diff --git a/crypto/src/math/ec/custom/sec/SecT131Field.cs b/crypto/src/math/ec/custom/sec/SecT131Field.cs
index df75dfcd7..6a1d2a960 100644
--- a/crypto/src/math/ec/custom/sec/SecT131Field.cs
+++ b/crypto/src/math/ec/custom/sec/SecT131Field.cs
@@ -231,7 +231,7 @@ namespace Org.BouncyCastle.Math.EC.Custom.Sec
Debug.Assert(y >> 45 == 0);
ulong[] u = new ulong[8];
- // u[0] = 0;
+ //u[0] = 0;
u[1] = y;
u[2] = u[1] << 1;
u[3] = u[2] ^ y;
@@ -247,7 +247,7 @@ namespace Org.BouncyCastle.Math.EC.Custom.Sec
int k = 33;
do
{
- j = (uint)(x >> k);
+ j = (uint)(x >> k);
g = u[j & 7]
^ u[(j >> 3) & 7] << 3
^ u[(j >> 6) & 7] << 6
diff --git a/crypto/src/math/ec/custom/sec/SecT163Field.cs b/crypto/src/math/ec/custom/sec/SecT163Field.cs
index 2a775e20d..165d5b841 100644
--- a/crypto/src/math/ec/custom/sec/SecT163Field.cs
+++ b/crypto/src/math/ec/custom/sec/SecT163Field.cs
@@ -230,7 +230,7 @@ namespace Org.BouncyCastle.Math.EC.Custom.Sec
Debug.Assert(y >> 56 == 0);
ulong[] u = new ulong[8];
- // u[0] = 0;
+ //u[0] = 0;
u[1] = y;
u[2] = u[1] << 1;
u[3] = u[2] ^ y;
@@ -244,7 +244,7 @@ namespace Org.BouncyCastle.Math.EC.Custom.Sec
int k = 47;
do
{
- j = (uint)(x >> k);
+ j = (uint)(x >> k);
g = u[j & 7]
^ u[(j >> 3) & 7] << 3
^ u[(j >> 6) & 7] << 6;
diff --git a/crypto/src/math/ec/custom/sec/SecT193Field.cs b/crypto/src/math/ec/custom/sec/SecT193Field.cs
new file mode 100644
index 000000000..85db061c3
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT193Field.cs
@@ -0,0 +1,239 @@
+using System;
+using System.Diagnostics;
+
+using Org.BouncyCastle.Math.Raw;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+ internal class SecT193Field
+ {
+ private const ulong M01 = 1UL;
+ private const ulong M49 = ulong.MaxValue >> 15;
+
+ public static void Add(ulong[] x, ulong[] y, ulong[] z)
+ {
+ z[0] = x[0] ^ y[0];
+ z[1] = x[1] ^ y[1];
+ z[2] = x[2] ^ y[2];
+ z[3] = x[3] ^ y[3];
+ }
+
+ public static void AddExt(ulong[] xx, ulong[] yy, ulong[] zz)
+ {
+ zz[0] = xx[0] ^ yy[0];
+ zz[1] = xx[1] ^ yy[1];
+ zz[2] = xx[2] ^ yy[2];
+ zz[3] = xx[3] ^ yy[3];
+ zz[4] = xx[4] ^ yy[4];
+ zz[5] = xx[5] ^ yy[5];
+ zz[6] = xx[6] ^ yy[6];
+ }
+
+ public static void AddOne(ulong[] x, ulong[] z)
+ {
+ z[0] = x[0] ^ 1UL;
+ z[1] = x[1];
+ z[2] = x[2];
+ z[3] = x[3];
+ }
+
+ public static ulong[] FromBigInteger(BigInteger x)
+ {
+ ulong[] z = Nat256.FromBigInteger64(x);
+ Reduce63(z, 0);
+ return z;
+ }
+
+ public static void Multiply(ulong[] x, ulong[] y, ulong[] z)
+ {
+ ulong[] tt = Nat256.CreateExt64();
+ ImplMultiply(x, y, tt);
+ Reduce(tt, z);
+ }
+
+ public static void MultiplyAddToExt(ulong[] x, ulong[] y, ulong[] zz)
+ {
+ ulong[] tt = Nat256.CreateExt64();
+ ImplMultiply(x, y, tt);
+ AddExt(zz, tt, zz);
+ }
+
+ public static void Reduce(ulong[] xx, ulong[] z)
+ {
+ ulong x0 = xx[0], x1 = xx[1], x2 = xx[2], x3 = xx[3], x4 = xx[4], x5 = xx[5], x6 = xx[6];
+
+ x2 ^= (x6 << 63);
+ x3 ^= (x6 >> 1) ^ (x6 << 14);
+ x4 ^= (x6 >> 50);
+
+ x1 ^= (x5 << 63);
+ x2 ^= (x5 >> 1) ^ (x5 << 14);
+ x3 ^= (x5 >> 50);
+
+ x0 ^= (x4 << 63);
+ x1 ^= (x4 >> 1) ^ (x4 << 14);
+ x2 ^= (x4 >> 50);
+
+ ulong t = x3 >> 1;
+ z[0] = x0 ^ t ^ (t << 15);
+ z[1] = x1 ^ (t >> 49);
+ z[2] = x2;
+ z[3] = x3 & M01;
+ }
+
+ public static void Reduce63(ulong[] z, int zOff)
+ {
+ ulong z3 = z[zOff + 3], t = z3 >> 1;
+ z[zOff ] ^= t ^ (t << 15);
+ z[zOff + 1] ^= (t >> 49);
+ z[zOff + 3] = z3 & M01;
+ }
+
+ public static void Square(ulong[] x, ulong[] z)
+ {
+ ulong[] tt = Nat256.CreateExt64();
+ ImplSquare(x, tt);
+ Reduce(tt, z);
+ }
+
+ public static void SquareAddToExt(ulong[] x, ulong[] zz)
+ {
+ ulong[] tt = Nat256.CreateExt64();
+ ImplSquare(x, tt);
+ AddExt(zz, tt, zz);
+ }
+
+ public static void SquareN(ulong[] x, int n, ulong[] z)
+ {
+ Debug.Assert(n > 0);
+
+ ulong[] tt = Nat256.CreateExt64();
+ ImplSquare(x, tt);
+ Reduce(tt, z);
+
+ while (--n > 0)
+ {
+ ImplSquare(z, tt);
+ Reduce(tt, z);
+ }
+ }
+
+ protected static void ImplCompactExt(ulong[] zz)
+ {
+ ulong z0 = zz[0], z1 = zz[1], z2 = zz[2], z3 = zz[3], z4 = zz[4], z5 = zz[5], z6 = zz[6], z7 = zz[7];
+ zz[0] = z0 ^ (z1 << 49);
+ zz[1] = (z1 >> 15) ^ (z2 << 34);
+ zz[2] = (z2 >> 30) ^ (z3 << 19);
+ zz[3] = (z3 >> 45) ^ (z4 << 4)
+ ^ (z5 << 53);
+ zz[4] = (z4 >> 60) ^ (z6 << 38)
+ ^ (z5 >> 11);
+ zz[5] = (z6 >> 26) ^ (z7 << 23);
+ zz[6] = (z7 >> 41);
+ zz[7] = 0;
+ }
+
