diff options
author | Peter Dettman <peter.dettman@bouncycastle.org> | 2019-08-01 15:37:31 +0700 |
---|---|---|
committer | Peter Dettman <peter.dettman@bouncycastle.org> | 2019-08-01 15:37:31 +0700 |
commit | b33a7ee2cf9e46eab44f521387df3c92c9d45842 (patch) | |
tree | 52e9de32e7aedc80f87b4d4295947c5e42ecfa14 /crypto/src/math/ec/ECPoint.cs | |
parent | Fix warnings (diff) | |
download | BouncyCastle.NET-ed25519-b33a7ee2cf9e46eab44f521387df3c92c9d45842.tar.xz |
EC updates from bc-java
- use half-trace when possible (odd m) for decompression/validation - provide field-specific half-trace methods for custom curves - clarify the logic of point-order testing for binary curves - expand test cases for invalid points
Diffstat (limited to 'crypto/src/math/ec/ECPoint.cs')
-rw-r--r-- | crypto/src/math/ec/ECPoint.cs | 38 |
1 files changed, 24 insertions, 14 deletions
diff --git a/crypto/src/math/ec/ECPoint.cs b/crypto/src/math/ec/ECPoint.cs index 2acc9f5c0..425424e32 100644 --- a/crypto/src/math/ec/ECPoint.cs +++ b/crypto/src/math/ec/ECPoint.cs @@ -1421,34 +1421,44 @@ namespace Org.BouncyCastle.Math.EC if (BigInteger.Two.Equals(cofactor)) { /* - * Check that the trace of (X + A) is 0, then there exists a solution to L^2 + L = X + A, - * and so a halving is possible, so this point is the double of another. + * Check that 0 == Tr(X + A); then there exists a solution to L^2 + L = X + A, and + * so a halving is possible, so this point is the double of another. + * + * Note: Tr(A) == 1 for cofactor 2 curves. */ ECPoint N = this.Normalize(); ECFieldElement X = N.AffineXCoord; - ECFieldElement rhs = X.Add(curve.A); - return ((AbstractF2mFieldElement)rhs).Trace() == 0; + return 0 != ((AbstractF2mFieldElement)X).Trace(); } if (BigInteger.ValueOf(4).Equals(cofactor)) { /* * Solve L^2 + L = X + A to find the half of this point, if it exists (fail if not). - * Generate both possibilities for the square of the half-point's x-coordinate (w), - * and check if Tr(w + A) == 0 for at least one; then a second halving is possible - * (see comments for cofactor 2 above), so this point is four times another. * - * Note: Tr(x^2) == Tr(x). + * Note: Tr(A) == 0 for cofactor 4 curves. */ ECPoint N = this.Normalize(); ECFieldElement X = N.AffineXCoord; - ECFieldElement lambda = ((AbstractF2mCurve)curve).SolveQuadraticEquation(X.Add(curve.A)); - if (lambda == null) + ECFieldElement L = ((AbstractF2mCurve)curve).SolveQuadraticEquation(X.Add(curve.A)); + if (null == L) return false; - ECFieldElement w = X.Multiply(lambda).Add(N.AffineYCoord); - ECFieldElement t = w.Add(curve.A); - return ((AbstractF2mFieldElement)t).Trace() == 0 - || ((AbstractF2mFieldElement)(t.Add(X))).Trace() == 0; + /* + * A solution exists, therefore 0 == Tr(X + A) == Tr(X). + */ + ECFieldElement Y = N.AffineYCoord; + ECFieldElement T = X.Multiply(L).Add(Y); + + /* + * Either T or (T + X) is the square of a half-point's x coordinate (hx). In either + * case, the half-point can be halved again when 0 == Tr(hx + A). + * + * Note: Tr(hx + A) == Tr(hx) == Tr(hx^2) == Tr(T) == Tr(T + X) + * + * Check that 0 == Tr(T); then there exists a solution to L^2 + L = hx + A, and so a + * second halving is possible and this point is four times some other. + */ + return 0 == ((AbstractF2mFieldElement)T).Trace(); } return base.SatisfiesOrder(); |