summary refs log tree commit diff
path: root/crypto/src/math/BigInteger.cs
diff options
context:
space:
mode:
authorPeter Dettman <peter.dettman@bouncycastle.org>2013-06-28 15:26:06 +0700
committerPeter Dettman <peter.dettman@bouncycastle.org>2013-06-28 15:26:06 +0700
commit44288db4414158ac9b98a507b15e81d0d3c66ca6 (patch)
treeaa5ef88948ebb68ed6c8df81eb5da889641a9b50 /crypto/src/math/BigInteger.cs
parentSet up text/binary handling for existing file types (diff)
downloadBouncyCastle.NET-ed25519-44288db4414158ac9b98a507b15e81d0d3c66ca6.tar.xz
Initial import of old CVS repository
Diffstat (limited to 'crypto/src/math/BigInteger.cs')
-rw-r--r--crypto/src/math/BigInteger.cs3575
1 files changed, 3575 insertions, 0 deletions
diff --git a/crypto/src/math/BigInteger.cs b/crypto/src/math/BigInteger.cs
new file mode 100644
index 000000000..00f8f399d
--- /dev/null
+++ b/crypto/src/math/BigInteger.cs
@@ -0,0 +1,3575 @@
+using System;
+using System.Collections;
+using System.Diagnostics;
+using System.Globalization;
+using System.Text;
+
+using Org.BouncyCastle.Utilities;
+
+namespace Org.BouncyCastle.Math
+{
+#if !(NETCF_1_0 || NETCF_2_0 || SILVERLIGHT)
+	[Serializable]
+#endif
+	public class BigInteger
+	{
+		// The first few odd primes
+        /*
+                3   5   7   11  13  17  19  23  29
+            31  37  41  43  47  53  59  61  67  71
+            73  79  83  89  97  101 103 107 109 113
+            127 131 137 139 149 151 157 163 167 173
+            179 181 191 193 197 199 211 223 227 229
+            233 239 241 251 257 263 269 271 277 281
+            283 293 307 311 313 317 331 337 347 349
+            353 359 367 373 379 383 389 397 401 409
+            419 421 431 433 439 443 449 457 461 463
+            467 479 487 491 499 503 509 521 523 541
+            547 557 563 569 571 577 587 593 599 601
+            607 613 617 619 631 641 643 647 653 659
+            661 673 677 683 691 701 709 719 727 733
+            739 743 751 757 761 769 773 787 797 809
+            811 821 823 827 829 839 853 857 859 863
+            877 881 883 887 907 911 919 929 937 941
+            947 953 967 971 977 983 991 997 1009
+            1013 1019 1021 1031 1033 1039 1049 1051
+            1061 1063 1069 1087 1091 1093 1097 1103
+            1109 1117 1123 1129 1151 1153 1163 1171
+            1181 1187 1193 1201 1213 1217 1223 1229
+            1231 1237 1249 1259 1277 1279 1283 1289
+        */
+
+        // Each list has a product < 2^31
+		internal static readonly int[][] primeLists = new int[][]
+		{
+			new int[]{ 3, 5, 7, 11, 13, 17, 19, 23 },
+			new int[]{ 29, 31, 37, 41, 43 },
+			new int[]{ 47, 53, 59, 61, 67 },
+			new int[]{ 71, 73, 79, 83 },
+			new int[]{ 89, 97, 101, 103 },
+
+			new int[]{ 107, 109, 113, 127 },
+			new int[]{ 131, 137, 139, 149 },
+			new int[]{ 151, 157, 163, 167 },
+			new int[]{ 173, 179, 181, 191 },
+			new int[]{ 193, 197, 199, 211 },
+
+			new int[]{ 223, 227, 229 },
+			new int[]{ 233, 239, 241 },
+			new int[]{ 251, 257, 263 },
+			new int[]{ 269, 271, 277 },
+			new int[]{ 281, 283, 293 },
+
+			new int[]{ 307, 311, 313 },
+			new int[]{ 317, 331, 337 },
+			new int[]{ 347, 349, 353 },
+			new int[]{ 359, 367, 373 },
+			new int[]{ 379, 383, 389 },
+
+			new int[]{ 397, 401, 409 },
+			new int[]{ 419, 421, 431 },
+			new int[]{ 433, 439, 443 },
+			new int[]{ 449, 457, 461 },
+			new int[]{ 463, 467, 479 },
+
+			new int[]{ 487, 491, 499 },
+			new int[]{ 503, 509, 521 },
+			new int[]{ 523, 541, 547 },
+			new int[]{ 557, 563, 569 },
+			new int[]{ 571, 577, 587 },
+
+			new int[]{ 593, 599, 601 },
+			new int[]{ 607, 613, 617 },
+			new int[]{ 619, 631, 641 },
+			new int[]{ 643, 647, 653 },
+			new int[]{ 659, 661, 673 },
+
+			new int[]{ 677, 683, 691 },
+			new int[]{ 701, 709, 719 },
+			new int[]{ 727, 733, 739 },
+			new int[]{ 743, 751, 757 },
+			new int[]{ 761, 769, 773 },
+
+			new int[]{ 787, 797, 809 },
+			new int[]{ 811, 821, 823 },
+			new int[]{ 827, 829, 839 },
+			new int[]{ 853, 857, 859 },
+			new int[]{ 863, 877, 881 },
+
+			new int[]{ 883, 887, 907 },
+			new int[]{ 911, 919, 929 },
+			new int[]{ 937, 941, 947 },
+			new int[]{ 953, 967, 971 },
+			new int[]{ 977, 983, 991 },
