int)logn;
+ hn = n >> 1;
+ tree0 = tree + n;
+ tree1 = tree + n + (int)ffLDL_treesize(logn - 1);
+
+ /*
+ * We split t1 into z1 (reused as temporary storage), then do
+ * the recursive invocation, with output in tmp. We finally
+ * merge back into z1.
+ */
+ this.ffte.poly_split_fft(z1src, z1, z1src, z1 + hn, t1src, t1, logn);
+ ffSampling_fft(samp, tmpsrc, tmp, tmpsrc, tmp + hn,
+ treesrc, tree1, z1src, z1, z1src, z1 + hn, logn - 1, tmpsrc, tmp + n);
+ this.ffte.poly_merge_fft(z1src, z1, tmpsrc, tmp, tmpsrc, tmp + hn, logn);
+
+ /*
+ * Compute tb0 = t0 + (t1 - z1) * L. Value tb0 ends up in tmp[].
+ */
+ // memcpy(tmp, t1, n * sizeof *t1);
+ Array.Copy(t1src, t1, tmpsrc, tmp, n);
+ this.ffte.poly_sub(tmpsrc, tmp, z1src, z1, logn);
+ this.ffte.poly_mul_fft(tmpsrc, tmp, treesrc, tree, logn);
+ this.ffte.poly_add(tmpsrc, tmp, t0src, t0, logn);
+
+ /*
+ * Second recursive invocation.
+ */
+ this.ffte.poly_split_fft(z0src, z0, z0src, z0 + hn, tmpsrc, tmp, logn);
+ ffSampling_fft(samp, tmpsrc, tmp, tmpsrc, tmp + hn,
+ treesrc, tree0, z0src, z0, z0src, z0 + hn, logn - 1, tmpsrc, tmp + n);
+ this.ffte.poly_merge_fft(z0src, z0, tmpsrc, tmp, tmpsrc, tmp + hn, logn);
+ }
+
+ /*
+ * Compute a signature: the signature contains two vectors, s1 and s2.
+ * The s1 vector is not returned. The squared norm of (s1,s2) is
+ * computed, and if it is short enough, then s2 is returned into the
+ * s2[] buffer, and 1 is returned; otherwise, s2[] is untouched and 0 is
+ * returned; the caller should then try again. This function uses an
+ * expanded key.
+ *
+ * tmp[] must have room for at least six polynomials.
+ */
+ internal int do_sign_tree(SamplerZ samp, short[] s2src, int s2,
+ FalconFPR[] ex_keysrc, int expanded_key,
+ ushort[] hmsrc, int hm,
+ uint logn, FalconFPR[] tmpsrc, int tmp)
+ {
+ int n, u;
+ int t0, t1, tx, ty;
+ int b00, b01, b10, b11, tree;
+ FalconFPR ni;
+ uint sqn, ng;
+ short[] s1tmp, s2tmp;
+
+ n = (int)1 << (int)logn;
+ t0 = tmp;
+ t1 = t0 + n;
+ b00 = expanded_key + skoff_b00(logn);
+ b01 = expanded_key + skoff_b01(logn);
+ b10 = expanded_key + skoff_b10(logn);
+ b11 = expanded_key + skoff_b11(logn);
+ tree = expanded_key + skoff_tree(logn);
+
+ /*
+ * Set the target vector to [hm, 0] (hm is the hashed message).
+ */
+ for (u = 0; u < n; u ++) {
+ tmpsrc[t0+u] = this.fpre.fpr_of(hmsrc[hm + u]);
+ /* This is implicit.
+ t1src[t1 + u] = fpr_zero;
+ */
+ }
+
+ /*
+ * Apply the lattice basis to obtain the real target
+ * vector (after normalization with regards to modulus).
+ */
+ this.ffte.FFT(tmpsrc, t0, logn);
+ ni = this.fpre.fpr_inverse_of_q;
+ // memcpy(t1, t0, n * sizeof *t0);
+ Array.Copy(tmpsrc, t0, tmpsrc, t1, n);
+ this.ffte.poly_mul_fft(tmpsrc, t1, ex_keysrc, b01, logn);
+ this.ffte.poly_mulconst(tmpsrc, t1, this.fpre.fpr_neg(ni), logn);
+ this.ffte.poly_mul_fft(tmpsrc, t0, ex_keysrc, b11, logn);
+ this.ffte.poly_mulconst(tmpsrc, t0, ni, logn);
+
+ tx = t1 + n;
+ ty = tx + n;
+
+ /*
+ * Apply sampling. Output is written back in [tx, ty].
+ */
+ ffSampling_fft(samp, tmpsrc, tx, tmpsrc, ty, ex_keysrc, tree, tmpsrc, t0, tmpsrc, t1, logn, tmpsrc, ty + n);
+
+ /*
+ * Get the lattice point corresponding to that tiny vector.
+ */
+ // memcpy(t0, tx, n * sizeof *tx);
+ Array.Copy(tmpsrc, tx, tmpsrc, t0, n);
+ // memcpy(t1, ty, n * sizeof *ty);
+ Array.Copy(tmpsrc, ty, tmpsrc, t1, n);
+ this.ffte.poly_mul_fft(tmpsrc, tx, ex_keysrc, b00, logn);
+ this.ffte.poly_mul_fft(tmpsrc, ty, ex_keysrc, b10, logn);
+ this.ffte.poly_add(tmpsrc, tx, tmpsrc, ty, logn);
+ // memcpy(ty, t0, n * sizeof *t0);
+ Array.Copy(tmpsrc, t0, tmpsrc, ty, n);
+ this.ffte.poly_mul_fft(tmpsrc, ty, ex_keysrc, b01, logn);
+
+ // memcpy(t0, tx, n * sizeof *tx);
+ Array.Copy(tmpsrc, tx, tmpsrc, t0, n);
+ this.ffte.poly_mul_fft(tmpsrc, t1, ex_keysrc, b11, logn);
+ this.ffte.poly_add(tmpsrc, t1, tmpsrc, ty, logn);
+
+ this.ffte.iFFT(tmpsrc, t0, logn);
+ this.ffte.iFFT(tmpsrc, t1, logn);
+
+ /*
+ * Compute the signature.
+ */
+ s1tmp = new short[n];
+ s2tmp = new short[n];
+ sqn = 0;
+ ng = 0;
+ for (u = 0; u < n; u ++) {
+ int z;
+
+ z = (int)hmsrc[hm + u] - (int)this.fpre.fpr_rint(tmpsrc[t0+u]);
+ sqn += (uint)(z * z);
+ ng |= sqn;
+ s1tmp[u] = (short)z;
+ }
+ sqn |= (uint)(-(ng >> 31));
+
+ /*
+ * With "normal" degrees (e.g. 512 or 1024), it is very
+ * improbable that the computed vector is not short enough;
+ * however, it may happen in practice for the very reduced
+ * versions (e.g. degree 16 or below). In that case, the caller
+ * will loop, and we must not write anything into s2[] because
+ * s2[] may overlap with the hashed message hm[] and we need
+ * hm[] for the next iteration.
+ */
+ for (u = 0; u < n; u ++) {
+ s2tmp[u] = (short)-this.fpre.fpr_rint(tmpsrc[t1 + u]);
+ }
+ if (this.common.is_short_half(sqn, s2tmp, 0, logn)) {
+ // memcpy(s2, s2tmp, n * sizeof *s2);
+ Array.Copy(s2tmp, 0, s2src, s2, n);
+ // memcpy(tmp, s1tmp, n * sizeof *s1tmp);
+ Array.Copy(s1tmp, 0, tmpsrc, tmp, n);
+ return 1;
+ }
+ return 0;
+ }
+
+ /*
+ * Compute a signature: the signature contains two vectors, s1 and s2.
+ * The s1 vector is not returned. The squared norm of (s1,s2) is
+ * computed, and if it is short enough, then s2 is returned into the
+ * s2[] buffer, and 1 is returned; otherwise, s2[] is untouched and 0 is
+ * returned; the caller should then try again.
+ *
+ * tmp[] must have room for at least nine polynomials.
+ */
+ internal int do_sign_dyn(SamplerZ samp, short[] s2src, int s2,
+ sbyte[] fsrc, int f, sbyte[] gsrc, int g,
+ sbyte[] Fsrc, int F, sbyte[] Gsrc, int G,
+ ushort[] hmsrc, int hm, uint logn, FalconFPR[] tmpsrc, int tmp)
+ {
+ int n, u;
+ int t0, t1, tx, ty;
+ int b00, b01, b10, b11;
+ int g00, g01, g11;
+ FalconFPR ni;
+ uint sqn, ng;
+ short[] s1tmp, s2tmp;
+
+ n = (int)1 << (int)logn;
+
+ /*
+ * Lattice basis is B = [[g, -f], [G, -F]]. We convert it to FFT.
+ */
+ b00 = tmp;
+ b01 = b00 + n;
+ b10 = b01 + n;
+ b11 = b10 + n;
+ smallints_to_fpr(tmpsrc, b01, fsrc, f, logn);
+ smallints_to_fpr(tmpsrc, b00, gsrc, g, logn);
+ smallints_to_fpr(tmpsrc, b11, Fsrc, F, logn);
+ smallints_to_fpr(tmpsrc, b10, Gsrc, G, logn);
+ this.ffte.FFT(tmpsrc, b01, logn);
+ this.ffte.FFT(tmpsrc, b00, logn);
+ this.ffte.FFT(tmpsrc, b11, logn);
+ this.ffte.FFT(tmpsrc, b10, logn);
+ this.ffte.poly_neg(tmpsrc, b01, logn);
+ this.ffte.poly_neg(tmpsrc, b11, logn);
+
+ /*
+ * Compute the Gram matrix G = B·B*. Formulas are:
+ * g00 = b00*adj(b00) + b01*adj(b01)
+ * g01 = b00*adj(b10) + b01*adj(b11)
+ * g10 = b10*adj(b00) + b11*adj(b01)
+ * g11 = b10*adj(b10) + b11*adj(b11)
+ *
+ * For historical reasons, this implementation uses
+ * g00, g01 and g11 (upper triangle). g10 is not kept
+ * since it is equal to adj(g01).
+ *
+ * We _replace_ the matrix B with the Gram matrix, but we
+ * must keep b01 and b11 for computing the target vector.
+ */
+ t0 = b11 + n;
+ t1 = t0 + n;
+
+ // memcpy(t0, b01, n * sizeof *b01);
+ Array.Copy(tmpsrc, b01, tmpsrc, t0, n);
+ this.ffte.poly_mulselfadj_fft(tmpsrc, t0, logn); // t0 <- b01*adj(b01)
+
+ // memcpy(t1, b00, n * sizeof *b00);
+ Array.Copy(tmpsrc, b00, tmpsrc, t1, n);
+ this.ffte.poly_muladj_fft(tmpsrc, t1, tmpsrc, b10, logn); // t1 <- b00*adj(b10)
+ this.ffte.poly_mulselfadj_fft(tmpsrc, b00, logn); // b00 <- b00*adj(b00)
+ this.ffte.poly_add(tmpsrc, b00, tmpsrc, t0, logn); // b00 <- g00
+ // memcpy(t0, b01, n * sizeof *b01);
+ Array.Copy(tmpsrc, b01, tmpsrc, t0, n);
+ this.ffte.poly_muladj_fft(tmpsrc, b01, tmpsrc, b11, logn); // b01 <- b01*adj(b11)
+ this.ffte.poly_add(tmpsrc, b01, tmpsrc, t1, logn); // b01 <- g01
+
+ this.ffte.poly_mulselfadj_fft(tmpsrc, b10, logn); // b10 <- b10*adj(b10)
+ // memcpy(t1, b11, n * sizeof *b11);
+ Array.Copy(tmpsrc, b11, tmpsrc, t1, n);
+ this.ffte.poly_mulselfadj_fft(tmpsrc, t1, logn); // t1 <- b11*adj(b11)
+ this.ffte.poly_add(tmpsrc, b10, tmpsrc, t1, logn); // b10 <- g11
+
+ /*
+ * We rename variables to make things clearer. The three elements
+ * of the Gram matrix uses the first 3*n slots of tmp[], followed
+ * by b11 and b01 (in that order).
+ */
+ g00 = b00;
+ g01 = b01;
+ g11 = b10;
+ b01 = t0;
+ t0 = b01 + n;
+ t1 = t0 + n;
+
+ /*
+ * Memory layout at that point:
+ * g00 g01 g11 b11 b01 t0 t1
+ */
+
+ /*
+ * Set the target vector to [hm, 0] (hm is the hashed message).
+ */
+ for (u = 0; u < n; u ++) {
+ tmpsrc[t0+u] = this.fpre.fpr_of((short)hmsrc[hm + u]);
+ /* This is implicit.
+ t1src[t1 + u] = fpr_zero;
+ */
+ }
+
+ /*
+ * Apply the lattice basis to obtain the real target
+ * vector (after normalization with regards to modulus).
+ */
+ this.ffte.FFT(tmpsrc, t0, logn);
+ ni = this.fpre.fpr_inverse_of_q;
+ // memcpy(t1, t0, n * sizeof *t0);
+ Array.Copy(tmpsrc, t0, tmpsrc, t1, n);
+ this.ffte.poly_mul_fft(tmpsrc, t1, tmpsrc, b01, logn);
+ this.ffte.poly_mulconst(tmpsrc, t1, this.fpre.fpr_neg(ni), logn);
+ this.ffte.poly_mul_fft(tmpsrc, t0, tmpsrc, b11, logn);
+ this.ffte.poly_mulconst(tmpsrc, t0, ni, logn);
+
+ /*
+ * b01 and b11 can be discarded, so we move back (t0,t1).
+ * Memory layout is now:
+ * g00 g01 g11 t0 t1
+ */
+ // memcpy(b11, t0, n * 2 * sizeof *t0);
+ Array.Copy(tmpsrc, t0, tmpsrc, b11, n * 2);
+ t0 = g11 + n;
+ t1 = t0 + n;
+
+ /*
+ * Apply sampling; result is written over (t0,t1).
+ */
+ ffSampling_fft_dyntree(samp,
+ tmpsrc, t0, tmpsrc, t1, tmpsrc, g00, tmpsrc, g01, tmpsrc, g11, logn, logn, tmpsrc, t1 + n);
+
+ /*
+ * We arrange the layout back to:
+ * b00 b01 b10 b11 t0 t1
+ *
+ * We did not conserve the matrix basis, so we must recompute
+ * it now.
+ */
+ b00 = tmp;
+ b01 = b00 + n;
+ b10 = b01 + n;
+ b11 = b10 + n;
+ // memmove(b11 + n, t0, n * 2 * sizeof *t0);
+ Array.Copy(tmpsrc, t0, tmpsrc, b11 + n, n * 2);
+ t0 = b11 + n;
+ t1 = t0 + n;
+ smallints_to_fpr(tmpsrc, b01, fsrc, f, logn);
+ smallints_to_fpr(tmpsrc, b00, gsrc, g, logn);
+ smallints_to_fpr(tmpsrc, b11, Fsrc, F, logn);
+ smallints_to_fpr(tmpsrc, b10, Gsrc, G, logn);
+ this.ffte.FFT(tmpsrc, b01, logn);
+ this.ffte.FFT(tmpsrc, b00, logn);
+ this.ffte.FFT(tmpsrc, b11, logn);
+ this.ffte.FFT(tmpsrc, b10, logn);
+ this.ffte.poly_neg(tmpsrc, b01, logn);
+ this.ffte.poly_neg(tmpsrc, b11, logn);
+ tx = t1 + n;
+ ty = tx + n;
+
+ /*
+ * Get the lattice point corresponding to that tiny vector.
+ */
+ // memcpy(tx, t0, n * sizeof *t0);
+ Array.Copy(tmpsrc, t0, tmpsrc, tx, n);
+ // memcpy(ty, t1, n * sizeof *t1);
+ Array.Copy(tmpsrc, t1, tmpsrc, ty, n);
+ this.ffte.poly_mul_fft(tmpsrc, tx, tmpsrc, b00, logn);
+ this.ffte.poly_mul_fft(tmpsrc, ty, tmpsrc, b10, logn);
+ this.ffte.poly_add(tmpsrc, tx, tmpsrc, ty, logn);
+ // memcpy(ty, t0, n * sizeof *t0);
+ Array.Copy(tmpsrc, t0, tmpsrc, ty, n);
+ this.ffte.poly_mul_fft(tmpsrc, ty, tmpsrc, b01, logn);
+
+ // memcpy(t0, tx, n * sizeof *tx);
+ Array.Copy(tmpsrc, tx, tmpsrc, t0, n);
+ this.ffte.poly_mul_fft(tmpsrc, t1, tmpsrc, b11, logn);
+ this.ffte.poly_add(tmpsrc, t1, tmpsrc, ty, logn);
+ this.ffte.iFFT(tmpsrc, t0, logn);
+ this.ffte.iFFT(tmpsrc, t1, logn);
+
+ s1tmp = new short[n];
+ sqn = 0;
+ ng = 0;
+ for (u = 0; u < n; u ++) {
+ int z;
+
+ z = (int)hmsrc[hm + u] - (int)this.fpre.fpr_rint(tmpsrc[t0+u]);
+ sqn += (uint)(z * z);
+ ng |= sqn;
+ s1tmp[u] = (short)z;
+ }
+ sqn |= (uint)(-(ng >> 31));
+
+ /*
+ * With "normal" degrees (e.g. 512 or 1024), it is very
+ * improbable that the computed vector is not short enough;
+ * however, it may happen in practice for the very reduced
+ * versions (e.g. degree 16 or below). In that case, the caller
+ * will loop, and we must not write anything into s2[] because
+ * s2[] may overlap with the hashed message hm[] and we need
+ * hm[] for the next iteration.