+ protected static void ImplExpand(ulong[] x, ulong[] z)
+ {
+ ulong x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3];
+ z[0] = x0 & M49;
+ z[1] = ((x0 >> 49) ^ (x1 << 15)) & M49;
+ z[2] = ((x1 >> 34) ^ (x2 << 30)) & M49;
+ z[3] = ((x2 >> 19) ^ (x3 << 45));
+ }
+
+ protected static void ImplMultiply(ulong[] x, ulong[] y, ulong[] zz)
+ {
+ /*
+ * "Two-level seven-way recursion" as described in "Batch binary Edwards", Daniel J. Bernstein.
+ */
+
+ ulong[] f = new ulong[4], g = new ulong[4];
+ ImplExpand(x, f);
+ ImplExpand(y, g);
+
+ ImplMulwAcc(f[0], g[0], zz, 0);
+ ImplMulwAcc(f[1], g[1], zz, 1);
+ ImplMulwAcc(f[2], g[2], zz, 2);
+ ImplMulwAcc(f[3], g[3], zz, 3);
+
+ // U *= (1 - t^n)
+ for (int i = 5; i > 0; --i)
+ {
+ zz[i] ^= zz[i - 1];
+ }
+
+ ImplMulwAcc(f[0] ^ f[1], g[0] ^ g[1], zz, 1);
+ ImplMulwAcc(f[2] ^ f[3], g[2] ^ g[3], zz, 3);
+
+ // V *= (1 - t^2n)
+ for (int i = 7; i > 1; --i)
+ {
+ zz[i] ^= zz[i - 2];
+ }
+
+ // Double-length recursion
+ {
+ ulong c0 = f[0] ^ f[2], c1 = f[1] ^ f[3];
+ ulong d0 = g[0] ^ g[2], d1 = g[1] ^ g[3];
+ ImplMulwAcc(c0 ^ c1, d0 ^ d1, zz, 3);
+ ulong[] t = new ulong[3];
+ ImplMulwAcc(c0, d0, t, 0);
+ ImplMulwAcc(c1, d1, t, 1);
+ ulong t0 = t[0], t1 = t[1], t2 = t[2];
+ zz[2] ^= t0;
+ zz[3] ^= t0 ^ t1;
+ zz[4] ^= t2 ^ t1;
+ zz[5] ^= t2;
+ }
+
+ ImplCompactExt(zz);
+ }
+
+ protected static void ImplMulwAcc(ulong x, ulong y, ulong[] z, int zOff)
+ {
+ Debug.Assert(x >> 49 == 0);
+ Debug.Assert(y >> 49 == 0);
+
+ ulong[] u = new ulong[8];
+ //u[0] = 0;
+ u[1] = y;
+ u[2] = u[1] << 1;
+ u[3] = u[2] ^ y;
+ u[4] = u[2] << 1;
+ u[5] = u[4] ^ y;
+ u[6] = u[3] << 1;
+ u[7] = u[6] ^ y;
+
+ uint j = (uint)x;
+ ulong g, h = 0, l = u[j & 7]
+ ^ (u[(j >> 3) & 7] << 3);
+ int k = 36;
+ do
+ {
+ j = (uint)(x >> k);
+ g = u[j & 7]
+ ^ u[(j >> 3) & 7] << 3
+ ^ u[(j >> 6) & 7] << 6
+ ^ u[(j >> 9) & 7] << 9
+ ^ u[(j >> 12) & 7] << 12;
+ l ^= (g << k);
+ h ^= (g >> -k);
+ }
+ while ((k -= 15) > 0);
+
+ Debug.Assert(h >> 33 == 0);
+
+ z[zOff ] ^= l & M49;
+ z[zOff + 1] ^= (l >> 49) ^ (h << 15);
+ }
+
+ protected static void ImplSquare(ulong[] x, ulong[] zz)
+ {
+ Interleave.Expand64To128(x[0], zz, 0);
+ Interleave.Expand64To128(x[1], zz, 2);
+ Interleave.Expand64To128(x[2], zz, 4);
+ zz[6] = (x[3] & M01);
+ }
+ }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT193FieldElement.cs b/crypto/src/math/ec/custom/sec/SecT193FieldElement.cs
new file mode 100644
index 000000000..995d2ebdd
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT193FieldElement.cs
@@ -0,0 +1,213 @@
+using System;
+
+using Org.BouncyCastle.Math.Raw;
+using Org.BouncyCastle.Utilities;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+ internal class SecT193FieldElement
+ : ECFieldElement
+ {
+ protected readonly ulong[] x;
+
+ public SecT193FieldElement(BigInteger x)
+ {
+ if (x == null || x.SignValue < 0 || x.BitLength > 193)
+ throw new ArgumentException("value invalid for SecT193FieldElement", "x");
+
+ this.x = SecT193Field.FromBigInteger(x);
+ }
+
+ public SecT193FieldElement()
+ {
+ this.x = Nat256.Create64();
+ }
+
+ protected internal SecT193FieldElement(ulong[] x)
+ {
+ this.x = x;
+ }
+
+ public override bool IsOne
+ {
+ get { return Nat256.IsOne64(x); }
+ }
+
+ public override bool IsZero
+ {
+ get { return Nat256.IsZero64(x); }
+ }
+
+ public override bool TestBitZero()
+ {
+ return (x[0] & 1UL) != 0UL;
+ }
+
+ public override BigInteger ToBigInteger()
+ {
+ return Nat256.ToBigInteger64(x);
+ }
+
+ public override string FieldName
+ {
+ get { return "SecT193Field"; }
+ }
+
+ public override int FieldSize
+ {
+ get { return 193; }
+ }
+
+ public override ECFieldElement Add(ECFieldElement b)
+ {
+ ulong[] z = Nat256.Create64();
+ SecT193Field.Add(x, ((SecT193FieldElement)b).x, z);
+ return new SecT193FieldElement(z);
+ }
+
+ public override ECFieldElement AddOne()
+ {
+ ulong[] z = Nat256.Create64();
+ SecT193Field.AddOne(x, z);
+ return new SecT193FieldElement(z);
+ }
+
+ public override ECFieldElement Subtract(ECFieldElement b)
+ {
+ // Addition and Subtraction are the same in F2m
+ return Add(b);
+ }
+
+ public override ECFieldElement Multiply(ECFieldElement b)
+ {
+ ulong[] z = Nat256.Create64();
+ SecT193Field.Multiply(x, ((SecT193FieldElement)b).x, z);
+ return new SecT193FieldElement(z);
+ }
+
+ public override ECFieldElement MultiplyMinusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