+
+            new int[]{ 997, 1009, 1013 },
+            new int[]{ 1019, 1021, 1031 },
+            new int[]{ 1033, 1039, 1049 },
+            new int[]{ 1051, 1061, 1063 },
+            new int[]{ 1069, 1087, 1091 },
+
+            new int[]{ 1093, 1097, 1103 },
+            new int[]{ 1109, 1117, 1123 },
+            new int[]{ 1129, 1151, 1153 },
+            new int[]{ 1163, 1171, 1181 },
+            new int[]{ 1187, 1193, 1201 },
+
+            new int[]{ 1213, 1217, 1223 },
+            new int[]{ 1229, 1231, 1237 },
+            new int[]{ 1249, 1259, 1277 },
+            new int[]{ 1279, 1283, 1289 },
+        };
+
+        internal static readonly int[] primeProducts;
+
+		private const long IMASK = 0xFFFFFFFFL;
+        private const ulong UIMASK = 0xFFFFFFFFUL;
+
+        private static readonly int[] ZeroMagnitude = new int[0];
+		private static readonly byte[] ZeroEncoding = new byte[0];
+
+        private static readonly BigInteger[] SMALL_CONSTANTS = new BigInteger[17];
+		public static readonly BigInteger Zero;
+		public static readonly BigInteger One;
+        public static readonly BigInteger Two;
+        public static readonly BigInteger Three;
+        public static readonly BigInteger Ten;
+
+        //private readonly static byte[] BitCountTable =
+        //{
+        //    0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
+        //    1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+        //    1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+        //    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+        //    1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+        //    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+        //    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+        //    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+        //    1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+        //    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+        //    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+        //    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+        //    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+        //    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+        //    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+        //    4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
+        //};
+
+        private readonly static byte[] BitLengthTable =
+		{
+			0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
+            5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+            6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+            6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+            7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+            7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+            7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+            7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+            8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+            8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+            8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+            8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+            8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+            8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+            8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+            8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
+		};
+
+        // TODO Parse radix-2 64 bits at a time and radix-8 63 bits at a time
+        private const int chunk2 = 1, chunk8 = 1, chunk10 = 19, chunk16 = 16;
+		private static readonly BigInteger radix2, radix2E, radix8, radix8E, radix10, radix10E, radix16, radix16E;
+
+        private static readonly Random RandomSource = new Random();
+
+        /*
+         * These are the threshold bit-lengths (of an exponent) where we increase the window size.
+         * They are calculated according to the expected savings in multiplications.
+         * Some squares will also be saved on average, but we offset these against the extra storage costs.