+ */
+ s2tmp = new short[n];
+ for (u = 0; u < n; u ++) {
+ s2tmp[u] = (short)-this.fpre.fpr_rint(tmpsrc[t1 + u]);
+ }
+ if (this.common.is_short_half(sqn, s2tmp, 0, logn)) {
+ // memcpy(s2, s2tmp, n * sizeof *s2);
+ Array.Copy(s2tmp, 0, s2src, s2, n);
+ // memcpy(tmp, s1tmp, n * sizeof *s1tmp);
+ //Array.Copy(s1tmp, 0, tmpsrc, tmp, n);
+ return 1;
+ }
+ return 0;
+ }
+
+ internal void sign_tree(short[] sigsrc, int sig, SHAKE256 rng,
+ FalconFPR[] ex_keysrc, int expanded_key,
+ ushort[] hmsrc, int hm, uint logn, FalconFPR[] tmpsrc, int tmp)
+ {
+
+ int ftmp = tmp;
+ for (;;) {
+ /*
+ * Signature produces short vectors s1 and s2. The
+ * signature is acceptable only if the aggregate vector
+ * s1,s2 is short; we must use the same bound as the
+ * verifier.
+ *
+ * If the signature is acceptable, then we return only s2
+ * (the verifier recomputes s1 from s2, the hashed message,
+ * and the public key).
+ */
+
+ /*
+ * Normal sampling. We use a fast PRNG seeded from our
+ * SHAKE context ('rng').
+ */
+ FalconRNG prng = new FalconRNG();
+ prng.prng_init(rng);
+ SamplerZ samp = new SamplerZ(prng, this.fpre.fpr_sigma_min[logn], this.fpre);
+
+
+ /*
+ * Do the actual signature.
+ */
+ if (do_sign_tree(samp, sigsrc, sig,
+ ex_keysrc, expanded_key, hmsrc, hm, logn, tmpsrc, ftmp) != 0)
+ {
+ break;
+ }
+ }
+ }
+
+ internal void sign_dyn(short[] sigsrc, int sig, SHAKE256 rng,
+ sbyte[] fsrc, int f, sbyte[] gsrc, int g,
+ sbyte[] Fsrc, int F, sbyte[] Gsrc, int G,
+ ushort[] hmsrc, int hm, uint logn, FalconFPR[] tmpsrc, int tmp)
+ {
+ for (;;) {
+ /*
+ * Signature produces short vectors s1 and s2. The
+ * signature is acceptable only if the aggregate vector
+ * s1,s2 is short; we must use the same bound as the
+ * verifier.
+ *
+ * If the signature is acceptable, then we return only s2
+ * (the verifier recomputes s1 from s2, the hashed message,
+ * and the public key).
+ */
+
+ /*
+ * Normal sampling. We use a fast PRNG seeded from our
+ * SHAKE context ('rng').
+ */
+
+ FalconRNG prng = new FalconRNG();
+ prng.prng_init(rng);
+ SamplerZ samp = new SamplerZ(prng, this.fpre.fpr_sigma_min[logn], this.fpre);
+
+ /*
+ * Do the actual signature.
+ */
+ if (do_sign_dyn(samp, sigsrc, sig,
+ fsrc, f, gsrc, g, Fsrc, F, Gsrc, G, hmsrc, hm, logn, tmpsrc, tmp) != 0)
+ {
+ break;
+ }
+ }
+ }
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/FalconSigner.cs b/crypto/src/pqc/crypto/falcon/FalconSigner.cs
new file mode 100644
index 000000000..8af2f4c93
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FalconSigner.cs
@@ -0,0 +1,76 @@
+using System;
+using Org.BouncyCastle.Crypto;
+using Org.BouncyCastle.Pqc.Crypto;
+using Org.BouncyCastle.Security;
+using Org.BouncyCastle.Crypto.Parameters;
+using Org.BouncyCastle.Utilities;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ public class FalconSigner
+ : IMessageSigner
+ {
+ private byte[] encodedkey;
+ private FalconNIST nist;
+
+ public void Init(bool forSigning, ICipherParameters param)
+ {
+ if (forSigning)
+ {
+ if (param is ParametersWithRandom)
+ {
+ FalconPrivateKeyParameters skparam = ((FalconPrivateKeyParameters)((ParametersWithRandom)param).Parameters);
+ encodedkey = skparam.GetEncoded();
+ nist = new FalconNIST(
+ ((ParametersWithRandom)param).Random,
+ skparam.GetParameters().GetLogN(),
+ skparam.GetParameters().GetNonceLength());
+ }
+ else
+ {
+ FalconPrivateKeyParameters skparam = (FalconPrivateKeyParameters)param;
+ encodedkey = ((FalconPrivateKeyParameters)param).GetEncoded();
+ nist = new FalconNIST(
+ new SecureRandom(),
+ // CryptoServicesRegistrar.GetSecureRandom(),
+ skparam.GetParameters().GetLogN(),
+ skparam.GetParameters().GetNonceLength()
+ );
+ // TODO when CryptoServicesRegistrar has been implemented, use that instead
+
+ }
+ }
+ else
+ {
+ FalconPublicKeyParameters pkparam = (FalconPublicKeyParameters)param;
+ encodedkey = pkparam.GetEncoded();
+ nist = new FalconNIST(
+ new SecureRandom(),
+ // CryptoServicesRegistrar.GetSecureRandom()
+ pkparam.GetParameters().GetLogN(),
+ pkparam.GetParameters().GetNonceLength());
+ }
+ }
+
+ public byte[] GenerateSignature(byte[] message)
+ {
+ byte[] sm = new byte[nist.GetCryptoBytes()];
+
+ return nist.crypto_sign(sm, message, 0, (uint)message.Length, encodedkey, 0);
+ }
+
+ public bool VerifySignature(byte[] message, byte[] signature)
+ {
+ if (signature[0] != (byte)(0x30 + nist.GetLogn()))
+ {
+ return false;
+ }
+ byte[] nonce = new byte[nist.GetNonceLength()];
+ byte[] sig = new byte[signature.Length - nist.GetNonceLength() - 1];
+ Array.Copy(signature, 1, nonce, 0, nist.GetNonceLength());
+ Array.Copy(signature, nist.GetNonceLength() + 1, sig, 0, signature.Length - nist.GetNonceLength() - 1);
+ bool res = nist.crypto_sign_open(sig,nonce,message,encodedkey,0) == 0;
+ return res;
+ }
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/FalconSmallPrime.cs b/crypto/src/pqc/crypto/falcon/FalconSmallPrime.cs
new file mode 100644
index 000000000..83a7cdfaf
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FalconSmallPrime.cs
@@ -0,0 +1,46 @@
+using System;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ class FalconSmallPrime
+ {
+ /*
+ * License from the reference C code (the code was copied then modified
+ * to function in C#, this file corresponds to the small_prime type defined
+ * in keygen.c):
+ * ==========================(LICENSE BEGIN)============================
+ *
+ * Copyright (c) 2017-2019 Falcon Project
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * ===========================(LICENSE END)=============================
+ */
+ internal uint p;
+ internal uint g;
+ internal uint s;
+
+ internal FalconSmallPrime(uint p, uint g, uint s) {
+ this.p = p;
+ this.g = g;
+ this.s = s;
+ }
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/FalconSmallPrimes.cs b/crypto/src/pqc/crypto/falcon/FalconSmallPrimes.cs
new file mode 100644
index 000000000..dcefa7f05
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FalconSmallPrimes.cs
@@ -0,0 +1,536 @@
+using System;
+using System.Collections.Generic;
+using System.Linq;
+using System.Threading.Tasks;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ class FalconSmallPrimes
+ {
+ internal FalconSmallPrimes() {}
+ internal FalconSmallPrime[] PRIMES = {
+ new FalconSmallPrime( 2147473409, 383167813, 10239 ),
+ new FalconSmallPrime( 2147389441, 211808905, 471403745 ),
+ new FalconSmallPrime( 2147387393, 37672282, 1329335065 ),
+ new FalconSmallPrime( 2147377153, 1977035326, 968223422 ),
+ new FalconSmallPrime( 2147358721, 1067163706, 132460015 ),
+ new FalconSmallPrime( 2147352577, 1606082042, 598693809 ),
+ new FalconSmallPrime( 2147346433, 2033915641, 1056257184 ),
+ new FalconSmallPrime( 2147338241, 1653770625, 421286710 ),
+ new FalconSmallPrime( 2147309569, 631200819, 1111201074 ),
+ new FalconSmallPrime( 2147297281, 2038364663, 1042003613 ),
+ new FalconSmallPrime( 2147295233, 1962540515, 19440033 ),
+ new FalconSmallPrime( 2147239937, 2100082663, 353296760 ),
+ new FalconSmallPrime( 2147235841, 1991153006, 1703918027 ),
+ new FalconSmallPrime( 2147217409, 516405114, 1258919613 ),
+ new FalconSmallPrime( 2147205121, 409347988, 1089726929 ),
+ new FalconSmallPrime( 2147196929, 927788991, 1946238668 ),
+ new FalconSmallPrime( 2147178497, 1136922411, 1347028164 ),
+ new FalconSmallPrime( 2147100673, 868626236, 701164723 ),
+ new FalconSmallPrime( 2147082241, 1897279176, 617820870 ),
+ new FalconSmallPrime( 2147074049, 1888819123, 158382189 ),
+ new FalconSmallPrime( 2147051521, 25006327, 522758543 ),
+ new FalconSmallPrime( 2147043329, 327546255, 37227845 ),
+ new FalconSmallPrime( 2147039233, 766324424, 1133356428 ),
+ new FalconSmallPrime( 2146988033, 1862817362, 73861329 ),
+ new FalconSmallPrime( 2146963457, 404622040, 653019435 ),
+ new FalconSmallPrime( 2146959361, 1936581214, 995143093 ),
+ new FalconSmallPrime( 2146938881, 1559770096, 634921513 ),
+ new FalconSmallPrime( 2146908161, 422623708, 1985060172 ),
+ new FalconSmallPrime( 2146885633, 1751189170, 298238186 ),
+ new FalconSmallPrime( 2146871297, 578919515, 291810829 ),
+ new FalconSmallPrime( 2146846721, 1114060353, 915902322 ),
+ new FalconSmallPrime( 2146834433, 2069565474, 47859524 ),
+ new FalconSmallPrime( 2146818049, 1552824584, 646281055 ),
+ new FalconSmallPrime( 2146775041, 1906267847, 1597832891 ),
+ new FalconSmallPrime( 2146756609, 1847414714, 1228090888 ),
+ new FalconSmallPrime( 2146744321, 1818792070, 1176377637 ),
+ new FalconSmallPrime( 2146738177, 1118066398, 1054971214 ),
+ new FalconSmallPrime( 2146736129, 52057278, 933422153 ),
+ new FalconSmallPrime( 2146713601, 592259376, 1406621510 ),
+ new FalconSmallPrime( 2146695169, 263161877, 1514178701 ),
+ new FalconSmallPrime( 2146656257, 685363115, 384505091 ),
+ new FalconSmallPrime( 2146650113, 927727032, 537575289 ),
+ new FalconSmallPrime( 2146646017, 52575506, 1799464037 ),
+ new FalconSmallPrime( 2146643969, 1276803876, 1348954416 ),
+ new FalconSmallPrime( 2146603009, 814028633, 1521547704 ),
+ new FalconSmallPrime( 2146572289, 1846678872, 1310832121 ),
+ new FalconSmallPrime( 2146547713, 919368090, 1019041349 ),
+ new FalconSmallPrime( 2146508801, 671847612, 38582496 ),
+ new FalconSmallPrime( 2146492417, 283911680, 532424562 ),
+ new FalconSmallPrime( 2146490369, 1780044827, 896447978 ),
+ new FalconSmallPrime( 2146459649, 327980850, 1327906900 ),
+ new FalconSmallPrime( 2146447361, 1310561493, 958645253 ),
+ new FalconSmallPrime( 2146441217, 412148926, 287271128 ),
+ new FalconSmallPrime( 2146437121, 293186449, 2009822534 ),
+ new FalconSmallPrime( 2146430977, 179034356, 1359155584 ),
+ new FalconSmallPrime( 2146418689, 1517345488, 1790248672 ),
+ new FalconSmallPrime( 2146406401, 1615820390, 1584833571 ),
+ new FalconSmallPrime( 2146404353, 826651445, 607120498 ),
+ new FalconSmallPrime( 2146379777, 3816988, 1897049071 ),
+ new FalconSmallPrime( 2146363393, 1221409784, 1986921567 ),
+ new FalconSmallPrime( 2146355201, 1388081168, 849968120 ),
+ new FalconSmallPrime( 2146336769, 1803473237, 1655544036 ),
+ new FalconSmallPrime( 2146312193, 1023484977, 273671831 ),
+ new FalconSmallPrime( 2146293761, 1074591448, 467406983 ),
+ new FalconSmallPrime( 2146283521, 831604668, 1523950494 ),
+ new FalconSmallPrime( 2146203649, 712865423, 1170834574 ),
+ new FalconSmallPrime( 2146154497, 1764991362, 1064856763 ),
+ new FalconSmallPrime( 2146142209, 627386213, 1406840151 ),
+ new FalconSmallPrime( 2146127873, 1638674429, 2088393537 ),
+ new FalconSmallPrime( 2146099201, 1516001018, 690673370 ),
+ new FalconSmallPrime( 2146093057, 1294931393, 315136610 ),
+ new FalconSmallPrime( 2146091009, 1942399533, 973539425 ),
+ new FalconSmallPrime( 2146078721, 1843461814, 2132275436 ),
+ new FalconSmallPrime( 2146060289, 1098740778, 360423481 ),
+ new FalconSmallPrime( 2146048001, 1617213232, 1951981294 ),
+ new FalconSmallPrime( 2146041857, 1805783169, 2075683489 ),
+ new FalconSmallPrime( 2146019329, 272027909, 1753219918 ),
+ new FalconSmallPrime( 2145986561, 1206530344, 2034028118 ),
+ new FalconSmallPrime( 2145976321, 1243769360, 1173377644 ),
+ new FalconSmallPrime( 2145964033, 887200839, 1281344586 ),
+ new FalconSmallPrime( 2145906689, 1651026455, 906178216 ),
+ new FalconSmallPrime( 2145875969, 1673238256, 1043521212 ),
+ new FalconSmallPrime( 2145871873, 1226591210, 1399796492 ),
+ new FalconSmallPrime( 2145841153, 1465353397, 1324527802 ),
+ new FalconSmallPrime( 2145832961, 1150638905, 554084759 ),
+ new FalconSmallPrime( 2145816577, 221601706, 427340863 ),
+ new FalconSmallPrime( 2145785857, 608896761, 316590738 ),
+ new FalconSmallPrime( 2145755137, 1712054942, 1684294304 ),
+ new FalconSmallPrime( 2145742849, 1302302867, 724873116 ),
+ new FalconSmallPrime( 2145728513, 516717693, 431671476 ),
+ new FalconSmallPrime( 2145699841, 524575579, 1619722537 ),
+ new FalconSmallPrime( 2145691649, 1925625239, 982974435 ),
+ new FalconSmallPrime( 2145687553, 463795662, 1293154300 ),
+ new FalconSmallPrime( 2145673217, 771716636, 881778029 ),
+ new FalconSmallPrime( 2145630209, 1509556977, 837364988 ),
+ new FalconSmallPrime( 2145595393, 229091856, 851648427 ),
+ new FalconSmallPrime( 2145587201, 1796903241, 635342424 ),
+ new FalconSmallPrime( 2145525761, 715310882, 1677228081 ),
+ new FalconSmallPrime( 2145495041, 1040930522, 200685896 ),
+ new FalconSmallPrime( 2145466369, 949804237, 1809146322 ),
+ new FalconSmallPrime( 2145445889, 1673903706, 95316881 ),
+ new FalconSmallPrime( 2145390593, 806941852, 1428671135 ),
+ new FalconSmallPrime( 2145372161, 1402525292, 159350694 ),
+ new FalconSmallPrime( 2145361921, 2124760298, 1589134749 ),
+ new FalconSmallPrime( 2145359873, 1217503067, 1561543010 ),
+ new FalconSmallPrime( 2145355777, 338341402, 83865711 ),
+ new FalconSmallPrime( 2145343489, 1381532164, 641430002 ),
+ new FalconSmallPrime( 2145325057, 1883895478, 1528469895 ),
+ new FalconSmallPrime( 2145318913, 1335370424, 65809740 ),
+ new FalconSmallPrime( 2145312769, 2000008042, 1919775760 ),
+ new FalconSmallPrime( 2145300481, 961450962, 1229540578 ),
+ new FalconSmallPrime( 2145282049, 910466767, 1964062701 ),
+ new FalconSmallPrime( 2145232897, 816527501, 450152063 ),