+ {
+ return MultiplyPlusProduct(b, x, y);
+ }
+
+ public override ECFieldElement MultiplyPlusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
+ {
+ ulong[] ax = this.x, bx = ((SecT193FieldElement)b).x;
+ ulong[] xx = ((SecT193FieldElement)x).x, yx = ((SecT193FieldElement)y).x;
+
+ ulong[] tt = Nat256.CreateExt64();
+ SecT193Field.MultiplyAddToExt(ax, bx, tt);
+ SecT193Field.MultiplyAddToExt(xx, yx, tt);
+
+ ulong[] z = Nat256.Create64();
+ SecT193Field.Reduce(tt, z);
+ return new SecT193FieldElement(z);
+ }
+
+ public override ECFieldElement Divide(ECFieldElement b)
+ {
+ return Multiply(b.Invert());
+ }
+
+ public override ECFieldElement Negate()
+ {
+ return this;
+ }
+
+ public override ECFieldElement Square()
+ {
+ ulong[] z = Nat256.Create64();
+ SecT193Field.Square(x, z);
+ return new SecT193FieldElement(z);
+ }
+
+ public override ECFieldElement SquareMinusProduct(ECFieldElement x, ECFieldElement y)
+ {
+ return SquarePlusProduct(x, y);
+ }
+
+ public override ECFieldElement SquarePlusProduct(ECFieldElement x, ECFieldElement y)
+ {
+ ulong[] ax = this.x;
+ ulong[] xx = ((SecT193FieldElement)x).x, yx = ((SecT193FieldElement)y).x;
+
+ ulong[] tt = Nat256.CreateExt64();
+ SecT193Field.SquareAddToExt(ax, tt);
+ SecT193Field.MultiplyAddToExt(xx, yx, tt);
+
+ ulong[] z = Nat256.Create64();
+ SecT193Field.Reduce(tt, z);
+ return new SecT193FieldElement(z);
+ }
+
+ public override ECFieldElement SquarePow(int pow)
+ {
+ if (pow < 1)
+ return this;
+
+ ulong[] z = Nat256.Create64();
+ SecT193Field.SquareN(x, pow, z);
+ return new SecT193FieldElement(z);
+ }
+
+ public override ECFieldElement Invert()
+ {
+ return new SecT193FieldElement(
+ AbstractF2mCurve.Inverse(193, new int[] { 15 }, ToBigInteger()));
+ }
+
+ public override ECFieldElement Sqrt()
+ {
+ return SquarePow(M - 1);
+ }
+
+ public virtual int Representation
+ {
+ get { return F2mFieldElement.Tpb; }
+ }
+
+ public virtual int M
+ {
+ get { return 193; }
+ }
+
+ public virtual int K1
+ {
+ get { return 15; }
+ }
+
+ public virtual int K2
+ {
+ get { return 0; }
+ }
+
+ public virtual int K3
+ {
+ get { return 0; }
+ }
+
+ public override bool Equals(object obj)
+ {
+ return Equals(obj as SecT193FieldElement);
+ }
+
+ public override bool Equals(ECFieldElement other)
+ {
+ return Equals(other as SecT193FieldElement);
+ }
+
+ public virtual bool Equals(SecT193FieldElement other)
+ {
+ if (this == other)
+ return true;
+ if (null == other)
+ return false;
+ return Nat256.Eq64(x, other.x);
+ }
+
+ public override int GetHashCode()
+ {
+ return 1930015 ^ Arrays.GetHashCode(x, 0, 4);
+ }
+ }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT193R1Curve.cs b/crypto/src/math/ec/custom/sec/SecT193R1Curve.cs
new file mode 100644
index 000000000..802954b01
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT193R1Curve.cs
@@ -0,0 +1,190 @@
+using System;
+
+using Org.BouncyCastle.Utilities.Encoders;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+ internal class SecT193R1Curve
+ : AbstractF2mCurve
+ {
+ private const int SecT193R1_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
+
+ protected readonly SecT193R1Point m_infinity;
+
+ public SecT193R1Curve()
+ : base(193, 15, 0, 0)
+ {
+ this.m_infinity = new SecT193R1Point(this, null, null);
+
+ this.m_a = FromBigInteger(new BigInteger(1, Hex.Decode("0017858FEB7A98975169E171F77B4087DE098AC8A911DF7B01")));
+ this.m_b = FromBigInteger(new BigInteger(1, Hex.Decode("00FDFB49BFE6C3A89FACADAA7A1E5BBC7CC1C2E5D831478814")));
+ this.m_order = new BigInteger(1, Hex.Decode("01000000000000000000000000C7F34A778F443ACC920EBA49"));
+ this.m_cofactor = BigInteger.Two;
+
+ this.m_coord = SecT193R1_DEFAULT_COORDS;
+ }
+
+ protected override ECCurve CloneCurve()
+ {
+ return new SecT193R1Curve();
+ }
+
+ public override bool SupportsCoordinateSystem(int coord)
+ {
+ switch (coord)
+ {
+ case COORD_LAMBDA_PROJECTIVE:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ public override ECPoint Infinity
+ {
+ get { return m_infinity; }
+ }
+
+ public override int FieldSize
+ {
+ get { return 193; }
+ }
+
+ public override ECFieldElement FromBigInteger(BigInteger x)
+ {
+ return new SecT193FieldElement(x);
+ }
+
+ protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
+ {
+ return new SecT193R1Point(this, x, y, withCompression);
+ }
+
+ protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+ {