+         */
+        private static readonly int[] ExpWindowThresholds = { 7, 25, 81, 241, 673, 1793, 4609, Int32.MaxValue };
+
+        private const int BitsPerByte = 8;
+		private const int BitsPerInt = 32;
+		private const int BytesPerInt = 4;
+
+		static BigInteger()
+		{
+            Zero = new BigInteger(0, ZeroMagnitude, false);
+            Zero.nBits = 0; Zero.nBitLength = 0;
+
+            SMALL_CONSTANTS[0] = Zero;
+            for (uint i = 1; i < SMALL_CONSTANTS.Length; ++i)
+            {
+                SMALL_CONSTANTS[i] = CreateUValueOf(i);
+            }
+
+            One = SMALL_CONSTANTS[1];
+            Two = SMALL_CONSTANTS[2];
+            Three = SMALL_CONSTANTS[3];
+            Ten = SMALL_CONSTANTS[10];
+
+            radix2 = ValueOf(2);
+            radix2E = radix2.Pow(chunk2);
+
+            radix8 = ValueOf(8);
+            radix8E = radix8.Pow(chunk8);
+
+            radix10 = ValueOf(10);
+		    radix10E = radix10.Pow(chunk10);
+
+            radix16 = ValueOf(16);
+            radix16E = radix16.Pow(chunk16);
+
+            primeProducts = new int[primeLists.Length];
+
+			for (int i = 0; i < primeLists.Length; ++i)
+			{
+				int[] primeList = primeLists[i];
+				int product = primeList[0];
+				for (int j = 1; j < primeList.Length; ++j)
+				{
+					product *= primeList[j];
+				}
+				primeProducts[i] = product;
+			}
+		}
+
+		private int[] magnitude; // array of ints with [0] being the most significant
+        private int sign; // -1 means -ve; +1 means +ve; 0 means 0;
+		private int nBits = -1; // cache BitCount() value
+		private int nBitLength = -1; // cache BitLength() value
+        private int mQuote = 0; // -m^(-1) mod b, b = 2^32 (see Montgomery mult.), 0 when uninitialised
+
+        private static int GetByteLength(
+			int nBits)
+		{
+			return (nBits + BitsPerByte - 1) / BitsPerByte;
+		}
+
+		private BigInteger(
+			int		signum,
+			int[]	mag,
+			bool	checkMag)
+		{
+			if (checkMag)
+			{
+				int i = 0;
+				while (i < mag.Length && mag[i] == 0)
+				{
+					++i;
+				}
+
+				if (i == mag.Length)
+				{
+					this.sign = 0;
+					this.magnitude = ZeroMagnitude;
+				}
+				else
+				{
+					this.sign = signum;
+
+					if (i == 0)
+					{
+						this.magnitude = mag;
+					}
+					else
+					{
+						// strip leading 0 words
+						this.magnitude = new int[mag.Length - i];
+						Array.Copy(mag, i, this.magnitude, 0, this.magnitude.Length);
+					}
+				}
+			}
+			else
+			{
+				this.sign = signum;
+				this.magnitude = mag;
+			}
+		}
+
+		public BigInteger(
+			string value)
+			: this(value, 10)
+		{
+		}
+
+		public BigInteger(
+			string	str,
+			int		radix)
+		{
+			if (str.Length == 0)
+				throw new FormatException("Zero length BigInteger");
+
+			NumberStyles style;
+			int chunk;
+			BigInteger r;
+			BigInteger rE;
+
+			switch (radix)
+			{
+				case 2:
+					// Is there anyway to restrict to binary digits?
+					style = NumberStyles.Integer;
+					chunk = chunk2;
+					r = radix2;
+					rE = radix2E;
+					break;
+                case 8:
+                    // Is there anyway to restrict to octal digits?
+                    style = NumberStyles.Integer;
+                    chunk = chunk8;
+                    r = radix8;
+                    rE = radix8E;
+                    break;
+                case 10:
+					// This style seems to handle spaces and minus sign already (our processing redundant?)
+					style = NumberStyles.Integer;
+					chunk = chunk10;
+					r = radix10;
+					rE = radix10E;
+					break;
+				case 16:
+					// TODO Should this be HexNumber?
+					style = NumberStyles.AllowHexSpecifier;
+					chunk = chunk16;
+					r = radix16;
+					rE = radix16E;
+					break;
+				default:
+					throw new FormatException("Only bases 2, 8, 10, or 16 allowed");
+			}
+
+
+			int index = 0;
+			sign = 1;
+
+			if (str[0] == '-')
+			{
+				if (str.Length == 1)
+					throw new FormatException("Zero length BigInteger");
+
+				sign = -1;
+				index = 1;
+			}
+
+			// strip leading zeros from the string str
+			while (index < str.Length && Int32.Parse(str[index].ToString(), style) == 0)
+			{
+				index++;
+			}
+
+			if (index >= str.Length)
+			{
+				// zero value - we're done
+				sign = 0;
+				magnitude = ZeroMagnitude;
+				return;
+			}
+
+			//////
+			// could we work out the max number of ints required to store
+			// str.Length digits in the given base, then allocate that
+			// storage in one hit?, then Generate the magnitude in one hit too?