+ new FalconSmallPrime( 2145218561, 1435128058, 1794509700 ),
+ new FalconSmallPrime( 2145187841, 33505311, 1272467582 ),
+ new FalconSmallPrime( 2145181697, 269767433, 1380363849 ),
+ new FalconSmallPrime( 2145175553, 56386299, 1316870546 ),
+ new FalconSmallPrime( 2145079297, 2106880293, 1391797340 ),
+ new FalconSmallPrime( 2145021953, 1347906152, 720510798 ),
+ new FalconSmallPrime( 2145015809, 206769262, 1651459955 ),
+ new FalconSmallPrime( 2145003521, 1885513236, 1393381284 ),
+ new FalconSmallPrime( 2144960513, 1810381315, 31937275 ),
+ new FalconSmallPrime( 2144944129, 1306487838, 2019419520 ),
+ new FalconSmallPrime( 2144935937, 37304730, 1841489054 ),
+ new FalconSmallPrime( 2144894977, 1601434616, 157985831 ),
+ new FalconSmallPrime( 2144888833, 98749330, 2128592228 ),
+ new FalconSmallPrime( 2144880641, 1772327002, 2076128344 ),
+ new FalconSmallPrime( 2144864257, 1404514762, 2029969964 ),
+ new FalconSmallPrime( 2144827393, 801236594, 406627220 ),
+ new FalconSmallPrime( 2144806913, 349217443, 1501080290 ),
+ new FalconSmallPrime( 2144796673, 1542656776, 2084736519 ),
+ new FalconSmallPrime( 2144778241, 1210734884, 1746416203 ),
+ new FalconSmallPrime( 2144759809, 1146598851, 716464489 ),
+ new FalconSmallPrime( 2144757761, 286328400, 1823728177 ),
+ new FalconSmallPrime( 2144729089, 1347555695, 1836644881 ),
+ new FalconSmallPrime( 2144727041, 1795703790, 520296412 ),
+ new FalconSmallPrime( 2144696321, 1302475157, 852964281 ),
+ new FalconSmallPrime( 2144667649, 1075877614, 504992927 ),
+ new FalconSmallPrime( 2144573441, 198765808, 1617144982 ),
+ new FalconSmallPrime( 2144555009, 321528767, 155821259 ),
+ new FalconSmallPrime( 2144550913, 814139516, 1819937644 ),
+ new FalconSmallPrime( 2144536577, 571143206, 962942255 ),
+ new FalconSmallPrime( 2144524289, 1746733766, 2471321 ),
+ new FalconSmallPrime( 2144512001, 1821415077, 124190939 ),
+ new FalconSmallPrime( 2144468993, 917871546, 1260072806 ),
+ new FalconSmallPrime( 2144458753, 378417981, 1569240563 ),
+ new FalconSmallPrime( 2144421889, 175229668, 1825620763 ),
+ new FalconSmallPrime( 2144409601, 1699216963, 351648117 ),
+ new FalconSmallPrime( 2144370689, 1071885991, 958186029 ),
+ new FalconSmallPrime( 2144348161, 1763151227, 540353574 ),
+ new FalconSmallPrime( 2144335873, 1060214804, 919598847 ),
+ new FalconSmallPrime( 2144329729, 663515846, 1448552668 ),
+ new FalconSmallPrime( 2144327681, 1057776305, 590222840 ),
+ new FalconSmallPrime( 2144309249, 1705149168, 1459294624 ),
+ new FalconSmallPrime( 2144296961, 325823721, 1649016934 ),
+ new FalconSmallPrime( 2144290817, 738775789, 447427206 ),
+ new FalconSmallPrime( 2144243713, 962347618, 893050215 ),
+ new FalconSmallPrime( 2144237569, 1655257077, 900860862 ),
+ new FalconSmallPrime( 2144161793, 242206694, 1567868672 ),
+ new FalconSmallPrime( 2144155649, 769415308, 1247993134 ),
+ new FalconSmallPrime( 2144137217, 320492023, 515841070 ),
+ new FalconSmallPrime( 2144120833, 1639388522, 770877302 ),
+ new FalconSmallPrime( 2144071681, 1761785233, 964296120 ),
+ new FalconSmallPrime( 2144065537, 419817825, 204564472 ),
+ new FalconSmallPrime( 2144028673, 666050597, 2091019760 ),
+ new FalconSmallPrime( 2144010241, 1413657615, 1518702610 ),
+ new FalconSmallPrime( 2143952897, 1238327946, 475672271 ),
+ new FalconSmallPrime( 2143940609, 307063413, 1176750846 ),
+ new FalconSmallPrime( 2143918081, 2062905559, 786785803 ),
+ new FalconSmallPrime( 2143899649, 1338112849, 1562292083 ),
+ new FalconSmallPrime( 2143891457, 68149545, 87166451 ),
+ new FalconSmallPrime( 2143885313, 921750778, 394460854 ),
+ new FalconSmallPrime( 2143854593, 719766593, 133877196 ),
+ new FalconSmallPrime( 2143836161, 1149399850, 1861591875 ),
+ new FalconSmallPrime( 2143762433, 1848739366, 1335934145 ),
+ new FalconSmallPrime( 2143756289, 1326674710, 102999236 ),
+ new FalconSmallPrime( 2143713281, 808061791, 1156900308 ),
+ new FalconSmallPrime( 2143690753, 388399459, 1926468019 ),
+ new FalconSmallPrime( 2143670273, 1427891374, 1756689401 ),
+ new FalconSmallPrime( 2143666177, 1912173949, 986629565 ),
+ new FalconSmallPrime( 2143645697, 2041160111, 371842865 ),
+ new FalconSmallPrime( 2143641601, 1279906897, 2023974350 ),
+ new FalconSmallPrime( 2143635457, 720473174, 1389027526 ),
+ new FalconSmallPrime( 2143621121, 1298309455, 1732632006 ),
+ new FalconSmallPrime( 2143598593, 1548762216, 1825417506 ),
+ new FalconSmallPrime( 2143567873, 620475784, 1073787233 ),
+ new FalconSmallPrime( 2143561729, 1932954575, 949167309 ),
+ new FalconSmallPrime( 2143553537, 354315656, 1652037534 ),
+ new FalconSmallPrime( 2143541249, 577424288, 1097027618 ),
+ new FalconSmallPrime( 2143531009, 357862822, 478640055 ),
+ new FalconSmallPrime( 2143522817, 2017706025, 1550531668 ),
+ new FalconSmallPrime( 2143506433, 2078127419, 1824320165 ),
+ new FalconSmallPrime( 2143488001, 613475285, 1604011510 ),
+ new FalconSmallPrime( 2143469569, 1466594987, 502095196 ),
+ new FalconSmallPrime( 2143426561, 1115430331, 1044637111 ),
+ new FalconSmallPrime( 2143383553, 9778045, 1902463734 ),
+ new FalconSmallPrime( 2143377409, 1557401276, 2056861771 ),
+ new FalconSmallPrime( 2143363073, 652036455, 1965915971 ),
+ new FalconSmallPrime( 2143260673, 1464581171, 1523257541 ),
+ new FalconSmallPrime( 2143246337, 1876119649, 764541916 ),
+ new FalconSmallPrime( 2143209473, 1614992673, 1920672844 ),
+ new FalconSmallPrime( 2143203329, 981052047, 2049774209 ),
+ new FalconSmallPrime( 2143160321, 1847355533, 728535665 ),
+ new FalconSmallPrime( 2143129601, 965558457, 603052992 ),
+ new FalconSmallPrime( 2143123457, 2140817191, 8348679 ),
+ new FalconSmallPrime( 2143100929, 1547263683, 694209023 ),
+ new FalconSmallPrime( 2143092737, 643459066, 1979934533 ),
+ new FalconSmallPrime( 2143082497, 188603778, 2026175670 ),
+ new FalconSmallPrime( 2143062017, 1657329695, 377451099 ),
+ new FalconSmallPrime( 2143051777, 114967950, 979255473 ),
+ new FalconSmallPrime( 2143025153, 1698431342, 1449196896 ),
+ new FalconSmallPrime( 2143006721, 1862741675, 1739650365 ),
+ new FalconSmallPrime( 2142996481, 756660457, 996160050 ),
+ new FalconSmallPrime( 2142976001, 927864010, 1166847574 ),
+ new FalconSmallPrime( 2142965761, 905070557, 661974566 ),
+ new FalconSmallPrime( 2142916609, 40932754, 1787161127 ),
+ new FalconSmallPrime( 2142892033, 1987985648, 675335382 ),
+ new FalconSmallPrime( 2142885889, 797497211, 1323096997 ),
+ new FalconSmallPrime( 2142871553, 2068025830, 1411877159 ),
+ new FalconSmallPrime( 2142861313, 1217177090, 1438410687 ),
+ new FalconSmallPrime( 2142830593, 409906375, 1767860634 ),
+ new FalconSmallPrime( 2142803969, 1197788993, 359782919 ),
+ new FalconSmallPrime( 2142785537, 643817365, 513932862 ),
+ new FalconSmallPrime( 2142779393, 1717046338, 218943121 ),
+ new FalconSmallPrime( 2142724097, 89336830, 416687049 ),
+ new FalconSmallPrime( 2142707713, 5944581, 1356813523 ),
+ new FalconSmallPrime( 2142658561, 887942135, 2074011722 ),
+ new FalconSmallPrime( 2142638081, 151851972, 1647339939 ),
+ new FalconSmallPrime( 2142564353, 1691505537, 1483107336 ),
+ new FalconSmallPrime( 2142533633, 1989920200, 1135938817 ),
+ new FalconSmallPrime( 2142529537, 959263126, 1531961857 ),
+ new FalconSmallPrime( 2142527489, 453251129, 1725566162 ),
+ new FalconSmallPrime( 2142502913, 1536028102, 182053257 ),
+ new FalconSmallPrime( 2142498817, 570138730, 701443447 ),
+ new FalconSmallPrime( 2142416897, 326965800, 411931819 ),
+ new FalconSmallPrime( 2142363649, 1675665410, 1517191733 ),
+ new FalconSmallPrime( 2142351361, 968529566, 1575712703 ),
+ new FalconSmallPrime( 2142330881, 1384953238, 1769087884 ),
+ new FalconSmallPrime( 2142314497, 1977173242, 1833745524 ),
+ new FalconSmallPrime( 2142289921, 95082313, 1714775493 ),
+ new FalconSmallPrime( 2142283777, 109377615, 1070584533 ),
+ new FalconSmallPrime( 2142277633, 16960510, 702157145 ),
+ new FalconSmallPrime( 2142263297, 553850819, 431364395 ),
+ new FalconSmallPrime( 2142208001, 241466367, 2053967982 ),
+ new FalconSmallPrime( 2142164993, 1795661326, 1031836848 ),
+ new FalconSmallPrime( 2142097409, 1212530046, 712772031 ),
+ new FalconSmallPrime( 2142087169, 1763869720, 822276067 ),
+ new FalconSmallPrime( 2142078977, 644065713, 1765268066 ),
+ new FalconSmallPrime( 2142074881, 112671944, 643204925 ),
+ new FalconSmallPrime( 2142044161, 1387785471, 1297890174 ),
+ new FalconSmallPrime( 2142025729, 783885537, 1000425730 ),
+ new FalconSmallPrime( 2142011393, 905662232, 1679401033 ),
+ new FalconSmallPrime( 2141974529, 799788433, 468119557 ),
+ new FalconSmallPrime( 2141943809, 1932544124, 449305555 ),
+ new FalconSmallPrime( 2141933569, 1527403256, 841867925 ),
+ new FalconSmallPrime( 2141931521, 1247076451, 743823916 ),
+ new FalconSmallPrime( 2141902849, 1199660531, 401687910 ),
+ new FalconSmallPrime( 2141890561, 150132350, 1720336972 ),
+ new FalconSmallPrime( 2141857793, 1287438162, 663880489 ),
+ new FalconSmallPrime( 2141833217, 618017731, 1819208266 ),
+ new FalconSmallPrime( 2141820929, 999578638, 1403090096 ),
+ new FalconSmallPrime( 2141786113, 81834325, 1523542501 ),
+ new FalconSmallPrime( 2141771777, 120001928, 463556492 ),
+ new FalconSmallPrime( 2141759489, 122455485, 2124928282 ),
+ new FalconSmallPrime( 2141749249, 141986041, 940339153 ),
+ new FalconSmallPrime( 2141685761, 889088734, 477141499 ),
+ new FalconSmallPrime( 2141673473, 324212681, 1122558298 ),
+ new FalconSmallPrime( 2141669377, 1175806187, 1373818177 ),
+ new FalconSmallPrime( 2141655041, 1113654822, 296887082 ),
+ new FalconSmallPrime( 2141587457, 991103258, 1585913875 ),
+ new FalconSmallPrime( 2141583361, 1401451409, 1802457360 ),
+ new FalconSmallPrime( 2141575169, 1571977166, 712760980 ),
+ new FalconSmallPrime( 2141546497, 1107849376, 1250270109 ),
+ new FalconSmallPrime( 2141515777, 196544219, 356001130 ),
+ new FalconSmallPrime( 2141495297, 1733571506, 1060744866 ),
+ new FalconSmallPrime( 2141483009, 321552363, 1168297026 ),
+ new FalconSmallPrime( 2141458433, 505818251, 733225819 ),
+ new FalconSmallPrime( 2141360129, 1026840098, 948342276 ),
+ new FalconSmallPrime( 2141325313, 945133744, 2129965998 ),
+ new FalconSmallPrime( 2141317121, 1871100260, 1843844634 ),
+ new FalconSmallPrime( 2141286401, 1790639498, 1750465696 ),
+ new FalconSmallPrime( 2141267969, 1376858592, 186160720 ),
+ new FalconSmallPrime( 2141255681, 2129698296, 1876677959 ),
+ new FalconSmallPrime( 2141243393, 2138900688, 1340009628 ),
+ new FalconSmallPrime( 2141214721, 1933049835, 1087819477 ),
+ new FalconSmallPrime( 2141212673, 1898664939, 1786328049 ),
+ new FalconSmallPrime( 2141202433, 990234828, 940682169 ),
+ new FalconSmallPrime( 2141175809, 1406392421, 993089586 ),
+ new FalconSmallPrime( 2141165569, 1263518371, 289019479 ),
+ new FalconSmallPrime( 2141073409, 1485624211, 507864514 ),
+ new FalconSmallPrime( 2141052929, 1885134788, 311252465 ),
+ new FalconSmallPrime( 2141040641, 1285021247, 280941862 ),
+ new FalconSmallPrime( 2141028353, 1527610374, 375035110 ),
+ new FalconSmallPrime( 2141011969, 1400626168, 164696620 ),
+ new FalconSmallPrime( 2140999681, 632959608, 966175067 ),
+ new FalconSmallPrime( 2140997633, 2045628978, 1290889438 ),
+ new FalconSmallPrime( 2140993537, 1412755491, 375366253 ),
+ new FalconSmallPrime( 2140942337, 719477232, 785367828 ),
+ new FalconSmallPrime( 2140925953, 45224252, 836552317 ),
+ new FalconSmallPrime( 2140917761, 1157376588, 1001839569 ),
+ new FalconSmallPrime( 2140887041, 278480752, 2098732796 ),
+ new FalconSmallPrime( 2140837889, 1663139953, 924094810 ),
+ new FalconSmallPrime( 2140788737, 802501511, 2045368990 ),
+ new FalconSmallPrime( 2140766209, 1820083885, 1800295504 ),
+ new FalconSmallPrime( 2140764161, 1169561905, 2106792035 ),
+ new FalconSmallPrime( 2140696577, 127781498, 1885987531 ),
+ new FalconSmallPrime( 2140684289, 16014477, 1098116827 ),
+ new FalconSmallPrime( 2140653569, 665960598, 1796728247 ),
+ new FalconSmallPrime( 2140594177, 1043085491, 377310938 ),
+ new FalconSmallPrime( 2140579841, 1732838211, 1504505945 ),
+ new FalconSmallPrime( 2140569601, 302071939, 358291016 ),
+ new FalconSmallPrime( 2140567553, 192393733, 1909137143 ),
+ new FalconSmallPrime( 2140557313, 406595731, 1175330270 ),
+ new FalconSmallPrime( 2140549121, 1748850918, 525007007 ),
+ new FalconSmallPrime( 2140477441, 499436566, 1031159814 ),
+ new FalconSmallPrime( 2140469249, 1886004401, 1029951320 ),
+ new FalconSmallPrime( 2140426241, 1483168100, 1676273461 ),
+ new FalconSmallPrime( 2140420097, 1779917297, 846024476 ),
+ new FalconSmallPrime( 2140413953, 522948893, 1816354149 ),
+ new FalconSmallPrime( 2140383233, 1931364473, 1296921241 ),
+ new FalconSmallPrime( 2140366849, 1917356555, 147196204 ),
+ new FalconSmallPrime( 2140354561, 16466177, 1349052107 ),
+ new FalconSmallPrime( 2140348417, 1875366972, 1860485634 ),
+ new FalconSmallPrime( 2140323841, 456498717, 1790256483 ),
+ new FalconSmallPrime( 2140321793, 1629493973, 150031888 ),
+ new FalconSmallPrime( 2140315649, 1904063898, 395510935 ),
+ new FalconSmallPrime( 2140280833, 1784104328, 831417909 ),
+ new FalconSmallPrime( 2140250113, 256087139, 697349101 ),
+ new FalconSmallPrime( 2140229633, 388553070, 243875754 ),