+ return new SecT193R1Point(this, x, y, zs, withCompression);
+ }
+
+ public override bool IsKoblitz
+ {
+ get { return false; }
+ }
+
+ /**
+ * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
+ *
+ * @param yTilde
+ * ~yp, an indication bit for the decompression of yp.
+ * @param X1
+ * The field element xp.
+ * @return the decompressed point.
+ */
+ protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
+ {
+ ECFieldElement x = FromBigInteger(X1), y = null;
+ if (x.IsZero)
+ {
+ y = B.Sqrt();
+ }
+ else
+ {
+ ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
+ ECFieldElement z = SolveQuadraticEquation(beta);
+ if (z != null)
+ {
+ if (z.TestBitZero() != (yTilde == 1))
+ {
+ z = z.AddOne();
+ }
+
+ switch (this.CoordinateSystem)
+ {
+ case COORD_LAMBDA_AFFINE:
+ case COORD_LAMBDA_PROJECTIVE:
+ {
+ y = z.Add(x);
+ break;
+ }
+ default:
+ {
+ y = z.Multiply(x);
+ break;
+ }
+ }
+ }
+ }
+
+ if (y == null)
+ throw new ArgumentException("Invalid point compression");
+
+ return this.CreateRawPoint(x, y, true);
+ }
+
+ /**
+ * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
+ * D.1.6) The other solution is <code>z + 1</code>.
+ *
+ * @param beta
+ * The value to solve the quadratic equation for.
+ * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
+ * <code>null</code> if no solution exists.
+ */
+ private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
+ {
+ if (beta.IsZero)
+ {
+ return beta;
+ }
+
+ ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
+
+ ECFieldElement z = null;
+ ECFieldElement gamma = null;
+
+ Random rand = new Random();
+ do
+ {
+ ECFieldElement t = FromBigInteger(new BigInteger(193, rand));
+ z = zeroElement;
+ ECFieldElement w = beta;
+ for (int i = 1; i < 193; i++)
+ {
+ ECFieldElement w2 = w.Square();
+ z = z.Square().Add(w2.Multiply(t));
+ w = w2.Add(beta);
+ }
+ if (!w.IsZero)
+ return null;
+ gamma = z.Square().Add(z);
+ }
+ while (gamma.IsZero);
+
+ return z;
+ }
+
+ public virtual int M
+ {
+ get { return 193; }
+ }
+
+ public virtual bool IsTrinomial
+ {
+ get { return true; }
+ }
+
+ public virtual int K1
+ {
+ get { return 15; }
+ }
+
+ public virtual int K2
+ {
+ get { return 0; }
+ }
+
+ public virtual int K3
+ {
+ get { return 0; }
+ }
+ }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT193R1Point.cs b/crypto/src/math/ec/custom/sec/SecT193R1Point.cs
new file mode 100644
index 000000000..062fce9d4
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT193R1Point.cs
@@ -0,0 +1,283 @@
+using System;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+ internal class SecT193R1Point
+ : AbstractF2mPoint
+ {
+ /**
+ * @deprecated Use ECCurve.createPoint to construct points
+ */
+ public SecT193R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
+ : this(curve, x, y, false)
+ {
+ }
+
+ /**
+ * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)}
+ */
+ public SecT193R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
+ : base(curve, x, y, withCompression)
+ {
+ if ((x == null) != (y == null))
+ throw new ArgumentException("Exactly one of the field elements is null");
+ }
+
+ internal SecT193R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+ : base(curve, x, y, zs, withCompression)
+ {
+ }
+
+ protected override ECPoint Detach()
+ {
+ return new SecT193R1Point(null, AffineXCoord, AffineYCoord);
+ }
+
+ public override ECFieldElement YCoord
+ {
+ get
+ {
+ ECFieldElement X = RawXCoord, L = RawYCoord;
+
+ if (this.IsInfinity || X.IsZero)
+ return L;
+
+ // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
+ ECFieldElement Y = L.Add(X).Multiply(X);
+
+ ECFieldElement Z = RawZCoords[0];
+ if (!Z.IsOne)
+ {
+ Y = Y.Divide(Z);
+ }
+
+ return Y;
+ }
+ }
+
+ protected internal override bool CompressionYTilde
+ {
+ get
+ {
+ ECFieldElement X = this.RawXCoord;
+ if (X.IsZero)
+ return false;
+
+ ECFieldElement Y = this.RawYCoord;
+
+ // Y is actually Lambda (X + Y/X) here
+ return Y.TestBitZero() != X.TestBitZero();
+ }
+ }
+
+ public override ECPoint Add(ECPoint b)
+ {
+ if (this.IsInfinity)
+ return b;
+ if (b.IsInfinity)
+ return this;
+
+ ECCurve curve = this.Curve;
+
+ ECFieldElement X1 = this.RawXCoord;
+ ECFieldElement X2 = b.RawXCoord;
+
+ if (X1.IsZero)
+ {
+ if (X2.IsZero)
+ return curve.Infinity;
+
+ return b.Add(this);
+ }
+
+ ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+ ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