+			//////
+
+			BigInteger b = Zero;
+
+
+			int next = index + chunk;
+
+			if (next <= str.Length)
+			{
+				do
+				{
+					string s = str.Substring(index, chunk);
+					ulong i = ulong.Parse(s, style);
+					BigInteger bi = CreateUValueOf(i);
+
+					switch (radix)
+					{
+						case 2:
+							// TODO Need this because we are parsing in radix 10 above
+							if (i >= 2)
+								throw new FormatException("Bad character in radix 2 string: " + s);
+
+							// TODO Parse 64 bits at a time
+							b = b.ShiftLeft(1);
+							break;
+                        case 8:
+                            // TODO Need this because we are parsing in radix 10 above
+                            if (i >= 8)
+                                throw new FormatException("Bad character in radix 8 string: " + s);
+
+                            // TODO Parse 63 bits at a time
+                            b = b.ShiftLeft(3);
+                            break;
+                        case 16:
+							b = b.ShiftLeft(64);
+							break;
+						default:
+							b = b.Multiply(rE);
+							break;
+					}
+
+					b = b.Add(bi);
+
+					index = next;
+					next += chunk;
+				}
+				while (next <= str.Length);
+			}
+
+			if (index < str.Length)
+			{
+				string s = str.Substring(index);
+				ulong i = ulong.Parse(s, style);
+				BigInteger bi = CreateUValueOf(i);
+
+				if (b.sign > 0)
+				{
+					if (radix == 2)
+					{
+						// NB: Can't reach here since we are parsing one char at a time
+						Debug.Assert(false);
+
+						// TODO Parse all bits at once
+//						b = b.ShiftLeft(s.Length);
+					}
+                    else if (radix == 8)
+                    {
+                        // NB: Can't reach here since we are parsing one char at a time
+                        Debug.Assert(false);
+
+                        // TODO Parse all bits at once
+//						b = b.ShiftLeft(s.Length * 3);
+                    }
+                    else if (radix == 16)
+					{
+						b = b.ShiftLeft(s.Length << 2);
+					}
+					else
+					{
+						b = b.Multiply(r.Pow(s.Length));
+					}
+
+					b = b.Add(bi);
+				}
+				else
+				{
+					b = bi;
+				}
+			}
+
+            // Note: This is the previous (slower) algorithm
+//			while (index < value.Length)
+//            {
+//				char c = value[index];
+//				string s = c.ToString();
+//				int i = Int32.Parse(s, style);
+//
+//                b = b.Multiply(r).Add(ValueOf(i));
+//                index++;
+//            }
+
+			magnitude = b.magnitude;
+		}
+
+		public BigInteger(
+			byte[] bytes)
+			: this(bytes, 0, bytes.Length)
+		{
+		}
+
+		public BigInteger(
+			byte[]	bytes,
+			int		offset,
+			int		length)
+		{
+			if (length == 0)
+				throw new FormatException("Zero length BigInteger");
+
+			// TODO Move this processing into MakeMagnitude (provide sign argument)
+			if ((sbyte)bytes[offset] < 0)
+			{
+				this.sign = -1;
+
+				int end = offset + length;
+
+				int iBval;
+				// strip leading sign bytes
+				for (iBval = offset; iBval < end && ((sbyte)bytes[iBval] == -1); iBval++)
+				{
+				}
+
+				if (iBval >= end)
+				{
+					this.magnitude = One.magnitude;
+				}
+				else
+				{
+					int numBytes = end - iBval;
+					byte[] inverse = new byte[numBytes];
+
+					int index = 0;
+					while (index < numBytes)
+					{
+						inverse[index++] = (byte)~bytes[iBval++];
+					}
+
+					Debug.Assert(iBval == end);
+
+					while (inverse[--index] == byte.MaxValue)
+					{
+						inverse[index] = byte.MinValue;
+					}
+
+					inverse[index]++;
+
+					this.magnitude = MakeMagnitude(inverse, 0, inverse.Length);
+				}
+			}
+			else
+			{
+				// strip leading zero bytes and return magnitude bytes
+				this.magnitude = MakeMagnitude(bytes, offset, length);
+				this.sign = this.magnitude.Length > 0 ? 1 : 0;
+			}
+		}
+
+		private static int[] MakeMagnitude(