+ new FalconSmallPrime( 2140223489, 747459608, 1396270850 ),
+ new FalconSmallPrime( 2140200961, 507423743, 1895572209 ),
+ new FalconSmallPrime( 2140162049, 580106016, 2045297469 ),
+ new FalconSmallPrime( 2140149761, 712426444, 785217995 ),
+ new FalconSmallPrime( 2140137473, 1441607584, 536866543 ),
+ new FalconSmallPrime( 2140119041, 346538902, 1740434653 ),
+ new FalconSmallPrime( 2140090369, 282642885, 21051094 ),
+ new FalconSmallPrime( 2140076033, 1407456228, 319910029 ),
+ new FalconSmallPrime( 2140047361, 1619330500, 1488632070 ),
+ new FalconSmallPrime( 2140041217, 2089408064, 2012026134 ),
+ new FalconSmallPrime( 2140008449, 1705524800, 1613440760 ),
+ new FalconSmallPrime( 2139924481, 1846208233, 1280649481 ),
+ new FalconSmallPrime( 2139906049, 989438755, 1185646076 ),
+ new FalconSmallPrime( 2139867137, 1522314850, 372783595 ),
+ new FalconSmallPrime( 2139842561, 1681587377, 216848235 ),
+ new FalconSmallPrime( 2139826177, 2066284988, 1784999464 ),
+ new FalconSmallPrime( 2139824129, 480888214, 1513323027 ),
+ new FalconSmallPrime( 2139789313, 847937200, 858192859 ),
+ new FalconSmallPrime( 2139783169, 1642000434, 1583261448 ),
+ new FalconSmallPrime( 2139770881, 940699589, 179702100 ),
+ new FalconSmallPrime( 2139768833, 315623242, 964612676 ),
+ new FalconSmallPrime( 2139666433, 331649203, 764666914 ),
+ new FalconSmallPrime( 2139641857, 2118730799, 1313764644 ),
+ new FalconSmallPrime( 2139635713, 519149027, 519212449 ),
+ new FalconSmallPrime( 2139598849, 1526413634, 1769667104 ),
+ new FalconSmallPrime( 2139574273, 551148610, 820739925 ),
+ new FalconSmallPrime( 2139568129, 1386800242, 472447405 ),
+ new FalconSmallPrime( 2139549697, 813760130, 1412328531 ),
+ new FalconSmallPrime( 2139537409, 1615286260, 1609362979 ),
+ new FalconSmallPrime( 2139475969, 1352559299, 1696720421 ),
+ new FalconSmallPrime( 2139455489, 1048691649, 1584935400 ),
+ new FalconSmallPrime( 2139432961, 836025845, 950121150 ),
+ new FalconSmallPrime( 2139424769, 1558281165, 1635486858 ),
+ new FalconSmallPrime( 2139406337, 1728402143, 1674423301 ),
+ new FalconSmallPrime( 2139396097, 1727715782, 1483470544 ),
+ new FalconSmallPrime( 2139383809, 1092853491, 1741699084 ),
+ new FalconSmallPrime( 2139369473, 690776899, 1242798709 ),
+ new FalconSmallPrime( 2139351041, 1768782380, 2120712049 ),
+ new FalconSmallPrime( 2139334657, 1739968247, 1427249225 ),
+ new FalconSmallPrime( 2139332609, 1547189119, 623011170 ),
+ new FalconSmallPrime( 2139310081, 1346827917, 1605466350 ),
+ new FalconSmallPrime( 2139303937, 369317948, 828392831 ),
+ new FalconSmallPrime( 2139301889, 1560417239, 1788073219 ),
+ new FalconSmallPrime( 2139283457, 1303121623, 595079358 ),
+ new FalconSmallPrime( 2139248641, 1354555286, 573424177 ),
+ new FalconSmallPrime( 2139240449, 60974056, 885781403 ),
+ new FalconSmallPrime( 2139222017, 355573421, 1221054839 ),
+ new FalconSmallPrime( 2139215873, 566477826, 1724006500 ),
+ new FalconSmallPrime( 2139150337, 871437673, 1609133294 ),
+ new FalconSmallPrime( 2139144193, 1478130914, 1137491905 ),
+ new FalconSmallPrime( 2139117569, 1854880922, 964728507 ),
+ new FalconSmallPrime( 2139076609, 202405335, 756508944 ),
+ new FalconSmallPrime( 2139062273, 1399715741, 884826059 ),
+ new FalconSmallPrime( 2139045889, 1051045798, 1202295476 ),
+ new FalconSmallPrime( 2139033601, 1707715206, 632234634 ),
+ new FalconSmallPrime( 2139006977, 2035853139, 231626690 ),
+ new FalconSmallPrime( 2138951681, 183867876, 838350879 ),
+ new FalconSmallPrime( 2138945537, 1403254661, 404460202 ),
+ new FalconSmallPrime( 2138920961, 310865011, 1282911681 ),
+ new FalconSmallPrime( 2138910721, 1328496553, 103472415 ),
+ new FalconSmallPrime( 2138904577, 78831681, 993513549 ),
+ new FalconSmallPrime( 2138902529, 1319697451, 1055904361 ),
+ new FalconSmallPrime( 2138816513, 384338872, 1706202469 ),
+ new FalconSmallPrime( 2138810369, 1084868275, 405677177 ),
+ new FalconSmallPrime( 2138787841, 401181788, 1964773901 ),
+ new FalconSmallPrime( 2138775553, 1850532988, 1247087473 ),
+ new FalconSmallPrime( 2138767361, 874261901, 1576073565 ),
+ new FalconSmallPrime( 2138757121, 1187474742, 993541415 ),
+ new FalconSmallPrime( 2138748929, 1782458888, 1043206483 ),
+ new FalconSmallPrime( 2138744833, 1221500487, 800141243 ),
+ new FalconSmallPrime( 2138738689, 413465368, 1450660558 ),
+ new FalconSmallPrime( 2138695681, 739045140, 342611472 ),
+ new FalconSmallPrime( 2138658817, 1355845756, 672674190 ),
+ new FalconSmallPrime( 2138644481, 608379162, 1538874380 ),
+ new FalconSmallPrime( 2138632193, 1444914034, 686911254 ),
+ new FalconSmallPrime( 2138607617, 484707818, 1435142134 ),
+ new FalconSmallPrime( 2138591233, 539460669, 1290458549 ),
+ new FalconSmallPrime( 2138572801, 2093538990, 2011138646 ),
+ new FalconSmallPrime( 2138552321, 1149786988, 1076414907 ),
+ new FalconSmallPrime( 2138546177, 840688206, 2108985273 ),
+ new FalconSmallPrime( 2138533889, 209669619, 198172413 ),
+ new FalconSmallPrime( 2138523649, 1975879426, 1277003968 ),
+ new FalconSmallPrime( 2138490881, 1351891144, 1976858109 ),
+ new FalconSmallPrime( 2138460161, 1817321013, 1979278293 ),
+ new FalconSmallPrime( 2138429441, 1950077177, 203441928 ),
+ new FalconSmallPrime( 2138400769, 908970113, 628395069 ),
+ new FalconSmallPrime( 2138398721, 219890864, 758486760 ),
+ new FalconSmallPrime( 2138376193, 1306654379, 977554090 ),
+ new FalconSmallPrime( 2138351617, 298822498, 2004708503 ),
+ new FalconSmallPrime( 2138337281, 441457816, 1049002108 ),
+ new FalconSmallPrime( 2138320897, 1517731724, 1442269609 ),
+ new FalconSmallPrime( 2138290177, 1355911197, 1647139103 ),
+ new FalconSmallPrime( 2138234881, 531313247, 1746591962 ),
+ new FalconSmallPrime( 2138214401, 1899410930, 781416444 ),
+ new FalconSmallPrime( 2138202113, 1813477173, 1622508515 ),
+ new FalconSmallPrime( 2138191873, 1086458299, 1025408615 ),
+ new FalconSmallPrime( 2138183681, 1998800427, 827063290 ),
+ new FalconSmallPrime( 2138173441, 1921308898, 749670117 ),
+ new FalconSmallPrime( 2138103809, 1620902804, 2126787647 ),
+ new FalconSmallPrime( 2138099713, 828647069, 1892961817 ),
+ new FalconSmallPrime( 2138085377, 179405355, 1525506535 ),
+ new FalconSmallPrime( 2138060801, 615683235, 1259580138 ),
+ new FalconSmallPrime( 2138044417, 2030277840, 1731266562 ),
+ new FalconSmallPrime( 2138042369, 2087222316, 1627902259 ),
+ new FalconSmallPrime( 2138032129, 126388712, 1108640984 ),
+ new FalconSmallPrime( 2138011649, 715026550, 1017980050 ),
+ new FalconSmallPrime( 2137993217, 1693714349, 1351778704 ),
+ new FalconSmallPrime( 2137888769, 1289762259, 1053090405 ),
+ new FalconSmallPrime( 2137853953, 199991890, 1254192789 ),
+ new FalconSmallPrime( 2137833473, 941421685, 896995556 ),
+ new FalconSmallPrime( 2137817089, 750416446, 1251031181 ),
+ new FalconSmallPrime( 2137792513, 798075119, 368077456 ),
+ new FalconSmallPrime( 2137786369, 878543495, 1035375025 ),
+ new FalconSmallPrime( 2137767937, 9351178, 1156563902 ),
+ new FalconSmallPrime( 2137755649, 1382297614, 1686559583 ),
+ new FalconSmallPrime( 2137724929, 1345472850, 1681096331 ),
+ new FalconSmallPrime( 2137704449, 834666929, 630551727 ),
+ new FalconSmallPrime( 2137673729, 1646165729, 1892091571 ),
+ new FalconSmallPrime( 2137620481, 778943821, 48456461 ),
+ new FalconSmallPrime( 2137618433, 1730837875, 1713336725 ),
+ new FalconSmallPrime( 2137581569, 805610339, 1378891359 ),
+ new FalconSmallPrime( 2137538561, 204342388, 1950165220 ),
+ new FalconSmallPrime( 2137526273, 1947629754, 1500789441 ),
+ new FalconSmallPrime( 2137516033, 719902645, 1499525372 ),
+ new FalconSmallPrime( 2137491457, 230451261, 556382829 ),
+ new FalconSmallPrime( 2137440257, 979573541, 412760291 ),
+ new FalconSmallPrime( 2137374721, 927841248, 1954137185 ),
+ new FalconSmallPrime( 2137362433, 1243778559, 861024672 ),
+ new FalconSmallPrime( 2137313281, 1341338501, 980638386 ),
+ new FalconSmallPrime( 2137311233, 937415182, 1793212117 ),
+ new FalconSmallPrime( 2137255937, 795331324, 1410253405 ),
+ new FalconSmallPrime( 2137243649, 150756339, 1966999887 ),
+ new FalconSmallPrime( 2137182209, 163346914, 1939301431 ),
+ new FalconSmallPrime( 2137171969, 1952552395, 758913141 ),
+ new FalconSmallPrime( 2137159681, 570788721, 218668666 ),
+ new FalconSmallPrime( 2137147393, 1896656810, 2045670345 ),
+ new FalconSmallPrime( 2137141249, 358493842, 518199643 ),
+ new FalconSmallPrime( 2137139201, 1505023029, 674695848 ),
+ new FalconSmallPrime( 2137133057, 27911103, 830956306 ),
+ new FalconSmallPrime( 2137122817, 439771337, 1555268614 ),
+ new FalconSmallPrime( 2137116673, 790988579, 1871449599 ),
+ new FalconSmallPrime( 2137110529, 432109234, 811805080 ),
+ new FalconSmallPrime( 2137102337, 1357900653, 1184997641 ),
+ new FalconSmallPrime( 2137098241, 515119035, 1715693095 ),
+ new FalconSmallPrime( 2137090049, 408575203, 2085660657 ),
+ new FalconSmallPrime( 2137085953, 2097793407, 1349626963 ),
+ new FalconSmallPrime( 2137055233, 1556739954, 1449960883 ),
+ new FalconSmallPrime( 2137030657, 1545758650, 1369303716 ),
+ new FalconSmallPrime( 2136987649, 332602570, 103875114 ),
+ new FalconSmallPrime( 2136969217, 1499989506, 1662964115 ),
+ new FalconSmallPrime( 2136924161, 857040753, 4738842 ),
+ new FalconSmallPrime( 2136895489, 1948872712, 570436091 ),
+ new FalconSmallPrime( 2136893441, 58969960, 1568349634 ),
+ new FalconSmallPrime( 2136887297, 2127193379, 273612548 ),
+ new FalconSmallPrime( 2136850433, 111208983, 1181257116 ),
+ new FalconSmallPrime( 2136809473, 1627275942, 1680317971 ),
+ new FalconSmallPrime( 2136764417, 1574888217, 14011331 ),
+ new FalconSmallPrime( 2136741889, 14011055, 1129154251 ),
+ new FalconSmallPrime( 2136727553, 35862563, 1838555253 ),
+ new FalconSmallPrime( 2136721409, 310235666, 1363928244 ),
+ new FalconSmallPrime( 2136698881, 1612429202, 1560383828 ),
+ new FalconSmallPrime( 2136649729, 1138540131, 800014364 ),
+ new FalconSmallPrime( 2136606721, 602323503, 1433096652 ),
+ new FalconSmallPrime( 2136563713, 182209265, 1919611038 ),
+ new FalconSmallPrime( 2136555521, 324156477, 165591039 ),
+ new FalconSmallPrime( 2136549377, 195513113, 217165345 ),
+ new FalconSmallPrime( 2136526849, 1050768046, 939647887 ),
+ new FalconSmallPrime( 2136508417, 1886286237, 1619926572 ),
+ new FalconSmallPrime( 2136477697, 609647664, 35065157 ),
+ new FalconSmallPrime( 2136471553, 679352216, 1452259468 ),
+ new FalconSmallPrime( 2136457217, 128630031, 824816521 ),
+ new FalconSmallPrime( 2136422401, 19787464, 1526049830 ),
+ new FalconSmallPrime( 2136420353, 698316836, 1530623527 ),
+ new FalconSmallPrime( 2136371201, 1651862373, 1804812805 ),
+ new FalconSmallPrime( 2136334337, 326596005, 336977082 ),
+ new FalconSmallPrime( 2136322049, 63253370, 1904972151 ),
+ new FalconSmallPrime( 2136297473, 312176076, 172182411 ),
+ new FalconSmallPrime( 2136248321, 381261841, 369032670 ),
+ new FalconSmallPrime( 2136242177, 358688773, 1640007994 ),
+ new FalconSmallPrime( 2136229889, 512677188, 75585225 ),
+ new FalconSmallPrime( 2136219649, 2095003250, 1970086149 ),
+ new FalconSmallPrime( 2136207361, 1909650722, 537760675 ),
+ new FalconSmallPrime( 2136176641, 1334616195, 1533487619 ),
+ new FalconSmallPrime( 2136158209, 2096285632, 1793285210 ),
+ new FalconSmallPrime( 2136143873, 1897347517, 293843959 ),
+ new FalconSmallPrime( 2136133633, 923586222, 1022655978 ),
+ new FalconSmallPrime( 2136096769, 1464868191, 1515074410 ),
+ new FalconSmallPrime( 2136094721, 2020679520, 2061636104 ),
+ new FalconSmallPrime( 2136076289, 290798503, 1814726809 ),
+ new FalconSmallPrime( 2136041473, 156415894, 1250757633 ),
+ new FalconSmallPrime( 2135996417, 297459940, 1132158924 ),
+ new FalconSmallPrime( 2135955457, 538755304, 1688831340 ),
+ new FalconSmallPrime( 0, 0, 0 )
+ };
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/FalconVrfy.cs b/crypto/src/pqc/crypto/falcon/FalconVrfy.cs
new file mode 100644
index 000000000..4f28a77d9
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/FalconVrfy.cs
@@ -0,0 +1,860 @@
+using System;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ class FalconVrfy
+ {
+ FalconCommon common;
+ internal FalconVrfy() {
+ this.common = new FalconCommon();
+ }
+ internal FalconVrfy(FalconCommon common) {
+ this.common = common;
+ }
+
+ /*
+ * License from the reference C code (the code was copied then modified
+ * to function in C#):
+ * ==========================(LICENSE BEGIN)============================
+ *
+ * Copyright (c) 2017-2019 Falcon Project
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * ===========================(LICENSE END)=============================
+ */
+ /* ===================================================================== */
+ /*
+ * Constants for NTT.
+ *
+ * n = 2^logn (2 <= n <= 1024)
+ * phi = X^n + 1
+ * q = 12289
+ * q0i = -1/q mod 2^16
+ * R = 2^16 mod q
+ * R2 = 2^32 mod q
+ */
+
+ const int Q = 12289;
+ const int Q0I = 12287;
+ const int R = 4091;
+ const int R2 = 10952;
+
+ /*
+ * Table for NTT, binary case:
+ * GMb[x] = R*(g^rev(x)) mod q
+ * where g = 7 (it is a 2048-th primitive root of 1 modulo q)
+ * and rev() is the bit-reversal function over 10 bits.