+
+ bool Z1IsOne = Z1.IsOne;
+ ECFieldElement U2 = X2, S2 = L2;
+ if (!Z1IsOne)
+ {
+ U2 = U2.Multiply(Z1);
+ S2 = S2.Multiply(Z1);
+ }
+
+ bool Z2IsOne = Z2.IsOne;
+ ECFieldElement U1 = X1, S1 = L1;
+ if (!Z2IsOne)
+ {
+ U1 = U1.Multiply(Z2);
+ S1 = S1.Multiply(Z2);
+ }
+
+ ECFieldElement A = S1.Add(S2);
+ ECFieldElement B = U1.Add(U2);
+
+ if (B.IsZero)
+ {
+ if (A.IsZero)
+ return Twice();
+
+ return curve.Infinity;
+ }
+
+ ECFieldElement X3, L3, Z3;
+ if (X2.IsZero)
+ {
+ // TODO This can probably be optimized quite a bit
+ ECPoint p = this.Normalize();
+ X1 = p.XCoord;
+ ECFieldElement Y1 = p.YCoord;
+
+ ECFieldElement Y2 = L2;
+ ECFieldElement L = Y1.Add(Y2).Divide(X1);
+
+ X3 = L.Square().Add(L).Add(X1).Add(curve.A);
+ if (X3.IsZero)
+ {
+ return new SecT193R1Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+ }
+
+ ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
+ L3 = Y3.Divide(X3).Add(X3);
+ Z3 = curve.FromBigInteger(BigInteger.One);
+ }
+ else
+ {
+ B = B.Square();
+
+ ECFieldElement AU1 = A.Multiply(U1);
+ ECFieldElement AU2 = A.Multiply(U2);
+
+ X3 = AU1.Multiply(AU2);
+ if (X3.IsZero)
+ {
+ return new SecT193R1Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+ }
+
+ ECFieldElement ABZ2 = A.Multiply(B);
+ if (!Z2IsOne)
+ {
+ ABZ2 = ABZ2.Multiply(Z2);
+ }
+
+ L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
+
+ Z3 = ABZ2;
+ if (!Z1IsOne)
+ {
+ Z3 = Z3.Multiply(Z1);
+ }
+ }
+
+ return new SecT193R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+ }
+
+ public override ECPoint Twice()
+ {
+ if (this.IsInfinity)
+ {
+ return this;
+ }
+
+ ECCurve curve = this.Curve;
+
+ ECFieldElement X1 = this.RawXCoord;
+ if (X1.IsZero)
+ {
+ // A point with X == 0 is it's own Additive inverse
+ return curve.Infinity;
+ }
+
+ ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+
+ bool Z1IsOne = Z1.IsOne;
+ ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.Multiply(Z1);
+ ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
+ ECFieldElement a = curve.A;
+ ECFieldElement aZ1Sq = Z1IsOne ? a : a.Multiply(Z1Sq);
+ ECFieldElement T = L1.Square().Add(L1Z1).Add(aZ1Sq);
+ if (T.IsZero)
+ {
+ return new SecT193R1Point(curve, T, curve.B.Sqrt(), IsCompressed);
+ }
+
+ ECFieldElement X3 = T.Square();
+ ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
+
+ ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1);
+ ECFieldElement L3 = X1Z1.SquarePlusProduct(T, L1Z1).Add(X3).Add(Z3);
+
+ return new SecT193R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+ }
+
+ public override ECPoint TwicePlus(ECPoint b)
+ {
+ if (this.IsInfinity)
+ return b;
+ if (b.IsInfinity)
+ return Twice();
+
+ ECCurve curve = this.Curve;
+
+ ECFieldElement X1 = this.RawXCoord;
+ if (X1.IsZero)
+ {
+ // A point with X == 0 is it's own Additive inverse
+ return b;
+ }
+
+ ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
+ if (X2.IsZero || !Z2.IsOne)
+ {
+ return Twice().Add(b);
+ }
+
+ ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+ ECFieldElement L2 = b.RawYCoord;
+
+ ECFieldElement X1Sq = X1.Square();
+ ECFieldElement L1Sq = L1.Square();
+ ECFieldElement Z1Sq = Z1.Square();
+ ECFieldElement L1Z1 = L1.Multiply(Z1);
+
+ ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
+ ECFieldElement L2plus1 = L2.AddOne();
+ ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+ ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
+ ECFieldElement B = X2Z1Sq.Add(T).Square();
+
+ if (B.IsZero)
+ {
+ if (A.IsZero)
+ return b.Twice();
+
+ return curve.Infinity;
+ }
+
+ if (A.IsZero)
+ {
+ return new SecT193R1Point(curve, A, curve.B.Sqrt(), IsCompressed);
+ }
+
+ ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
+ ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
+ ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
+
+ return new SecT193R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+ }
+
+ public override ECPoint Negate()
+ {
+ if (this.IsInfinity)
+ return this;
+
+ ECFieldElement X = this.RawXCoord;
+ if (X.IsZero)
+ return this;
+
+ // L is actually Lambda (X + Y/X) here
+ ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
+ return new SecT193R1Point(Curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed);
+ }
+ }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT193R2Curve.cs b/crypto/src/math/ec/custom/sec/SecT193R2Curve.cs