+			byte[]	bytes,
+			int		offset,
+			int		length)
+		{
+			int end = offset + length;
+
+			// strip leading zeros
+			int firstSignificant;
+			for (firstSignificant = offset; firstSignificant < end
+				&& bytes[firstSignificant] == 0; firstSignificant++)
+			{
+			}
+
+			if (firstSignificant >= end)
+			{
+				return ZeroMagnitude;
+			}
+
+			int nInts = (end - firstSignificant + 3) / BytesPerInt;
+			int bCount = (end - firstSignificant) % BytesPerInt;
+			if (bCount == 0)
+			{
+				bCount = BytesPerInt;
+			}
+
+			if (nInts < 1)
+			{
+				return ZeroMagnitude;
+			}
+
+			int[] mag = new int[nInts];
+
+			int v = 0;
+			int magnitudeIndex = 0;
+			for (int i = firstSignificant; i < end; ++i)
+			{
+				v <<= 8;
+				v |= bytes[i] & 0xff;
+				bCount--;
+				if (bCount <= 0)
+				{
+					mag[magnitudeIndex] = v;
+					magnitudeIndex++;
+					bCount = BytesPerInt;
+					v = 0;
+				}
+			}
+
+			if (magnitudeIndex < mag.Length)
+			{
+				mag[magnitudeIndex] = v;
+			}
+
+			return mag;
+		}
+
+		public BigInteger(
+			int		sign,
+			byte[]	bytes)
+			: this(sign, bytes, 0, bytes.Length)
+		{
+		}
+
+		public BigInteger(
+			int		sign,
+			byte[]	bytes,
+			int		offset,
+			int		length)
+		{
+			if (sign < -1 || sign > 1)
+				throw new FormatException("Invalid sign value");
+
+			if (sign == 0)
+			{
+				this.sign = 0;
+				this.magnitude = ZeroMagnitude;
+			}
+			else
+			{
+				// copy bytes
+				this.magnitude = MakeMagnitude(bytes, offset, length);
+				this.sign = this.magnitude.Length < 1 ? 0 : sign;
+			}
+		}
+
+		public BigInteger(
+			int		sizeInBits,
+			Random	random)
+		{
+			if (sizeInBits < 0)
+				throw new ArgumentException("sizeInBits must be non-negative");
+
+			this.nBits = -1;
+			this.nBitLength = -1;
+
+			if (sizeInBits == 0)
+			{
+				this.sign = 0;
+				this.magnitude = ZeroMagnitude;
+				return;
+			}
+
+			int nBytes = GetByteLength(sizeInBits);
+			byte[] b = new byte[nBytes];
+			random.NextBytes(b);
+
+			// strip off any excess bits in the MSB
+            int xBits = BitsPerByte * nBytes - sizeInBits;
+            b[0] &= (byte)(255U >> xBits);
+
+            this.magnitude = MakeMagnitude(b, 0, b.Length);
+			this.sign = this.magnitude.Length < 1 ? 0 : 1;
+		}
+
+        public BigInteger(
+			int		bitLength,
+			int		certainty,
+			Random	random)
+		{
+			if (bitLength < 2)
+				throw new ArithmeticException("bitLength < 2");
+
+			this.sign = 1;
+			this.nBitLength = bitLength;
+
+			if (bitLength == 2)
+			{
+				this.magnitude = random.Next(2) == 0
+					?	Two.magnitude
+					:	Three.magnitude;
+				return;
+			}
+             
+			int nBytes = GetByteLength(bitLength);
+			byte[] b = new byte[nBytes];
+
+			int xBits = BitsPerByte * nBytes - bitLength;
+            byte mask = (byte)(255U >> xBits);
+
+            for (;;)
+			{
+				random.NextBytes(b);
+
+				// strip off any excess bits in the MSB
+				b[0] &= mask;
+
+				// ensure the leading bit is 1 (to meet the strength requirement)
+				b[0] |= (byte)(1 << (7 - xBits));
+
+				// ensure the trailing bit is 1 (i.e. must be odd)
+				b[nBytes - 1] |= 1;
+
+				this.magnitude = MakeMagnitude(b, 0, b.Length);
+				this.nBits = -1;
+				this.mQuote = 0;
+
+				if (certainty < 1)
+					break;
+
+				if (CheckProbablePrime(certainty, random))
+					break;
+
+				if (bitLength > 32)
+				{
+					for (int rep = 0; rep < 10000; ++rep)
+					{
+						int n = 33 + random.Next(bitLength - 2);
+						this.magnitude[this.magnitude.Length - (n >> 5)] ^= (1 << (n & 31));
+						this.magnitude[this.magnitude.Length - 1] ^= ((random.Next() + 1) << 1);
+						this.mQuote = 0;
+
+						if (CheckProbablePrime(certainty, random))
+							return;
+					}
+				}
+			}
+		}
+
+		public BigInteger Abs()
+		{
+			return sign >= 0 ? this : Negate();
+		}
+
+		/**
+		 * return a = a + b - b preserved.