+ */
+ internal ushort[] GMb = {
+ 4091, 7888, 11060, 11208, 6960, 4342, 6275, 9759,
+ 1591, 6399, 9477, 5266, 586, 5825, 7538, 9710,
+ 1134, 6407, 1711, 965, 7099, 7674, 3743, 6442,
+ 10414, 8100, 1885, 1688, 1364, 10329, 10164, 9180,
+ 12210, 6240, 997, 117, 4783, 4407, 1549, 7072,
+ 2829, 6458, 4431, 8877, 7144, 2564, 5664, 4042,
+ 12189, 432, 10751, 1237, 7610, 1534, 3983, 7863,
+ 2181, 6308, 8720, 6570, 4843, 1690, 14, 3872,
+ 5569, 9368, 12163, 2019, 7543, 2315, 4673, 7340,
+ 1553, 1156, 8401, 11389, 1020, 2967, 10772, 7045,
+ 3316, 11236, 5285, 11578, 10637, 10086, 9493, 6180,
+ 9277, 6130, 3323, 883, 10469, 489, 1502, 2851,
+ 11061, 9729, 2742, 12241, 4970, 10481, 10078, 1195,
+ 730, 1762, 3854, 2030, 5892, 10922, 9020, 5274,
+ 9179, 3604, 3782, 10206, 3180, 3467, 4668, 2446,
+ 7613, 9386, 834, 7703, 6836, 3403, 5351, 12276,
+ 3580, 1739, 10820, 9787, 10209, 4070, 12250, 8525,
+ 10401, 2749, 7338, 10574, 6040, 943, 9330, 1477,
+ 6865, 9668, 3585, 6633, 12145, 4063, 3684, 7680,
+ 8188, 6902, 3533, 9807, 6090, 727, 10099, 7003,
+ 6945, 1949, 9731, 10559, 6057, 378, 7871, 8763,
+ 8901, 9229, 8846, 4551, 9589, 11664, 7630, 8821,
+ 5680, 4956, 6251, 8388, 10156, 8723, 2341, 3159,
+ 1467, 5460, 8553, 7783, 2649, 2320, 9036, 6188,
+ 737, 3698, 4699, 5753, 9046, 3687, 16, 914,
+ 5186, 10531, 4552, 1964, 3509, 8436, 7516, 5381,
+ 10733, 3281, 7037, 1060, 2895, 7156, 8887, 5357,
+ 6409, 8197, 2962, 6375, 5064, 6634, 5625, 278,
+ 932, 10229, 8927, 7642, 351, 9298, 237, 5858,
+ 7692, 3146, 12126, 7586, 2053, 11285, 3802, 5204,
+ 4602, 1748, 11300, 340, 3711, 4614, 300, 10993,
+ 5070, 10049, 11616, 12247, 7421, 10707, 5746, 5654,
+ 3835, 5553, 1224, 8476, 9237, 3845, 250, 11209,
+ 4225, 6326, 9680, 12254, 4136, 2778, 692, 8808,
+ 6410, 6718, 10105, 10418, 3759, 7356, 11361, 8433,
+ 6437, 3652, 6342, 8978, 5391, 2272, 6476, 7416,
+ 8418, 10824, 11986, 5733, 876, 7030, 2167, 2436,
+ 3442, 9217, 8206, 4858, 5964, 2746, 7178, 1434,
+ 7389, 8879, 10661, 11457, 4220, 1432, 10832, 4328,
+ 8557, 1867, 9454, 2416, 3816, 9076, 686, 5393,
+ 2523, 4339, 6115, 619, 937, 2834, 7775, 3279,
+ 2363, 7488, 6112, 5056, 824, 10204, 11690, 1113,
+ 2727, 9848, 896, 2028, 5075, 2654, 10464, 7884,
+ 12169, 5434, 3070, 6400, 9132, 11672, 12153, 4520,
+ 1273, 9739, 11468, 9937, 10039, 9720, 2262, 9399,
+ 11192, 315, 4511, 1158, 6061, 6751, 11865, 357,
+ 7367, 4550, 983, 8534, 8352, 10126, 7530, 9253,
+ 4367, 5221, 3999, 8777, 3161, 6990, 4130, 11652,
+ 3374, 11477, 1753, 292, 8681, 2806, 10378, 12188,
+ 5800, 11811, 3181, 1988, 1024, 9340, 2477, 10928,
+ 4582, 6750, 3619, 5503, 5233, 2463, 8470, 7650,
+ 7964, 6395, 1071, 1272, 3474, 11045, 3291, 11344,
+ 8502, 9478, 9837, 1253, 1857, 6233, 4720, 11561,
+ 6034, 9817, 3339, 1797, 2879, 6242, 5200, 2114,
+ 7962, 9353, 11363, 5475, 6084, 9601, 4108, 7323,
+ 10438, 9471, 1271, 408, 6911, 3079, 360, 8276,
+ 11535, 9156, 9049, 11539, 850, 8617, 784, 7919,
+ 8334, 12170, 1846, 10213, 12184, 7827, 11903, 5600,
+ 9779, 1012, 721, 2784, 6676, 6552, 5348, 4424,
+ 6816, 8405, 9959, 5150, 2356, 5552, 5267, 1333,
+ 8801, 9661, 7308, 5788, 4910, 909, 11613, 4395,
+ 8238, 6686, 4302, 3044, 2285, 12249, 1963, 9216,
+ 4296, 11918, 695, 4371, 9793, 4884, 2411, 10230,
+ 2650, 841, 3890, 10231, 7248, 8505, 11196, 6688,
+ 4059, 6060, 3686, 4722, 11853, 5816, 7058, 6868,
+ 11137, 7926, 4894, 12284, 4102, 3908, 3610, 6525,
+ 7938, 7982, 11977, 6755, 537, 4562, 1623, 8227,
+ 11453, 7544, 906, 11816, 9548, 10858, 9703, 2815,
+ 11736, 6813, 6979, 819, 8903, 6271, 10843, 348,
+ 7514, 8339, 6439, 694, 852, 5659, 2781, 3716,
+ 11589, 3024, 1523, 8659, 4114, 10738, 3303, 5885,
+ 2978, 7289, 11884, 9123, 9323, 11830, 98, 2526,
+ 2116, 4131, 11407, 1844, 3645, 3916, 8133, 2224,
+ 10871, 8092, 9651, 5989, 7140, 8480, 1670, 159,
+ 10923, 4918, 128, 7312, 725, 9157, 5006, 6393,
+ 3494, 6043, 10972, 6181, 11838, 3423, 10514, 7668,
+ 3693, 6658, 6905, 11953, 10212, 11922, 9101, 8365,
+ 5110, 45, 2400, 1921, 4377, 2720, 1695, 51,
+ 2808, 650, 1896, 9997, 9971, 11980, 8098, 4833,
+ 4135, 4257, 5838, 4765, 10985, 11532, 590, 12198,
+ 482, 12173, 2006, 7064, 10018, 3912, 12016, 10519,
+ 11362, 6954, 2210, 284, 5413, 6601, 3865, 10339,
+ 11188, 6231, 517, 9564, 11281, 3863, 1210, 4604,
+ 8160, 11447, 153, 7204, 5763, 5089, 9248, 12154,
+ 11748, 1354, 6672, 179, 5532, 2646, 5941, 12185,
+ 862, 3158, 477, 7279, 5678, 7914, 4254, 302,
+ 2893, 10114, 6890, 9560, 9647, 11905, 4098, 9824,
+ 10269, 1353, 10715, 5325, 6254, 3951, 1807, 6449,
+ 5159, 1308, 8315, 3404, 1877, 1231, 112, 6398,
+ 11724, 12272, 7286, 1459, 12274, 9896, 3456, 800,
+ 1397, 10678, 103, 7420, 7976, 936, 764, 632,
+ 7996, 8223, 8445, 7758, 10870, 9571, 2508, 1946,
+ 6524, 10158, 1044, 4338, 2457, 3641, 1659, 4139,
+ 4688, 9733, 11148, 3946, 2082, 5261, 2036, 11850,
+ 7636, 12236, 5366, 2380, 1399, 7720, 2100, 3217,
+ 10912, 8898, 7578, 11995, 2791, 1215, 3355, 2711,
+ 2267, 2004, 8568, 10176, 3214, 2337, 1750, 4729,
+ 4997, 7415, 6315, 12044, 4374, 7157, 4844, 211,
+ 8003, 10159, 9290, 11481, 1735, 2336, 5793, 9875,
+ 8192, 986, 7527, 1401, 870, 3615, 8465, 2756,
+ 9770, 2034, 10168, 3264, 6132, 54, 2880, 4763,
+ 11805, 3074, 8286, 9428, 4881, 6933, 1090, 10038,
+ 2567, 708, 893, 6465, 4962, 10024, 2090, 5718,
+ 10743, 780, 4733, 4623, 2134, 2087, 4802, 884,
+ 5372, 5795, 5938, 4333, 6559, 7549, 5269, 10664,
+ 4252, 3260, 5917, 10814, 5768, 9983, 8096, 7791,
+ 6800, 7491, 6272, 1907, 10947, 6289, 11803, 6032,
+ 11449, 1171, 9201, 7933, 2479, 7970, 11337, 7062,
+ 8911, 6728, 6542, 8114, 8828, 6595, 3545, 4348,
+ 4610, 2205, 6999, 8106, 5560, 10390, 9321, 2499,
+ 2413, 7272, 6881, 10582, 9308, 9437, 3554, 3326,
+ 5991, 11969, 3415, 12283, 9838, 12063, 4332, 7830,
+ 11329, 6605, 12271, 2044, 11611, 7353, 11201, 11582,
+ 3733, 8943, 9978, 1627, 7168, 3935, 5050, 2762,
+ 7496, 10383, 755, 1654, 12053, 4952, 10134, 4394,
+ 6592, 7898, 7497, 8904, 12029, 3581, 10748, 5674,
+ 10358, 4901, 7414, 8771, 710, 6764, 8462, 7193,
+ 5371, 7274, 11084, 290, 7864, 6827, 11822, 2509,
+ 6578, 4026, 5807, 1458, 5721, 5762, 4178, 2105,
+ 11621, 4852, 8897, 2856, 11510, 9264, 2520, 8776,
+ 7011, 2647, 1898, 7039, 5950, 11163, 5488, 6277,
+ 9182, 11456, 633, 10046, 11554, 5633, 9587, 2333,
+ 7008, 7084, 5047, 7199, 9865, 8997, 569, 6390,
+ 10845, 9679, 8268, 11472, 4203, 1997, 2, 9331,
+ 162, 6182, 2000, 3649, 9792, 6363, 7557, 6187,
+ 8510, 9935, 5536, 9019, 3706, 12009, 1452, 3067,
+ 5494, 9692, 4865, 6019, 7106, 9610, 4588, 10165,
+ 6261, 5887, 2652, 10172, 1580, 10379, 4638, 9949
+ };
+
+ /*
+ * Table for inverse NTT, binary case:
+ * iGMb[x] = R*((1/g)^rev(x)) mod q
+ * Since g = 7, 1/g = 8778 mod 12289.
+ */
+ internal ushort[] iGMb = {
+ 4091, 4401, 1081, 1229, 2530, 6014, 7947, 5329,
+ 2579, 4751, 6464, 11703, 7023, 2812, 5890, 10698,
+ 3109, 2125, 1960, 10925, 10601, 10404, 4189, 1875,
+ 5847, 8546, 4615, 5190, 11324, 10578, 5882, 11155,
+ 8417, 12275, 10599, 7446, 5719, 3569, 5981, 10108,
+ 4426, 8306, 10755, 4679, 11052, 1538, 11857, 100,
+ 8247, 6625, 9725, 5145, 3412, 7858, 5831, 9460,
+ 5217, 10740, 7882, 7506, 12172, 11292, 6049, 79,
+ 13, 6938, 8886, 5453, 4586, 11455, 2903, 4676,
+ 9843, 7621, 8822, 9109, 2083, 8507, 8685, 3110,
+ 7015, 3269, 1367, 6397, 10259, 8435, 10527, 11559,
+ 11094, 2211, 1808, 7319, 48, 9547, 2560, 1228,
+ 9438, 10787, 11800, 1820, 11406, 8966, 6159, 3012,
+ 6109, 2796, 2203, 1652, 711, 7004, 1053, 8973,
+ 5244, 1517, 9322, 11269, 900, 3888, 11133, 10736,
+ 4949, 7616, 9974, 4746, 10270, 126, 2921, 6720,
+ 6635, 6543, 1582, 4868, 42, 673, 2240, 7219,
+ 1296, 11989, 7675, 8578, 11949, 989, 10541, 7687,
+ 7085, 8487, 1004, 10236, 4703, 163, 9143, 4597,
+ 6431, 12052, 2991, 11938, 4647, 3362, 2060, 11357,
+ 12011, 6664, 5655, 7225, 5914, 9327, 4092, 5880,
+ 6932, 3402, 5133, 9394, 11229, 5252, 9008, 1556,
+ 6908, 4773, 3853, 8780, 10325, 7737, 1758, 7103,
+ 11375, 12273, 8602, 3243, 6536, 7590, 8591, 11552,
+ 6101, 3253, 9969, 9640, 4506, 3736, 6829, 10822,
+ 9130, 9948, 3566, 2133, 3901, 6038, 7333, 6609,
+ 3468, 4659, 625, 2700, 7738, 3443, 3060, 3388,
+ 3526, 4418, 11911, 6232, 1730, 2558, 10340, 5344,
+ 5286, 2190, 11562, 6199, 2482, 8756, 5387, 4101,
+ 4609, 8605, 8226, 144, 5656, 8704, 2621, 5424,
+ 10812, 2959, 11346, 6249, 1715, 4951, 9540, 1888,
+ 3764, 39, 8219, 2080, 2502, 1469, 10550, 8709,
+ 5601, 1093, 3784, 5041, 2058, 8399, 11448, 9639,
+ 2059, 9878, 7405, 2496, 7918, 11594, 371, 7993,
+ 3073, 10326, 40, 10004, 9245, 7987, 5603, 4051,
+ 7894, 676, 11380, 7379, 6501, 4981, 2628, 3488,
+ 10956, 7022, 6737, 9933, 7139, 2330, 3884, 5473,
+ 7865, 6941, 5737, 5613, 9505, 11568, 11277, 2510,
+ 6689, 386, 4462, 105, 2076, 10443, 119, 3955,
+ 4370, 11505, 3672, 11439, 750, 3240, 3133, 754,
+ 4013, 11929, 9210, 5378, 11881, 11018, 2818, 1851,
+ 4966, 8181, 2688, 6205, 6814, 926, 2936, 4327,
+ 10175, 7089, 6047, 9410, 10492, 8950, 2472, 6255,
+ 728, 7569, 6056, 10432, 11036, 2452, 2811, 3787,
+ 945, 8998, 1244, 8815, 11017, 11218, 5894, 4325,
+ 4639, 3819, 9826, 7056, 6786, 8670, 5539, 7707,
+ 1361, 9812, 2949, 11265, 10301, 9108, 478, 6489,
+ 101, 1911, 9483, 3608, 11997, 10536, 812, 8915,
+ 637, 8159, 5299, 9128, 3512, 8290, 7068, 7922,
+ 3036, 4759, 2163, 3937, 3755, 11306, 7739, 4922,
+ 11932, 424, 5538, 6228, 11131, 7778, 11974, 1097,
+ 2890, 10027, 2569, 2250, 2352, 821, 2550, 11016,
+ 7769, 136, 617, 3157, 5889, 9219, 6855, 120,
+ 4405, 1825, 9635, 7214, 10261, 11393, 2441, 9562,
+ 11176, 599, 2085, 11465, 7233, 6177, 4801, 9926,
+ 9010, 4514, 9455, 11352, 11670, 6174, 7950, 9766,
+ 6896, 11603, 3213, 8473, 9873, 2835, 10422, 3732,
+ 7961, 1457, 10857, 8069, 832, 1628, 3410, 4900,
+ 10855, 5111, 9543, 6325, 7431, 4083, 3072, 8847,
+ 9853, 10122, 5259, 11413, 6556, 303, 1465, 3871,
+ 4873, 5813, 10017, 6898, 3311, 5947, 8637, 5852,
+ 3856, 928, 4933, 8530, 1871, 2184, 5571, 5879,
+ 3481, 11597, 9511, 8153, 35, 2609, 5963, 8064,
+ 1080, 12039, 8444, 3052, 3813, 11065, 6736, 8454,
+ 2340, 7651, 1910, 10709, 2117, 9637, 6402, 6028,
+ 2124, 7701, 2679, 5183, 6270, 7424, 2597, 6795,
+ 9222, 10837, 280, 8583, 3270, 6753, 2354, 3779,
+ 6102, 4732, 5926, 2497, 8640, 10289, 6107, 12127,
+ 2958, 12287, 10292, 8086, 817, 4021, 2610, 1444,
+ 5899, 11720, 3292, 2424, 5090, 7242, 5205, 5281,
+ 9956, 2702, 6656, 735, 2243, 11656, 833, 3107,
+ 6012, 6801, 1126, 6339, 5250, 10391, 9642, 5278,
+ 3513, 9769, 3025, 779, 9433, 3392, 7437, 668,
+ 10184, 8111, 6527, 6568, 10831, 6482, 8263, 5711,
+ 9780, 467, 5462, 4425, 11999, 1205, 5015, 6918,
+ 5096, 3827, 5525, 11579, 3518, 4875, 7388, 1931,
+ 6615, 1541, 8708, 260, 3385, 4792, 4391, 5697,
+ 7895, 2155, 7337, 236, 10635, 11534, 1906, 4793,
+ 9527, 7239, 8354, 5121, 10662, 2311, 3346, 8556,
+ 707, 1088, 4936, 678, 10245, 18, 5684, 960,
+ 4459, 7957, 226, 2451, 6, 8874, 320, 6298,
+ 8963, 8735, 2852, 2981, 1707, 5408, 5017, 9876,
+ 9790, 2968, 1899, 6729, 4183, 5290, 10084, 7679,
+ 7941, 8744, 5694, 3461, 4175, 5747, 5561, 3378,
+ 5227, 952, 4319, 9810, 4356, 3088, 11118, 840,
+ 6257, 486, 6000, 1342, 10382, 6017, 4798, 5489,
+ 4498, 4193, 2306, 6521, 1475, 6372, 9029, 8037,
+ 1625, 7020, 4740, 5730, 7956, 6351, 6494, 6917,
+ 11405, 7487, 10202, 10155, 7666, 7556, 11509, 1546,
+ 6571, 10199, 2265, 7327, 5824, 11396, 11581, 9722,
+ 2251, 11199, 5356, 7408, 2861, 4003, 9215, 484,
+ 7526, 9409, 12235, 6157, 9025, 2121, 10255, 2519,
+ 9533, 3824, 8674, 11419, 10888, 4762, 11303, 4097,
+ 2414, 6496, 9953, 10554, 808, 2999, 2130, 4286,
+ 12078, 7445, 5132, 7915, 245, 5974, 4874, 7292,
+ 7560, 10539, 9952, 9075, 2113, 3721, 10285, 10022,
+ 9578, 8934, 11074, 9498, 294, 4711, 3391, 1377,
+ 9072, 10189, 4569, 10890, 9909, 6923, 53, 4653,
+ 439, 10253, 7028, 10207, 8343, 1141, 2556, 7601,
+ 8150, 10630, 8648, 9832, 7951, 11245, 2131, 5765,
+ 10343, 9781, 2718, 1419, 4531, 3844, 4066, 4293,
+ 11657, 11525, 11353, 4313, 4869, 12186, 1611, 10892,
+ 11489, 8833, 2393, 15, 10830, 5003, 17, 565,
+ 5891, 12177, 11058, 10412, 8885, 3974, 10981, 7130,
+ 5840, 10482, 8338, 6035, 6964, 1574, 10936, 2020,
+ 2465, 8191, 384, 2642, 2729, 5399, 2175, 9396,
+ 11987, 8035, 4375, 6611, 5010, 11812, 9131, 11427,
+ 104, 6348, 9643, 6757, 12110, 5617, 10935, 541,
+ 135, 3041, 7200, 6526, 5085, 12136, 842, 4129,
+ 7685, 11079, 8426, 1008, 2725, 11772, 6058, 1101,
+ 1950, 8424, 5688, 6876, 12005, 10079, 5335, 927,
+ 1770, 273, 8377, 2271, 5225, 10283, 116, 11807,
+ 91, 11699, 757, 1304, 7524, 6451, 8032, 8154,
+ 7456, 4191, 309, 2318, 2292, 10393, 11639, 9481,
+ 12238, 10594, 9569, 7912, 10368, 9889, 12244, 7179,
+ 3924, 3188, 367, 2077, 336, 5384, 5631, 8596,
+ 4621, 1775, 8866, 451, 6108, 1317, 6246, 8795,
+ 5896, 7283, 3132, 11564, 4977, 12161, 7371, 1366,
+ 12130, 10619, 3809, 5149, 6300, 2638, 4197, 1418,
+ 10065, 4156, 8373, 8644, 10445, 882, 8158, 10173,
+ 9763, 12191, 459, 2966, 3166, 405, 5000, 9311,
+ 6404, 8986, 1551, 8175, 3630, 10766, 9265, 700,
+ 8573, 9508, 6630, 11437, 11595, 5850, 3950, 4775,
+ 11941, 1446, 6018, 3386, 11470, 5310, 5476, 553,
+ 9474, 2586, 1431, 2741, 473, 11383, 4745, 836,
+ 4062, 10666, 7727, 11752, 5534, 312, 4307, 4351,
+ 5764, 8679, 8381, 8187, 5, 7395, 4363, 1152,
+ 5421, 5231, 6473, 436, 7567, 8603, 6229, 8230
+ };
+
+ /*
+ * Reduce a small signed integer modulo q. The source integer MUST
+ * be between -q/2 and +q/2.