new file mode 100644
index 000000000..b5345730c
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT193R2Curve.cs
@@ -0,0 +1,190 @@
+using System;
+
+using Org.BouncyCastle.Utilities.Encoders;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+ internal class SecT193R2Curve
+ : AbstractF2mCurve
+ {
+ private const int SecT193R2_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
+
+ protected readonly SecT193R2Point m_infinity;
+
+ public SecT193R2Curve()
+ : base(193, 15, 0, 0)
+ {
+ this.m_infinity = new SecT193R2Point(this, null, null);
+
+ this.m_a = FromBigInteger(new BigInteger(1, Hex.Decode("0163F35A5137C2CE3EA6ED8667190B0BC43ECD69977702709B")));
+ this.m_b = FromBigInteger(new BigInteger(1, Hex.Decode("00C9BB9E8927D4D64C377E2AB2856A5B16E3EFB7F61D4316AE")));
+ this.m_order = new BigInteger(1, Hex.Decode("010000000000000000000000015AAB561B005413CCD4EE99D5"));
+ this.m_cofactor = BigInteger.Two;
+
+ this.m_coord = SecT193R2_DEFAULT_COORDS;
+ }
+
+ protected override ECCurve CloneCurve()
+ {
+ return new SecT193R2Curve();
+ }
+
+ public override bool SupportsCoordinateSystem(int coord)
+ {
+ switch (coord)
+ {
+ case COORD_LAMBDA_PROJECTIVE:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ public override ECPoint Infinity
+ {
+ get { return m_infinity; }
+ }
+
+ public override int FieldSize
+ {
+ get { return 193; }
+ }
+
+ public override ECFieldElement FromBigInteger(BigInteger x)
+ {
+ return new SecT193FieldElement(x);
+ }
+
+ protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
+ {
+ return new SecT193R2Point(this, x, y, withCompression);
+ }
+
+ protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+ {
+ return new SecT193R2Point(this, x, y, zs, withCompression);
+ }
+
+ public override bool IsKoblitz
+ {
+ get { return false; }
+ }
+
+ /**
+ * Decompresses a compressed point P = (xp, yp) (X9.62 s 4.2.2).
+ *
+ * @param yTilde
+ * ~yp, an indication bit for the decompression of yp.
+ * @param X1
+ * The field element xp.
+ * @return the decompressed point.
+ */
+ protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
+ {
+ ECFieldElement x = FromBigInteger(X1), y = null;
+ if (x.IsZero)
+ {
+ y = B.Sqrt();
+ }
+ else
+ {
+ ECFieldElement beta = x.Square().Invert().Multiply(B).Add(A).Add(x);
+ ECFieldElement z = SolveQuadraticEquation(beta);
+ if (z != null)
+ {
+ if (z.TestBitZero() != (yTilde == 1))
+ {
+ z = z.AddOne();
+ }
+
+ switch (this.CoordinateSystem)
+ {
+ case COORD_LAMBDA_AFFINE:
+ case COORD_LAMBDA_PROJECTIVE:
+ {
+ y = z.Add(x);
+ break;
+ }
+ default:
+ {
+ y = z.Multiply(x);
+ break;
+ }
+ }
+ }
+ }
+
+ if (y == null)
+ throw new ArgumentException("Invalid point compression");
+
+ return this.CreateRawPoint(x, y, true);
+ }
+
+ /**
+ * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
+ * D.1.6) The other solution is <code>z + 1</code>.
+ *
+ * @param beta
+ * The value to solve the quadratic equation for.
+ * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
+ * <code>null</code> if no solution exists.
+ */
+ private ECFieldElement SolveQuadraticEquation(ECFieldElement beta)
+ {
+ if (beta.IsZero)
+ {
+ return beta;
+ }
+
+ ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
+
+ ECFieldElement z = null;
+ ECFieldElement gamma = null;
+
+ Random rand = new Random();
+ do
+ {
+ ECFieldElement t = FromBigInteger(new BigInteger(193, rand));
+ z = zeroElement;
+ ECFieldElement w = beta;
+ for (int i = 1; i < 193; i++)
+ {
+ ECFieldElement w2 = w.Square();
+ z = z.Square().Add(w2.Multiply(t));
+ w = w2.Add(beta);
+ }
+ if (!w.IsZero)
+ return null;
+ gamma = z.Square().Add(z);
+ }
+ while (gamma.IsZero);
+
+ return z;
+ }
+
+ public virtual int M
+ {
+ get { return 193; }
+ }
+
+ public virtual bool IsTrinomial
+ {
+ get { return true; }
+ }
+
+ public virtual int K1
+ {
+ get { return 15; }
+ }
+
+ public virtual int K2
+ {
+ get { return 0; }
+ }
+
+ public virtual int K3
+ {
+ get { return 0; }
+ }
+ }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT193R2Point.cs b/crypto/src/math/ec/custom/sec/SecT193R2Point.cs
new file mode 100644
index 000000000..18d89e316
--- /dev/null
+++ b/crypto/src/math/ec/custom/sec/SecT193R2Point.cs
@@ -0,0 +1,283 @@
+using System;
+
+namespace Org.BouncyCastle.Math.EC.Custom.Sec
+{
+ internal class SecT193R2Point
+ : AbstractF2mPoint
+ {
+ /**
+ * @deprecated Use ECCurve.createPoint to construct points