+		 */
+		private static int[] AddMagnitudes(
+			int[] a,
+			int[] b)
+		{
+			int tI = a.Length - 1;
+			int vI = b.Length - 1;
+			long m = 0;
+
+			while (vI >= 0)
+			{
+				m += ((long)(uint)a[tI] + (long)(uint)b[vI--]);
+				a[tI--] = (int)m;
+				m = (long)((ulong)m >> 32);
+			}
+
+			if (m != 0)
+			{
+				while (tI >= 0 && ++a[tI--] == 0)
+				{
+				}
+			}
+
+			return a;
+		}
+
+		public BigInteger Add(
+			BigInteger value)
+		{
+			if (this.sign == 0)
+				return value;
+
+			if (this.sign != value.sign)
+			{
+				if (value.sign == 0)
+					return this;
+
+				if (value.sign < 0)
+					return Subtract(value.Negate());
+
+				return value.Subtract(Negate());
+			}
+
+			return AddToMagnitude(value.magnitude);
+		}
+
+		private BigInteger AddToMagnitude(
+			int[] magToAdd)
+		{
+			int[] big, small;
+			if (this.magnitude.Length < magToAdd.Length)
+			{
+				big = magToAdd;
+				small = this.magnitude;
+			}
+			else
+			{
+				big = this.magnitude;
+				small = magToAdd;
+			}
+
+			// Conservatively avoid over-allocation when no overflow possible
+			uint limit = uint.MaxValue;
+			if (big.Length == small.Length)
+				limit -= (uint) small[0];
+
+			bool possibleOverflow = (uint) big[0] >= limit;
+
+			int[] bigCopy;
+			if (possibleOverflow)
+			{
+				bigCopy = new int[big.Length + 1];
+				big.CopyTo(bigCopy, 1);
+			}
+			else
+			{
+				bigCopy = (int[]) big.Clone();
+			}
+
+			bigCopy = AddMagnitudes(bigCopy, small);
+
+			return new BigInteger(this.sign, bigCopy, possibleOverflow);
+		}
+
+		public BigInteger And(
+			BigInteger value)
+		{
+			if (this.sign == 0 || value.sign == 0)
+			{
+				return Zero;
+			}
+
+			int[] aMag = this.sign > 0
+				? this.magnitude
+				: Add(One).magnitude;
+
+			int[] bMag = value.sign > 0
+				? value.magnitude
+				: value.Add(One).magnitude;
+
+			bool resultNeg = sign < 0 && value.sign < 0;
+			int resultLength = System.Math.Max(aMag.Length, bMag.Length);
+			int[] resultMag = new int[resultLength];
+
+			int aStart = resultMag.Length - aMag.Length;
+			int bStart = resultMag.Length - bMag.Length;
+
+			for (int i = 0; i < resultMag.Length; ++i)
+			{
+				int aWord = i >= aStart ? aMag[i - aStart] : 0;
+				int bWord = i >= bStart ? bMag[i - bStart] : 0;
+
+				if (this.sign < 0)
+				{
+					aWord = ~aWord;
+				}
+
+				if (value.sign < 0)
+				{
+					bWord = ~bWord;
+				}
+
+				resultMag[i] = aWord & bWord;
+
+				if (resultNeg)
+				{
+					resultMag[i] = ~resultMag[i];
+				}
+			}
+
+			BigInteger result = new BigInteger(1, resultMag, true);
+
+			// TODO Optimise this case
+			if (resultNeg)
+			{
+				result = result.Not();
+			}
+
+			return result;
+		}
+
+		public BigInteger AndNot(
+			BigInteger val)
+		{
+			return And(val.Not());
+		}
+
+		public int BitCount
+		{
+			get
+			{
+				if (nBits == -1)
+				{
+					if (sign < 0)
+					{
+						// TODO Optimise this case
+						nBits = Not().BitCount;
+					}
+					else
+					{
+						int sum = 0;
+						for (int i = 0; i < magnitude.Length; ++i)
+						{