+ */
+ internal uint mq_conv_small(int x)
+ {
+ /*
+ * If x < 0, the cast to uint will set the high bit to 1.
+ */
+ uint y;
+
+ y = (uint)x;
+ y += (uint)(Q & -(y >> 31));
+ return y;
+ }
+
+ /*
+ * Addition modulo q. Operands must be in the 0..q-1 range.
+ */
+ internal uint mq_add(uint x, uint y)
+ {
+ /*
+ * We compute x + y - q. If the result is negative, then the
+ * high bit will be set, and 'd >> 31' will be equal to 1;
+ * thus '-(d >> 31)' will be an all-one pattern. Otherwise,
+ * it will be an all-zero pattern. In other words, this
+ * implements a conditional addition of q.
+ */
+ uint d;
+
+ d = x + y - Q;
+ d += (uint)(Q & -(d >> 31));
+ return d;
+ }
+
+ /*
+ * Subtraction modulo q. Operands must be in the 0..q-1 range.
+ */
+ internal uint mq_sub(uint x, uint y)
+ {
+ /*
+ * As in mq_add(), we use a conditional addition to ensure the
+ * result is in the 0..q-1 range.
+ */
+ uint d;
+
+ d = x - y;
+ d += (uint)(Q & -(d >> 31));
+ return d;
+ }
+
+ /*
+ * Division by 2 modulo q. Operand must be in the 0..q-1 range.
+ */
+ internal uint mq_rshift1(uint x)
+ {
+ x += (uint)(Q & -(x & 1));
+ return (x >> 1);
+ }
+
+ /*
+ * Montgomery multiplication modulo q. If we set R = 2^16 mod q, then
+ * this function computes: x * y / R mod q
+ * Operands must be in the 0..q-1 range.
+ */
+ internal uint mq_montymul(uint x, uint y)
+ {
+ uint z, w;
+
+ /*
+ * We compute x*y + k*q with a value of k chosen so that the 16
+ * low bits of the result are 0. We can then shift the value.
+ * After the shift, result may still be larger than q, but it
+ * will be lower than 2*q, so a conditional subtraction works.
+ */
+
+ z = x * y;
+ w = ((z * Q0I) & 0xFFFF) * Q;
+
+ /*
+ * When adding z and w, the result will have its low 16 bits
+ * equal to 0. Since x, y and z are lower than q, the sum will
+ * be no more than (2^15 - 1) * q + (q - 1)^2, which will
+ * fit on 29 bits.
+ */
+ z = (z + w) >> 16;
+
+ /*
+ * After the shift, analysis shows that the value will be less
+ * than 2q. We do a subtraction then conditional subtraction to
+ * ensure the result is in the expected range.
+ */
+ z -= Q;
+ z += (uint)(Q & -(z >> 31));
+ return z;
+ }
+
+ /*
+ * Montgomery squaring (computes (x^2)/R).
+ */
+ internal uint mq_montysqr(uint x)
+ {
+ return mq_montymul(x, x);
+ }
+
+ /*
+ * Divide x by y modulo q = 12289.
+ */
+ internal uint mq_div_12289(uint x, uint y)
+ {
+ /*
+ * We invert y by computing y^(q-2) mod q.
+ *
+ * We use the following addition chain for exponent e = 12287:
+ *
+ * e0 = 1
+ * e1 = 2 * e0 = 2
+ * e2 = e1 + e0 = 3
+ * e3 = e2 + e1 = 5
+ * e4 = 2 * e3 = 10
+ * e5 = 2 * e4 = 20
+ * e6 = 2 * e5 = 40
+ * e7 = 2 * e6 = 80
+ * e8 = 2 * e7 = 160
+ * e9 = e8 + e2 = 163
+ * e10 = e9 + e8 = 323
+ * e11 = 2 * e10 = 646
+ * e12 = 2 * e11 = 1292
+ * e13 = e12 + e9 = 1455
+ * e14 = 2 * e13 = 2910
+ * e15 = 2 * e14 = 5820
+ * e16 = e15 + e10 = 6143
+ * e17 = 2 * e16 = 12286
+ * e18 = e17 + e0 = 12287
+ *
+ * Additions on exponents are converted to Montgomery
+ * multiplications. We define all intermediate results as so
+ * many local variables, and let the C compiler work out which
+ * must be kept around.
+ */
+ uint y0, y1, y2, y3, y4, y5, y6, y7, y8, y9;
+ uint y10, y11, y12, y13, y14, y15, y16, y17, y18;
+
+ y0 = mq_montymul(y, R2);
+ y1 = mq_montysqr(y0);
+ y2 = mq_montymul(y1, y0);
+ y3 = mq_montymul(y2, y1);
+ y4 = mq_montysqr(y3);
+ y5 = mq_montysqr(y4);
+ y6 = mq_montysqr(y5);
+ y7 = mq_montysqr(y6);
+ y8 = mq_montysqr(y7);
+ y9 = mq_montymul(y8, y2);
+ y10 = mq_montymul(y9, y8);
+ y11 = mq_montysqr(y10);
+ y12 = mq_montysqr(y11);
+ y13 = mq_montymul(y12, y9);
+ y14 = mq_montysqr(y13);
+ y15 = mq_montysqr(y14);
+ y16 = mq_montymul(y15, y10);
+ y17 = mq_montysqr(y16);
+ y18 = mq_montymul(y17, y0);
+
+ /*
+ * Final multiplication with x, which is not in Montgomery
+ * representation, computes the correct division result.
+ */
+ return mq_montymul(y18, x);
+ }
+
+ /*
+ * Compute NTT on a ring element.
+ */
+ internal void mq_NTT(ushort[] asrc, int a, uint logn)
+ {
+ int n, t, m;
+
+ n = (int)1 << (int)logn;
+ t = n;
+ for (m = 1; m < n; m <<= 1) {
+ int ht, i, j1;
+
+ ht = t >> 1;
+ for (i = 0, j1 = 0; i < m; i ++, j1 += t) {
+ int j, j2;
+ uint s;
+
+ s = GMb[m + i];
+ j2 = j1 + ht;
+ for (j = j1; j < j2; j ++) {
+ uint u, v;
+
+ u = asrc[a + j];
+ v = mq_montymul(asrc[a + j + ht], s);
+ asrc[a + j] = (ushort)mq_add(u, v);
+ asrc[a + j + ht] = (ushort)mq_sub(u, v);
+ }
+ }
+ t = ht;
+ }
+ }
+
+ /*
+ * Compute the inverse NTT on a ring element, binary case.
+ */
+ internal void mq_iNTT(ushort[] asrc, int a, uint logn)
+ {
+ int n, t, m;
+ uint ni;
+
+ n = (int)1 << (int)logn;
+ t = 1;
+ m = n;
+ while (m > 1) {
+ int hm, dt, i, j1;
+
+ hm = m >> 1;
+ dt = t << 1;
+ for (i = 0, j1 = 0; i < hm; i ++, j1 += dt) {
+ int j, j2;
+ uint s;
+
+ j2 = j1 + t;
+ s = iGMb[hm + i];
+ for (j = j1; j < j2; j ++) {
+ uint u, v, w;
+
+ u = asrc[a + j];
+ v = asrc[a + j + t];
+ asrc[a + j] = (ushort)mq_add(u, v);
+ w = mq_sub(u, v);
+ asrc[a + j + t] = (ushort)
+ mq_montymul(w, s);
+ }
+ }
+ t = dt;
+ m = hm;
+ }
+
+ /*
+ * To complete the inverse NTT, we must now divide all values by
+ * n (the vector size). We thus need the inverse of n, i.e. we
+ * need to divide 1 by 2 logn times. But we also want it in
+ * Montgomery representation, i.e. we also want to multiply it
+ * by R = 2^16. In the common case, this should be a simple right
+ * shift. The loop below is generic and works also in corner cases;
+ * its computation time is negligible.
+ */
+ ni = R;
+ for (m = n; m > 1; m >>= 1) {
+ ni = mq_rshift1(ni);
+ }
+ for (m = 0; m < n; m ++) {
+ asrc[a + m] = (ushort)mq_montymul(asrc[a + m], ni);
+ }
+ }
+
+ /*
+ * Convert a polynomial (mod q) to Montgomery representation.
+ */
+ internal void mq_poly_tomonty(ushort[] fsrc, int f, uint logn)
+ {
+ int u, n;
+
+ n = (int)1 << (int)logn;
+ for (u = 0; u < n; u ++) {
+ fsrc[f + u] = (ushort)mq_montymul(fsrc[f + u], R2);
+ }
+ }
+
+ /*
+ * Multiply two polynomials together (NTT representation, and using
+ * a Montgomery multiplication). Result f*g is written over f.
+ */
+ internal void mq_poly_montymul_ntt(ushort[] fsrc, int f, ushort[] gsrc, int g, uint logn)
+ {
+ int u, n;
+
+ n = (int)1 << (int)logn;
+ for (u = 0; u < n; u ++) {
+ fsrc[f + u] = (ushort)mq_montymul(fsrc[f + u], gsrc[g + u]);
+ }
+ }
+
+ /*
+ * Subtract polynomial g from polynomial f.
+ */
+ internal void mq_poly_sub(ushort[] fsrc, int f, ushort[] gsrc, int g, uint logn)
+ {
+ int u, n;
+
+ n = (int)1 << (int)logn;
+ for (u = 0; u < n; u ++) {
+ fsrc[f + u] = (ushort)mq_sub(fsrc[f + u], gsrc[g + u]);
+ }
+ }
+
+ /* ===================================================================== */
+
+ internal void to_ntt_monty(ushort[] hsrc, int h, uint logn)
+ {
+ mq_NTT(hsrc, h, logn);
+ mq_poly_tomonty(hsrc, h, logn);
+ }
+
+ internal bool verify_raw(ushort[] c0src, int c0, short[] s2src, int s2,
+ ushort[] hsrc, int h, uint logn, ushort[] tmpsrc, int tmp)
+ {
+ int u, n;
+ int tt;
+
+ n = (int)1 << (int)logn;
+ tt = tmp;
+
+ /*
+ * Reduce s2 elements modulo q ([0..q-1] range).
+ */
+ for (u = 0; u < n; u ++) {
+ uint w;
+
+ w = (uint)s2src[s2 + u];
+ w += (uint)(Q & -(w >> 31));
+ tmpsrc[tt+u] = (ushort)w;
+ }
+
+ /*
+ * Compute -s1 = s2*h - c0 mod phi mod q (in tt[]).
+ */
+ mq_NTT(tmpsrc, tt, logn);
+ mq_poly_montymul_ntt(tmpsrc, tt, hsrc, h, logn);
+ mq_iNTT(tmpsrc, tt, logn);
+ mq_poly_sub(tmpsrc, tt, c0src, c0, logn);
+
+ /*
+ * Normalize -s1 elements into the [-q/2..q/2] range.
+ */
+ short[] shorttmp = new short[n];
+ for (u = 0; u < n; u ++) {
+ int w;
+
+ w = (int)tmpsrc[tt+u];
+ w -= (int)(Q & -(((Q >> 1) - (uint)w) >> 31));
+ tmpsrc[tt + u] = (ushort)w;
+ shorttmp[u] = (short)tmpsrc[tt + u];
+ }
+
+
+ /*
+ * Signature is valid if and only if the aggregate (-s1,s2) vector
+ * is short enough.
+ */
+ return this.common.is_short(shorttmp, 0, s2src, s2, logn);
+ }
+
+ internal int compute_public(ushort[] hsrc, int h,
+ sbyte[] fsrc, int f, sbyte[] gsrc, int g, uint logn, ushort[] tmpsrc, int tmp)
+ {
+ int u, n;
+ int tt;
+
+ n = (int)1 << (int)logn;
+ tt = tmp;
+ for (u = 0; u < n; u ++) {
+ tmpsrc[tt+u] = (ushort)mq_conv_small(fsrc[f+u]);
+ hsrc[h+u] = (ushort)mq_conv_small(gsrc[g+u]);
+ }
+ mq_NTT(hsrc, h, logn);
+ mq_NTT(tmpsrc, tt, logn);
+ for (u = 0; u < n; u ++) {
+ if (tmpsrc[tt+u] == 0) {
+ return 0;
+ }
+ hsrc[h+u] = (ushort)mq_div_12289(hsrc[h+u], tmpsrc[tt+u]);
+ }
+ mq_iNTT(hsrc, h, logn);
+ return 1;
+ }
+
+ internal int complete_private(sbyte[] Gsrc, int G,
+ sbyte[] fsrc, int f, sbyte[] gsrc, int g, sbyte[] Fsrc, int F,
+ uint logn, ushort[] tmpsrc, int tmp)
+ {
+ int u, n;
+ int t1, t2;
+
+ n = (int)1 << (int)logn;
+ t1 = tmp;
+ t2 = t1 + n;
+ for (u = 0; u < n; u ++) {
+ tmpsrc[t1+u] = (ushort)mq_conv_small(gsrc[g+u]);
+ tmpsrc[t2+u] = (ushort)mq_conv_small(Fsrc[F+u]);
+ }
+ mq_NTT(tmpsrc, t1, logn);
+ mq_NTT(tmpsrc, t2, logn);
+ mq_poly_tomonty(tmpsrc, t1, logn);
+ mq_poly_montymul_ntt(tmpsrc, t1, tmpsrc, t2, logn);
+ for (u = 0; u < n; u ++) {
+ tmpsrc[t2+u] = (ushort)mq_conv_small(fsrc[f+u]);
+ }
+ mq_NTT(tmpsrc, t2, logn);
+ for (u = 0; u < n; u ++) {
+ if (tmpsrc[t2+u] == 0) {
+ return 0;
+ }
+ tmpsrc[t1+u] = (ushort)mq_div_12289(tmpsrc[t1+u], tmpsrc[t2+u]);
+ }
+ mq_iNTT(tmpsrc, t1, logn);
+ for (u = 0; u < n; u ++) {
+ uint w;
+ int gi;
+
+ w = tmpsrc[t1+u];
+ w -= (uint)(Q & ~-((w - (Q >> 1)) >> 31));
+ //gi = *(int *)&w;
+ gi = (int)w;
+ if (gi < -127 || gi > +127) {
+ return 0;
+ }
+ Gsrc[G+u] = (sbyte)gi;
+ }
+ return 1;
+ }
+
+ internal int is_invertible(
+ short[] s2src, int s2, uint logn, ushort[] tmpsrc, int tmp)
+ {
+ int u, n;
+ int tt;
+ uint r;
+
+ n = (int)1 << (int)logn;
+ tt = tmp;
+ for (u = 0; u < n; u ++) {
+ uint w;
+
+ w = (uint)s2src[s2 + u];
+ w += (uint)(Q & -(w >> 31));
+ tmpsrc[tt+u] = (ushort)w;
+ }
+ mq_NTT(tmpsrc, tt, logn);
+ r = 0;
+ for (u = 0; u < n; u ++) {
+ r |= (uint)(tmpsrc[tt+u] - 1);
+ }
+ return (int)(1u - (r >> 31));
+ }
+
+ internal int verify_recover(ushort[] hsrc, int h,
+ ushort[] c0src, int c0, short[] s1src, int s1, short[] s2src, int s2,
+ uint logn, ushort[] tmpsrc, int tmp)
+ {
+ int u, n;
+ int tt;
+ uint r;
+
+ n = (int)1 << (int)logn;
+
+ /*
+ * Reduce elements of s1 and s2 modulo q; then write s2 into tt[]
+ * and c0 - s1 into h[].