+ */
+ public SecT193R2Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
+ : this(curve, x, y, false)
+ {
+ }
+
+ /**
+ * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)}
+ */
+ public SecT193R2Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
+ : base(curve, x, y, withCompression)
+ {
+ if ((x == null) != (y == null))
+ throw new ArgumentException("Exactly one of the field elements is null");
+ }
+
+ internal SecT193R2Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
+ : base(curve, x, y, zs, withCompression)
+ {
+ }
+
+ protected override ECPoint Detach()
+ {
+ return new SecT193R2Point(null, AffineXCoord, AffineYCoord);
+ }
+
+ public override ECFieldElement YCoord
+ {
+ get
+ {
+ ECFieldElement X = RawXCoord, L = RawYCoord;
+
+ if (this.IsInfinity || X.IsZero)
+ return L;
+
+ // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
+ ECFieldElement Y = L.Add(X).Multiply(X);
+
+ ECFieldElement Z = RawZCoords[0];
+ if (!Z.IsOne)
+ {
+ Y = Y.Divide(Z);
+ }
+
+ return Y;
+ }
+ }
+
+ protected internal override bool CompressionYTilde
+ {
+ get
+ {
+ ECFieldElement X = this.RawXCoord;
+ if (X.IsZero)
+ return false;
+
+ ECFieldElement Y = this.RawYCoord;
+
+ // Y is actually Lambda (X + Y/X) here
+ return Y.TestBitZero() != X.TestBitZero();
+ }
+ }
+
+ public override ECPoint Add(ECPoint b)
+ {
+ if (this.IsInfinity)
+ return b;
+ if (b.IsInfinity)
+ return this;
+
+ ECCurve curve = this.Curve;
+
+ ECFieldElement X1 = this.RawXCoord;
+ ECFieldElement X2 = b.RawXCoord;
+
+ if (X1.IsZero)
+ {
+ if (X2.IsZero)
+ return curve.Infinity;
+
+ return b.Add(this);
+ }
+
+ ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+ ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
+
+ bool Z1IsOne = Z1.IsOne;
+ ECFieldElement U2 = X2, S2 = L2;
+ if (!Z1IsOne)
+ {
+ U2 = U2.Multiply(Z1);
+ S2 = S2.Multiply(Z1);
+ }
+
+ bool Z2IsOne = Z2.IsOne;
+ ECFieldElement U1 = X1, S1 = L1;
+ if (!Z2IsOne)
+ {
+ U1 = U1.Multiply(Z2);
+ S1 = S1.Multiply(Z2);
+ }
+
+ ECFieldElement A = S1.Add(S2);
+ ECFieldElement B = U1.Add(U2);
+
+ if (B.IsZero)
+ {
+ if (A.IsZero)
+ return Twice();
+
+ return curve.Infinity;
+ }
+
+ ECFieldElement X3, L3, Z3;
+ if (X2.IsZero)
+ {
+ // TODO This can probably be optimized quite a bit
+ ECPoint p = this.Normalize();
+ X1 = p.XCoord;
+ ECFieldElement Y1 = p.YCoord;
+
+ ECFieldElement Y2 = L2;
+ ECFieldElement L = Y1.Add(Y2).Divide(X1);
+
+ X3 = L.Square().Add(L).Add(X1).Add(curve.A);
+ if (X3.IsZero)
+ {
+ return new SecT193R2Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+ }
+
+ ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
+ L3 = Y3.Divide(X3).Add(X3);
+ Z3 = curve.FromBigInteger(BigInteger.One);
+ }
+ else
+ {
+ B = B.Square();
+
+ ECFieldElement AU1 = A.Multiply(U1);
+ ECFieldElement AU2 = A.Multiply(U2);
+
+ X3 = AU1.Multiply(AU2);
+ if (X3.IsZero)
+ {
+ return new SecT193R2Point(curve, X3, curve.B.Sqrt(), IsCompressed);
+ }
+
+ ECFieldElement ABZ2 = A.Multiply(B);
+ if (!Z2IsOne)
+ {
+ ABZ2 = ABZ2.Multiply(Z2);
+ }
+
+ L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
+
+ Z3 = ABZ2;
+ if (!Z1IsOne)
+ {
+ Z3 = Z3.Multiply(Z1);
+ }
+ }
+
+ return new SecT193R2Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+ }
+
+ public override ECPoint Twice()
+ {
+ if (this.IsInfinity)
+ {
+ return this;
+ }
+
+ ECCurve curve = this.Curve;
+
+ ECFieldElement X1 = this.RawXCoord;
+ if (X1.IsZero)
+ {
+ // A point with X == 0 is it's own Additive inverse
+ return curve.Infinity;
+ }
+
+ ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+
+ bool Z1IsOne = Z1.IsOne;
+ ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.Multiply(Z1);
+ ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
+ ECFieldElement a = curve.A;
+ ECFieldElement aZ1Sq = Z1IsOne ? a : a.Multiply(Z1Sq);
+ ECFieldElement T = L1.Square().Add(L1Z1).Add(aZ1Sq);
+ if (T.IsZero)
+ {
+ return new SecT193R2Point(curve, T, curve.B.Sqrt(), IsCompressed);
+ }
+
+ ECFieldElement X3 = T.Square();
+ ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
+
+ ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1);
+ ECFieldElement L3 = X1Z1.SquarePlusProduct(T, L1Z1).Add(X3).Add(Z3);
+
+ return new SecT193R2Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+ }
+
+ public override ECPoint TwicePlus(ECPoint b)
+ {
+ if (this.IsInfinity)
+ return b;
+ if (b.IsInfinity)
+ return Twice();