+ */
+ tt = tmp;
+ for (u = 0; u < n; u ++) {
+ uint w;
+
+ w = (uint)s2src[s2 + u];
+ w += (uint)(Q & -(w >> 31));
+ tmpsrc[tt+u] = (ushort)w;
+
+ w = (uint)s1src[s1+u];
+ w += (uint)(Q & -(w >> 31));
+ w = mq_sub(c0src[c0 + u], w);
+ hsrc[h+u] = (ushort)w;
+ }
+
+ /*
+ * Compute h = (c0 - s1) / s2. If one of the coefficients of s2
+ * is zero (in NTT representation) then the operation fails. We
+ * keep that information into a flag so that we do not deviate
+ * from strict constant-time processing; if all coefficients of
+ * s2 are non-zero, then the high bit of r will be zero.
+ */
+ mq_NTT(tmpsrc, tt, logn);
+ mq_NTT(hsrc, h, logn);
+ r = 0;
+ for (u = 0; u < n; u ++) {
+ r |= (uint)(tmpsrc[tt+u] - 1);
+ hsrc[h+u] = (ushort)mq_div_12289(hsrc[h+u], tmpsrc[tt+u]);
+ }
+ mq_iNTT(hsrc, h, logn);
+
+ /*
+ * Signature is acceptable if and only if it is short enough,
+ * and s2 was invertible mod phi mod q. The caller must still
+ * check that the rebuilt public key matches the expected
+ * value (e.g. through a hash).
+ */
+ r = ~r & (uint)-(this.common.is_short(s1src, s1, s2src, s2, logn) ? 1 : 0);
+ return (int)(r >> 31);
+ }
+
+ internal int count_nttzero(short[] sigsrc, int sig, uint logn, ushort[] tmpsrc, int tmp)
+ {
+ int s2;
+ int u, n;
+ uint r;
+
+ n = (int)1 << (int)logn;
+ s2 = tmp;
+ for (u = 0; u < n; u ++) {
+ uint w;
+
+ w = (uint)sigsrc[sig + u];
+ w += (uint)(Q & -(w >> 31));
+ tmpsrc[s2 + u] = (ushort)w;
+ }
+ mq_NTT(tmpsrc, s2, logn);
+ r = 0;
+ for (u = 0; u < n; u ++) {
+ uint w;
+
+ w = (uint)tmpsrc[s2 + u] - 1u;
+ r += (w >> 31);
+ }
+ return (int)r;
+ }
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/SHAKE256.cs b/crypto/src/pqc/crypto/falcon/SHAKE256.cs
new file mode 100644
index 000000000..eb7c77e09
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/SHAKE256.cs
@@ -0,0 +1,569 @@
+using System;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ class SHAKE256
+ {
+
+ /*
+ * License from the reference C code (the code was copied then modified
+ * to function in C#):
+ * ==========================(LICENSE BEGIN)============================
+ *
+ * Copyright (c) 2017-2019 Falcon Project
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * ===========================(LICENSE END)=============================
+ */
+
+ ulong[] A;
+ byte[] dubf;
+ ulong dptr;
+
+ ulong[] RC = {
+ 0x0000000000000001, 0x0000000000008082,
+ 0x800000000000808A, 0x8000000080008000,
+ 0x000000000000808B, 0x0000000080000001,
+ 0x8000000080008081, 0x8000000000008009,
+ 0x000000000000008A, 0x0000000000000088,
+ 0x0000000080008009, 0x000000008000000A,
+ 0x000000008000808B, 0x800000000000008B,
+ 0x8000000000008089, 0x8000000000008003,
+ 0x8000000000008002, 0x8000000000000080,
+ 0x000000000000800A, 0x800000008000000A,
+ 0x8000000080008081, 0x8000000000008080,
+ 0x0000000080000001, 0x8000000080008008
+ };
+
+ void process_block(ulong[] A) {
+ ulong t0, t1, t2, t3, t4;
+ ulong tt0, tt1, tt2, tt3;
+ ulong t, kt;
+ ulong c0, c1, c2, c3, c4, bnn;
+ int j;
+
+ /*
+ * Invert some words (alternate internal representation, which
+ * saves some operations).
+ */
+ A[ 1] = ~A[ 1];
+ A[ 2] = ~A[ 2];
+ A[ 8] = ~A[ 8];
+ A[12] = ~A[12];
+ A[17] = ~A[17];
+ A[20] = ~A[20];
+
+ /*
+ * Compute the 24 rounds. This loop is partially unrolled (each
+ * iteration computes two rounds).
+ */
+ for (j = 0; j < 24; j += 2) {
+
+ tt0 = A[ 1] ^ A[ 6];
+ tt1 = A[11] ^ A[16];
+ tt0 ^= A[21] ^ tt1;
+ tt0 = (tt0 << 1) | (tt0 >> 63);
+ tt2 = A[ 4] ^ A[ 9];
+ tt3 = A[14] ^ A[19];
+ tt0 ^= A[24];
+ tt2 ^= tt3;
+ t0 = tt0 ^ tt2;
+
+ tt0 = A[ 2] ^ A[ 7];
+ tt1 = A[12] ^ A[17];
+ tt0 ^= A[22] ^ tt1;
+ tt0 = (tt0 << 1) | (tt0 >> 63);
+ tt2 = A[ 0] ^ A[ 5];
+ tt3 = A[10] ^ A[15];
+ tt0 ^= A[20];
+ tt2 ^= tt3;
+ t1 = tt0 ^ tt2;
+
+ tt0 = A[ 3] ^ A[ 8];
+ tt1 = A[13] ^ A[18];
+ tt0 ^= A[23] ^ tt1;
+ tt0 = (tt0 << 1) | (tt0 >> 63);
+ tt2 = A[ 1] ^ A[ 6];
+ tt3 = A[11] ^ A[16];
+ tt0 ^= A[21];
+ tt2 ^= tt3;
+ t2 = tt0 ^ tt2;
+
+ tt0 = A[ 4] ^ A[ 9];
+ tt1 = A[14] ^ A[19];
+ tt0 ^= A[24] ^ tt1;
+ tt0 = (tt0 << 1) | (tt0 >> 63);
+ tt2 = A[ 2] ^ A[ 7];
+ tt3 = A[12] ^ A[17];
+ tt0 ^= A[22];
+ tt2 ^= tt3;
+ t3 = tt0 ^ tt2;
+
+ tt0 = A[ 0] ^ A[ 5];
+ tt1 = A[10] ^ A[15];
+ tt0 ^= A[20] ^ tt1;
+ tt0 = (tt0 << 1) | (tt0 >> 63);
+ tt2 = A[ 3] ^ A[ 8];
+ tt3 = A[13] ^ A[18];
+ tt0 ^= A[23];
+ tt2 ^= tt3;
+ t4 = tt0 ^ tt2;
+
+ A[ 0] = A[ 0] ^ t0;
+ A[ 5] = A[ 5] ^ t0;
+ A[10] = A[10] ^ t0;
+ A[15] = A[15] ^ t0;
+ A[20] = A[20] ^ t0;
+ A[ 1] = A[ 1] ^ t1;
+ A[ 6] = A[ 6] ^ t1;
+ A[11] = A[11] ^ t1;
+ A[16] = A[16] ^ t1;
+ A[21] = A[21] ^ t1;
+ A[ 2] = A[ 2] ^ t2;
+ A[ 7] = A[ 7] ^ t2;
+ A[12] = A[12] ^ t2;
+ A[17] = A[17] ^ t2;
+ A[22] = A[22] ^ t2;
+ A[ 3] = A[ 3] ^ t3;
+ A[ 8] = A[ 8] ^ t3;
+ A[13] = A[13] ^ t3;
+ A[18] = A[18] ^ t3;
+ A[23] = A[23] ^ t3;
+ A[ 4] = A[ 4] ^ t4;
+ A[ 9] = A[ 9] ^ t4;
+ A[14] = A[14] ^ t4;
+ A[19] = A[19] ^ t4;
+ A[24] = A[24] ^ t4;
+ A[ 5] = (A[ 5] << 36) | (A[ 5] >> (64 - 36));
+ A[10] = (A[10] << 3) | (A[10] >> (64 - 3));
+ A[15] = (A[15] << 41) | (A[15] >> (64 - 41));
+ A[20] = (A[20] << 18) | (A[20] >> (64 - 18));
+ A[ 1] = (A[ 1] << 1) | (A[ 1] >> (64 - 1));
+ A[ 6] = (A[ 6] << 44) | (A[ 6] >> (64 - 44));
+ A[11] = (A[11] << 10) | (A[11] >> (64 - 10));
+ A[16] = (A[16] << 45) | (A[16] >> (64 - 45));
+ A[21] = (A[21] << 2) | (A[21] >> (64 - 2));
+ A[ 2] = (A[ 2] << 62) | (A[ 2] >> (64 - 62));
+ A[ 7] = (A[ 7] << 6) | (A[ 7] >> (64 - 6));
+ A[12] = (A[12] << 43) | (A[12] >> (64 - 43));
+ A[17] = (A[17] << 15) | (A[17] >> (64 - 15));
+ A[22] = (A[22] << 61) | (A[22] >> (64 - 61));
+ A[ 3] = (A[ 3] << 28) | (A[ 3] >> (64 - 28));
+ A[ 8] = (A[ 8] << 55) | (A[ 8] >> (64 - 55));
+ A[13] = (A[13] << 25) | (A[13] >> (64 - 25));
+ A[18] = (A[18] << 21) | (A[18] >> (64 - 21));
+ A[23] = (A[23] << 56) | (A[23] >> (64 - 56));
+ A[ 4] = (A[ 4] << 27) | (A[ 4] >> (64 - 27));
+ A[ 9] = (A[ 9] << 20) | (A[ 9] >> (64 - 20));
+ A[14] = (A[14] << 39) | (A[14] >> (64 - 39));
+ A[19] = (A[19] << 8) | (A[19] >> (64 - 8));
+ A[24] = (A[24] << 14) | (A[24] >> (64 - 14));
+
+ bnn = ~A[12];
+ kt = A[ 6] | A[12];
+ c0 = A[ 0] ^ kt;
+ kt = bnn | A[18];
+ c1 = A[ 6] ^ kt;
+ kt = A[18] & A[24];
+ c2 = A[12] ^ kt;
+ kt = A[24] | A[ 0];
+ c3 = A[18] ^ kt;
+ kt = A[ 0] & A[ 6];
+ c4 = A[24] ^ kt;
+ A[ 0] = c0;
+ A[ 6] = c1;
+ A[12] = c2;
+ A[18] = c3;
+ A[24] = c4;
+ bnn = ~A[22];
+ kt = A[ 9] | A[10];
+ c0 = A[ 3] ^ kt;
+ kt = A[10] & A[16];
+ c1 = A[ 9] ^ kt;
+ kt = A[16] | bnn;
+ c2 = A[10] ^ kt;
+ kt = A[22] | A[ 3];
+ c3 = A[16] ^ kt;
+ kt = A[ 3] & A[ 9];
+ c4 = A[22] ^ kt;
+ A[ 3] = c0;
+ A[ 9] = c1;
+ A[10] = c2;
+ A[16] = c3;
+ A[22] = c4;
+ bnn = ~A[19];
+ kt = A[ 7] | A[13];
+ c0 = A[ 1] ^ kt;
+ kt = A[13] & A[19];
+ c1 = A[ 7] ^ kt;
+ kt = bnn & A[20];
+ c2 = A[13] ^ kt;
+ kt = A[20] | A[ 1];
+ c3 = bnn ^ kt;
+ kt = A[ 1] & A[ 7];
+ c4 = A[20] ^ kt;
+ A[ 1] = c0;
+ A[ 7] = c1;
+ A[13] = c2;
+ A[19] = c3;
+ A[20] = c4;
+ bnn = ~A[17];
+ kt = A[ 5] & A[11];
+ c0 = A[ 4] ^ kt;
+ kt = A[11] | A[17];
+ c1 = A[ 5] ^ kt;
+ kt = bnn | A[23];
+ c2 = A[11] ^ kt;
+ kt = A[23] & A[ 4];
+ c3 = bnn ^ kt;
+ kt = A[ 4] | A[ 5];
+ c4 = A[23] ^ kt;
+ A[ 4] = c0;
+ A[ 5] = c1;
+ A[11] = c2;
+ A[17] = c3;
+ A[23] = c4;
+ bnn = ~A[ 8];
+ kt = bnn & A[14];
+ c0 = A[ 2] ^ kt;
+ kt = A[14] | A[15];
+ c1 = bnn ^ kt;
+ kt = A[15] & A[21];
+ c2 = A[14] ^ kt;
+ kt = A[21] | A[ 2];
+ c3 = A[15] ^ kt;
+ kt = A[ 2] & A[ 8];
+ c4 = A[21] ^ kt;
+ A[ 2] = c0;
+ A[ 8] = c1;
+ A[14] = c2;
+ A[15] = c3;
+ A[21] = c4;
+ A[ 0] = A[ 0] ^ RC[j + 0];
+
+ tt0 = A[ 6] ^ A[ 9];
+ tt1 = A[ 7] ^ A[ 5];
+ tt0 ^= A[ 8] ^ tt1;
+ tt0 = (tt0 << 1) | (tt0 >> 63);
+ tt2 = A[24] ^ A[22];
+ tt3 = A[20] ^ A[23];
+ tt0 ^= A[21];
+ tt2 ^= tt3;
+ t0 = tt0 ^ tt2;
+
+ tt0 = A[12] ^ A[10];
+ tt1 = A[13] ^ A[11];
+ tt0 ^= A[14] ^ tt1;
+ tt0 = (tt0 << 1) | (tt0 >> 63);
+ tt2 = A[ 0] ^ A[ 3];
+ tt3 = A[ 1] ^ A[ 4];
+ tt0 ^= A[ 2];
+ tt2 ^= tt3;
+ t1 = tt0 ^ tt2;
+
+ tt0 = A[18] ^ A[16];
+ tt1 = A[19] ^ A[17];
+ tt0 ^= A[15] ^ tt1;
+ tt0 = (tt0 << 1) | (tt0 >> 63);
+ tt2 = A[ 6] ^ A[ 9];
+ tt3 = A[ 7] ^ A[ 5];
+ tt0 ^= A[ 8];
+ tt2 ^= tt3;
+ t2 = tt0 ^ tt2;
+
+ tt0 = A[24] ^ A[22];
+ tt1 = A[20] ^ A[23];
+ tt0 ^= A[21] ^ tt1;
+ tt0 = (tt0 << 1) | (tt0 >> 63);
+ tt2 = A[12] ^ A[10];
+ tt3 = A[13] ^ A[11];
+ tt0 ^= A[14];
+ tt2 ^= tt3;
+ t3 = tt0 ^ tt2;
+
+ tt0 = A[ 0] ^ A[ 3];
+ tt1 = A[ 1] ^ A[ 4];
+ tt0 ^= A[ 2] ^ tt1;
+ tt0 = (tt0 << 1) | (tt0 >> 63);
+ tt2 = A[18] ^ A[16];
+ tt3 = A[19] ^ A[17];
+ tt0 ^= A[15];
+ tt2 ^= tt3;
+ t4 = tt0 ^ tt2;
+
+ A[ 0] = A[ 0] ^ t0;
+ A[ 3] = A[ 3] ^ t0;
+ A[ 1] = A[ 1] ^ t0;
+ A[ 4] = A[ 4] ^ t0;
+ A[ 2] = A[ 2] ^ t0;
+ A[ 6] = A[ 6] ^ t1;
+ A[ 9] = A[ 9] ^ t1;
+ A[ 7] = A[ 7] ^ t1;
+ A[ 5] = A[ 5] ^ t1;
+ A[ 8] = A[ 8] ^ t1;
+ A[12] = A[12] ^ t2;
+ A[10] = A[10] ^ t2;
+ A[13] = A[13] ^ t2;
+ A[11] = A[11] ^ t2;
+ A[14] = A[14] ^ t2;
+ A[18] = A[18] ^ t3;
+ A[16] = A[16] ^ t3;
+ A[19] = A[19] ^ t3;
+ A[17] = A[17] ^ t3;
+ A[15] = A[15] ^ t3;
+ A[24] = A[24] ^ t4;
+ A[22] = A[22] ^ t4;
+ A[20] = A[20] ^ t4;
+ A[23] = A[23] ^ t4;
+ A[21] = A[21] ^ t4;
+ A[ 3] = (A[ 3] << 36) | (A[ 3] >> (64 - 36));
+ A[ 1] = (A[ 1] << 3) | (A[ 1] >> (64 - 3));
+ A[ 4] = (A[ 4] << 41) | (A[ 4] >> (64 - 41));
+ A[ 2] = (A[ 2] << 18) | (A[ 2] >> (64 - 18));
+ A[ 6] = (A[ 6] << 1) | (A[ 6] >> (64 - 1));
+ A[ 9] = (A[ 9] << 44) | (A[ 9] >> (64 - 44));
+ A[ 7] = (A[ 7] << 10) | (A[ 7] >> (64 - 10));
+ A[ 5] = (A[ 5] << 45) | (A[ 5] >> (64 - 45));
+ A[ 8] = (A[ 8] << 2) | (A[ 8] >> (64 - 2));
+ A[12] = (A[12] << 62) | (A[12] >> (64 - 62));
+ A[10] = (A[10] << 6) | (A[10] >> (64 - 6));
+ A[13] = (A[13] << 43) | (A[13] >> (64 - 43));
+ A[11] = (A[11] << 15) | (A[11] >> (64 - 15));
+ A[14] = (A[14] << 61) | (A[14] >> (64 - 61));
+ A[18] = (A[18] << 28) | (A[18] >> (64 - 28));
+ A[16] = (A[16] << 55) | (A[16] >> (64 - 55));
+ A[19] = (A[19] << 25) | (A[19] >> (64 - 25));
+ A[17] = (A[17] << 21) | (A[17] >> (64 - 21));
+ A[15] = (A[15] << 56) | (A[15] >> (64 - 56));
+ A[24] = (A[24] << 27) | (A[24] >> (64 - 27));
+ A[22] = (A[22] << 20) | (A[22] >> (64 - 20));
+ A[20] = (A[20] << 39) | (A[20] >> (64 - 39));
+ A[23] = (A[23] << 8) | (A[23] >> (64 - 8));
+ A[21] = (A[21] << 14) | (A[21] >> (64 - 14));
+
+ bnn = ~A[13];
+ kt = A[ 9] | A[13];
+ c0 = A[ 0] ^ kt;
+ kt = bnn | A[17];
+ c1 = A[ 9] ^ kt;
+ kt = A[17] & A[21];
+ c2 = A[13] ^ kt;
+ kt = A[21] | A[ 0];
+ c3 = A[17] ^ kt;
+ kt = A[ 0] & A[ 9];
+ c4 = A[21] ^ kt;
+ A[ 0] = c0;
+ A[ 9] = c1;
+ A[13] = c2;
+ A[17] = c3;
+ A[21] = c4;
+ bnn = ~A[14];
+ kt = A[22] | A[ 1];
+ c0 = A[18] ^ kt;
+ kt = A[ 1] & A[ 5];
+ c1 = A[22] ^ kt;
+ kt = A[ 5] | bnn;
+ c2 = A[ 1] ^ kt;
+ kt = A[14] | A[18];
+ c3 = A[ 5] ^ kt;
+ kt = A[18] & A[22];
+ c4 = A[14] ^ kt;
+ A[18] = c0;
+ A[22] = c1;
+ A[ 1] = c2;
+ A[ 5] = c3;
+ A[14] = c4;
+ bnn = ~A[23];
+ kt = A[10] | A[19];
+ c0 = A[ 6] ^ kt;
+ kt = A[19] & A[23];
+ c1 = A[10] ^ kt;
+ kt = bnn & A[ 2];
+ c2 = A[19] ^ kt;
+ kt = A[ 2] | A[ 6];
+ c3 = bnn ^ kt;
+ kt = A[ 6] & A[10];
+ c4 = A[ 2] ^ kt;
+ A[ 6] = c0;
+ A[10] = c1;
+ A[19] = c2;
+ A[23] = c3;
+ A[ 2] = c4;
+ bnn = ~A[11];
+ kt = A[ 3] & A[ 7];
+ c0 = A[24] ^ kt;
+ kt = A[ 7] | A[11];
+ c1 = A[ 3] ^ kt;
+ kt = bnn | A[15];
+ c2 = A[ 7] ^ kt;
+ kt = A[15] & A[24];
+ c3 = bnn ^ kt;
+ kt = A[24] | A[ 3];
+ c4 = A[15] ^ kt;
+ A[24] = c0;
+ A[ 3] = c1;
+ A[ 7] = c2;
+ A[11] = c3;
+ A[15] = c4;
+ bnn = ~A[16];
+ kt = bnn & A[20];
+ c0 = A[12] ^ kt;
+ kt = A[20] | A[ 4];
+ c1 = bnn ^ kt;
+ kt = A[ 4] & A[ 8];
+ c2 = A[20] ^ kt;
+ kt = A[ 8] | A[12];
+ c3 = A[ 4] ^ kt;
+ kt = A[12] & A[16];
+ c4 = A[ 8] ^ kt;
+ A[12] = c0;
+ A[16] = c1;
+ A[20] = c2;
+ A[ 4] = c3;
+ A[ 8] = c4;
+ A[ 0] = A[ 0] ^ RC[j + 1];
+ t = A[ 5];
+ A[ 5] = A[18];
+ A[18] = A[11];
+ A[11] = A[10];
+ A[10] = A[ 6];
+ A[ 6] = A[22];
+ A[22] = A[20];
+ A[20] = A[12];
+ A[12] = A[19];
+ A[19] = A[15];
+ A[15] = A[24];
+ A[24] = A[ 8];
+ A[ 8] = t;
+ t = A[ 1];
+ A[ 1] = A[ 9];
+ A[ 9] = A[14];
+ A[14] = A[ 2];
+ A[ 2] = A[13];
+ A[13] = A[23];
+ A[23] = A[ 4];
+ A[ 4] = A[21];
+ A[21] = A[16];
+ A[16] = A[ 3];
+ A[ 3] = A[17];
+ A[17] = A[ 7];
+ A[ 7] = t;
+ }
+
+ /*
+ * Invert some words back to normal representation.
+ */
+ A[ 1] = ~A[ 1];
+ A[ 2] = ~A[ 2];
+ A[ 8] = ~A[ 8];
+ A[12] = ~A[12];
+ A[17] = ~A[17];
+ A[20] = ~A[20];
+ }
+
+ internal void i_shake256_init()
+ {
+ this.dptr = 0;
+
+ /*
+ * Representation of an all-ones uint64_t is the same regardless
+ * of local endianness.
+ */
+ // memset(this.A, 0, sizeof this.A);
+ this.A = new ulong[25];
+ this.dubf = new byte[200];
+
+ for (int i = 0; i < this.A.Length; i++) {
+ this.A[i] = 0;
+ }
+ }
+
+ internal void i_shake256_inject(byte[] insrc, int inarray, int len)
+ {
+ ulong dptr;
+
+ dptr = this.dptr;
+ while (len > 0) {
+ int clen, u;
+
+ clen = 136 - (int)dptr;
+ if (clen > len) {
+ clen = len;
+ }
+ for (u = 0; u < clen; u ++) {
+ int v;
+
+ v = u + (int)dptr;
+ this.A[v >> 3] ^= (ulong)insrc[inarray + u] << ((v & 7) << 3);
+ }
+ dptr += (ulong)clen;
+ inarray += clen;
+ len -= clen;
+ if (dptr == 136) {
+ process_block(this.A);
+ dptr = 0;
+ }
+ }
+ this.dptr = dptr;
+ }
+
+ internal void i_shake256_flip()
+ {
+ /*
+ * We apply padding and pre-XOR the value into the state. We
+ * set dptr to the end of the buffer, so that first call to
+ * shake_extract() will process the block.
+ */
+ uint v;
+
+ v = (uint)this.dptr;
+ this.A[v >> 3] ^= (ulong)0x1F << (int)((v & 7) << 3);
+ this.A[16] ^= (ulong)0x80 << 56;
+ this.dptr = 136;
+ }
+
+ internal void i_shake256_extract(byte[] outsrc, int outarray, int len)
+ {
+ ulong dptr;
+
+ dptr = this.dptr;
+ while (len > 0) {
+ int clen;
+
+ if (dptr == 136) {
+ process_block(this.A);
+ dptr = 0;
+ }
+ clen = 136 - (int)dptr;
+ if (clen > len) {
+ clen = len;
+ }
+ len -= clen;
+ while (clen -- > 0) {
+ outsrc[outarray ++] = (byte)(this.A[dptr >> 3] >> (int)((dptr & 7) << 3));
+ dptr ++;
+ }
+ }
+ this.dptr = dptr;
+ }
+
+ }
+}
diff --git a/crypto/src/pqc/crypto/falcon/SamplerZ.cs b/crypto/src/pqc/crypto/falcon/SamplerZ.cs
new file mode 100644
index 000000000..b43cd2c38
--- /dev/null
+++ b/crypto/src/pqc/crypto/falcon/SamplerZ.cs
@@ -0,0 +1,229 @@
+using System;
+
+namespace Org.BouncyCastle.Pqc.Crypto.Falcon
+{
+ class SamplerZ
+ {
+ FalconRNG p;
+ FalconFPR sigma_min;
+ FPREngine fpre;
+
+ internal SamplerZ(FalconRNG p, FalconFPR sigma_min, FPREngine fpre) {
+ this.p = p;
+ this.sigma_min = sigma_min;
+ this.fpre = fpre;
+ }
+
+ internal int Sample(FalconFPR mu, FalconFPR isigma) {
+ return this.sampler(mu, isigma);
+ }
+
+ /*
+ * Sample an integer value along a half-gaussian distribution centered
+ * on zero and standard deviation 1.8205, with a precision of 72 bits.
+ */
+ int gaussian0_sampler(FalconRNG p)
+ {
+
+ uint[] dist = {
+ 10745844u, 3068844u, 3741698u,
+ 5559083u, 1580863u, 8248194u,
+ 2260429u, 13669192u, 2736639u,
+ 708981u, 4421575u, 10046180u,
+ 169348u, 7122675u, 4136815u,
+ 30538u, 13063405u, 7650655u,
+ 4132u, 14505003u, 7826148u,
+ 417u, 16768101u, 11363290u,
+ 31u, 8444042u, 8086568u,
+ 1u, 12844466u, 265321u,
+ 0u, 1232676u, 13644283u,
+ 0u, 38047u, 9111839u,
+ 0u, 870u, 6138264u,
+ 0u, 14u, 12545723u,
+ 0u, 0u, 3104126u,
+ 0u, 0u, 28824u,
+ 0u, 0u, 198u,
+ 0u, 0u, 1u
+ };
+
+ uint v0, v1, v2, hi;
+ ulong lo;
+ int u;
+ int z;
+
+ /*
+ * Get a random 72-bit value, into three 24-bit limbs v0..v2.
+ */
+ lo = p.prng_get_u64();
+ hi = p.prng_get_u8();
+ v0 = (uint)lo & 0xFFFFFF;
+ v1 = (uint)(lo >> 24) & 0xFFFFFF;
+ v2 = (uint)(lo >> 48) | (hi << 16);
+
+ /*
+ * Sampled value is z, such that v0..v2 is lower than the first
+ * z elements of the table.
+ */
+ z = 0;
+ for (u = 0; u < dist.Length; u += 3) {
+ uint w0, w1, w2, cc;
+
+ w0 = dist[u + 2];
+ w1 = dist[u + 1];
+ w2 = dist[u + 0];
+ cc = (v0 - w0) >> 31;
+ cc = (v1 - w1 - cc) >> 31;
+ cc = (v2 - w2 - cc) >> 31;
+ z += (int)cc;
+ }
+ return z;
+
+ }
+
+ /*
+ * Sample a bit with probability exp(-x) for some x >= 0.
+ */
+ int BerExp(FalconRNG p, FalconFPR x, FalconFPR ccs)
+ {
+ int s, i;
+ FalconFPR r;
+ uint sw, w;
+ ulong z;
+
+ /*
+ * Reduce x modulo log(2): x = s*log(2) + r, with s an integer,
+ * and 0 <= r < log(2). Since x >= 0, we can use this.fpre.fpr_trunc().
+ */
+ s = (int)this.fpre.fpr_trunc(this.fpre.fpr_mul(x, this.fpre.fpr_inv_log2));
+ r = this.fpre.fpr_sub(x, this.fpre.fpr_mul(this.fpre.fpr_of(s), this.fpre.fpr_log2));
+
+ /*
+ * It may happen (quite rarely) that s >= 64; if sigma = 1.2
+ * (the minimum value for sigma), r = 0 and b = 1, then we get
+ * s >= 64 if the half-Gaussian produced a z >= 13, which happens
+ * with probability about 0.000000000230383991, which is
+ * approximatively equal to 2^(-32). In any case, if s >= 64,
+ * then BerExp will be non-zero with probability less than
+ * 2^(-64), so we can simply saturate s at 63.
+ */
+ sw = (uint)s;
+ sw ^= (uint)((sw ^ 63) & -((63 - sw) >> 31));
+ s = (int)sw;
+
+ /*
+ * Compute exp(-r); we know that 0 <= r < log(2) at this point, so
+ * we can use this.fpre.fpr_expm_p63(), which yields a result scaled to 2^63.
+ * We scale it up to 2^64, then right-shift it by s bits because
+ * we really want exp(-x) = 2^(-s)*exp(-r).
+ *
+ * The "-1" operation makes sure that the value fits on 64 bits
+ * (i.e. if r = 0, we may get 2^64, and we prefer 2^64-1 in that
+ * case). The bias is negligible since this.fpre.fpr_expm_p63() only computes
+ * with 51 bits of precision or so.
+ */
+ z = ((this.fpre.fpr_expm_p63(r, ccs) << 1) - 1) >> s;
+
+ /*
+ * Sample a bit with probability exp(-x). Since x = s*log(2) + r,
+ * exp(-x) = 2^-s * exp(-r), we compare lazily exp(-x) with the
+ * PRNG output to limit its consumption, the sign of the difference
+ * yields the expected result.
+ */
+ i = 64;
+ do {
+ i -= 8;
+ w = p.prng_get_u8() - ((uint)(z >> i) & 0xFF);
+ } while (w == 0 && i > 0);
+ return (int)(w >> 31);
+ }
+
+ /*
+ * The sampler produces a random integer that follows a discrete Gaussian
+ * distribution, centered on mu, and with standard deviation sigma. The
+ * provided parameter isigma is equal to 1/sigma.
+ *
+ * The value of sigma MUST lie between 1 and 2 (i.e. isigma lies between
+ * 0.5 and 1); in Falcon, sigma should always be between 1.2 and 1.9.
+ */
+ int sampler(FalconFPR mu, FalconFPR isigma)
+ {
+ int s;
+ FalconFPR r, dss, ccs;
+
+ /*
+ * Center is mu. We compute mu = s + r where s is an integer
+ * and 0 <= r < 1.
+ */
+ s = (int)this.fpre.fpr_floor(mu);
+ r = this.fpre.fpr_sub(mu, this.fpre.fpr_of(s));
+
+ /*
+ * dss = 1/(2*sigma^2) = 0.5*(isigma^2).
+ */
+ dss = this.fpre.fpr_half(this.fpre.fpr_sqr(isigma));
+
+ /*
+ * ccs = sigma_min / sigma = sigma_min * isigma.
+ */
+ ccs = this.fpre.fpr_mul(isigma, this.sigma_min);
+
+ /*
+ * We now need to sample on center r.
+ */
+ for (;;) {
+ int z0, z, b;
+ FalconFPR x;
+
+ /*
+ * Sample z for a Gaussian distribution. Then get a
+ * random bit b to turn the sampling into a bimodal
+ * distribution: if b = 1, we use z+1, otherwise we
+ * use -z. We thus have two situations:
+ *
+ * - b = 1: z >= 1 and sampled against a Gaussian
+ * centered on 1.
+ * - b = 0: z <= 0 and sampled against a Gaussian
+ * centered on 0.
+ */
+ z0 = gaussian0_sampler(this.p);
+ b = (int)this.p.prng_get_u8() & 1;
+ z = b + ((b << 1) - 1) * z0;
+
+ /*
+ * Rejection sampling. We want a Gaussian centered on r;
+ * but we sampled against a Gaussian centered on b (0 or
+ * 1). But we know that z is always in the range where
+ * our sampling distribution is greater than the Gaussian
+ * distribution, so rejection works.
+ *
+ * We got z with distribution:
+ * G(z) = exp(-((z-b)^2)/(2*sigma0^2))
+ * We target distribution:
+ * S(z) = exp(-((z-r)^2)/(2*sigma^2))
+ * Rejection sampling works by keeping the value z with
+ * probability S(z)/G(z), and starting again otherwise.
+ * This requires S(z) <= G(z), which is the case here.
+ * Thus, we simply need to keep our z with probability:
+ * P = exp(-x)
+ * where:
+ * x = ((z-r)^2)/(2*sigma^2) - ((z-b)^2)/(2*sigma0^2)
+ *
+ * Here, we scale up the Bernouilli distribution, which
+ * makes rejection more probable, but makes rejection
+ * rate sufficiently decorrelated from the Gaussian
+ * center and standard deviation that the whole sampler
+ * can be said to be constant-time.
+ */
+ x = this.fpre.fpr_mul(this.fpre.fpr_sqr(this.fpre.fpr_sub(this.fpre.fpr_of(z), r)), dss);
+ x = this.fpre.fpr_sub(x, this.fpre.fpr_mul(this.fpre.fpr_of(z0 * z0), this.fpre.fpr_inv_2sqrsigma0));
+ if (BerExp(this.p, x, ccs) != 0) {
+ /*
+ * Rejection sampling was centered on r, but the
+ * actual center is mu = s + r.
+ */
+ return s + z;
+ }
+ }
+ }
+ }
+}
|