+
+ ECCurve curve = this.Curve;
+
+ ECFieldElement X1 = this.RawXCoord;
+ if (X1.IsZero)
+ {
+ // A point with X == 0 is it's own Additive inverse
+ return b;
+ }
+
+ ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
+ if (X2.IsZero || !Z2.IsOne)
+ {
+ return Twice().Add(b);
+ }
+
+ ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
+ ECFieldElement L2 = b.RawYCoord;
+
+ ECFieldElement X1Sq = X1.Square();
+ ECFieldElement L1Sq = L1.Square();
+ ECFieldElement Z1Sq = Z1.Square();
+ ECFieldElement L1Z1 = L1.Multiply(Z1);
+
+ ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
+ ECFieldElement L2plus1 = L2.AddOne();
+ ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
+ ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
+ ECFieldElement B = X2Z1Sq.Add(T).Square();
+
+ if (B.IsZero)
+ {
+ if (A.IsZero)
+ return b.Twice();
+
+ return curve.Infinity;
+ }
+
+ if (A.IsZero)
+ {
+ return new SecT193R2Point(curve, A, curve.B.Sqrt(), IsCompressed);
+ }
+
+ ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
+ ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
+ ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
+
+ return new SecT193R2Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
+ }
+
+ public override ECPoint Negate()
+ {
+ if (this.IsInfinity)
+ return this;
+
+ ECFieldElement X = this.RawXCoord;
+ if (X.IsZero)
+ return this;
+
+ // L is actually Lambda (X + Y/X) here
+ ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
+ return new SecT193R2Point(Curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed);
+ }
+ }
+}
diff --git a/crypto/src/math/ec/custom/sec/SecT233Field.cs b/crypto/src/math/ec/custom/sec/SecT233Field.cs
index 165fadbf3..b36ffba2e 100644
--- a/crypto/src/math/ec/custom/sec/SecT233Field.cs
+++ b/crypto/src/math/ec/custom/sec/SecT233Field.cs
@@ -200,7 +200,7 @@ namespace Org.BouncyCastle.Math.EC.Custom.Sec
Debug.Assert(y >> 59 == 0);
ulong[] u = new ulong[8];
- // u[0] = 0;
+ //u[0] = 0;
u[1] = y;
u[2] = u[1] << 1;
u[3] = u[2] ^ y;
@@ -215,7 +215,7 @@ namespace Org.BouncyCastle.Math.EC.Custom.Sec
int k = 54;
do
{
- j = (uint)(x >> k);
+ j = (uint)(x >> k);
g = u[j & 7]
^ u[(j >> 3) & 7] << 3;
l ^= (g << k);
diff --git a/crypto/src/math/ec/custom/sec/SecT239Field.cs b/crypto/src/math/ec/custom/sec/SecT239Field.cs
index 1e0824af9..6dab907dd 100644
--- a/crypto/src/math/ec/custom/sec/SecT239Field.cs
+++ b/crypto/src/math/ec/custom/sec/SecT239Field.cs
@@ -204,7 +204,7 @@ namespace Org.BouncyCastle.Math.EC.Custom.Sec
Debug.Assert(y >> 60 == 0);
ulong[] u = new ulong[8];
- // u[0] = 0;
+ //u[0] = 0;
u[1] = y;
u[2] = u[1] << 1;
u[3] = u[2] ^ y;
@@ -219,7 +219,7 @@ namespace Org.BouncyCastle.Math.EC.Custom.Sec
int k = 54;
do
{
- j = (uint)(x >> k);
+ j = (uint)(x >> k);
g = u[j & 7]
^ u[(j >> 3) & 7] << 3;
l ^= (g << k);
diff --git a/crypto/src/math/ec/custom/sec/SecT283Field.cs b/crypto/src/math/ec/custom/sec/SecT283Field.cs
index 9afb27461..435787467 100644
--- a/crypto/src/math/ec/custom/sec/SecT283Field.cs
+++ b/crypto/src/math/ec/custom/sec/SecT283Field.cs
@@ -292,7 +292,7 @@ namespace Org.BouncyCastle.Math.EC.Custom.Sec
Debug.Assert(y >> 57 == 0);
ulong[] u = new ulong[8];
- // u[0] = 0;
+ //u[0] = 0;
u[1] = y;
u[2] = u[1] << 1;
u[3] = u[2] ^ y;
@@ -306,7 +306,7 @@ namespace Org.BouncyCastle.Math.EC.Custom.Sec
int k = 48;
do
{
- j = (uint)(x >> k);
+ j = (uint)(x >> k);
g = u[j & 7]
^ u[(j >> 3) & 7] << 3
^ u[(j >> 6) & 7] << 6;
diff --git a/crypto/src/math/ec/custom/sec/SecT409Field.cs b/crypto/src/math/ec/custom/sec/SecT409Field.cs
index d71f5b5f9..ce6f43f2e 100644
--- a/crypto/src/math/ec/custom/sec/SecT409Field.cs
+++ b/crypto/src/math/ec/custom/sec/SecT409Field.cs
@@ -196,7 +196,7 @@ namespace Org.BouncyCastle.Math.EC.Custom.Sec
Debug.Assert(y >> 59 == 0);
ulong[] u = new ulong[8];
- // u[0] = 0;
+ //u[0] = 0;
u[1] = y;
u[2] = u[1] << 1;
u[3] = u[2] ^ y;
diff --git a/crypto/src/math/ec/custom/sec/SecT571Field.cs b/crypto/src/math/ec/custom/sec/SecT571Field.cs
index 0711ee4aa..921c841a9 100644
--- a/crypto/src/math/ec/custom/sec/SecT571Field.cs
+++ b/crypto/src/math/ec/custom/sec/SecT571Field.cs
@@ -199,7 +199,7 @@ namespace Org.BouncyCastle.Math.EC.Custom.Sec
protected static void ImplMulwAcc(ulong[] xs, ulong y, ulong[] z, int zOff)
{
ulong[] u = new ulong[32];
- // u[0] = 0;
+ //u[0] = 0;
u[1] = y;
for (int i = 2; i < 32; i += 2)
{
|