+                            sum += BitCnt(magnitude[i]);
+						}
+						nBits = sum;
+					}
+				}
+
+				return nBits;
+			}
+		}
+
+        public static int BitCnt(int i)
+        {
+            uint u = (uint)i;
+            u = u - ((u >> 1) & 0x55555555);
+            u = (u & 0x33333333) + ((u >> 2) & 0x33333333);
+            u = (u + (u >> 4)) & 0x0f0f0f0f;
+            u += (u >> 8);
+            u += (u >> 16);
+            u &= 0x3f;
+            return (int)u;
+        }
+
+        private static int CalcBitLength(int sign, int indx, int[]	mag)
+		{
+			for (;;)
+			{
+				if (indx >= mag.Length)
+					return 0;
+
+                if (mag[indx] != 0)
+					break;
+
+				++indx;
+			}
+
+			// bit length for everything after the first int
+			int bitLength = 32 * ((mag.Length - indx) - 1);
+
+			// and determine bitlength of first int
+			int firstMag = mag[indx];
+			bitLength += BitLen(firstMag);
+
+			// Check for negative powers of two
+			if (sign < 0 && ((firstMag & -firstMag) == firstMag))
+			{
+				do
+				{
+					if (++indx >= mag.Length)
+					{
+						--bitLength;
+						break;
+					}
+				}
+				while (mag[indx] == 0);
+			}
+
+			return bitLength;
+		}
+
+		public int BitLength
+		{
+			get
+			{
+				if (nBitLength == -1)
+				{
+					nBitLength = sign == 0
+						? 0
+						: CalcBitLength(sign, 0, magnitude);
+				}
+
+				return nBitLength;
+			}
+		}
+
+		//
+		// BitLen(value) is the number of bits in value.
+		//
+		private static int BitLen(int w)
+		{
+            uint v = (uint)w;
+            uint t = v >> 24;
+            if (t != 0)
+                return 24 + BitLengthTable[t];
+            t = v >> 16;
+            if (t != 0)
+                return 16 + BitLengthTable[t];
+            t = v >> 8;
+            if (t != 0)
+                return 8 + BitLengthTable[t];
+            return BitLengthTable[v];
+		}
+
+        private bool QuickPow2Check()
+		{
+			return sign > 0 && nBits == 1;
+		}
+
+		public int CompareTo(
+			object obj)
+		{
+			return CompareTo((BigInteger)obj);
+		}
+
+		/**
+		 * unsigned comparison on two arrays - note the arrays may
+		 * start with leading zeros.
+		 */
+		private static int CompareTo(
+			int		xIndx,
+			int[]	x,
+			int		yIndx,
+			int[]	y)
+		{
+			while (xIndx != x.Length && x[xIndx] == 0)
+			{
+				xIndx++;
+			}
+
+			while (yIndx != y.Length && y[yIndx] == 0)
+			{
+				yIndx++;
+			}
+
+			return CompareNoLeadingZeroes(xIndx, x, yIndx, y);
+		}
+
+		private static int CompareNoLeadingZeroes(
+			int		xIndx,
+			int[]	x,
+			int		yIndx,
+			int[]	y)
+		{
+			int diff = (x.Length - y.Length) - (xIndx - yIndx);
+
+			if (diff != 0)
+			{
+				return diff < 0 ? -1 : 1;
+			}
+
+			// lengths of magnitudes the same, test the magnitude values
+
+			while (xIndx < x.Length)
+			{
+				uint v1 = (uint)x[xIndx++];
+				uint v2 = (uint)y[yIndx++];
+
+				if (v1 != v2)
+					return v1 < v2 ? -1 : 1;
+			}
+
+			return 0;
+		}
+
+		public int CompareTo(
+			BigInteger value)
+		{
+			return sign < value.sign ? -1
+				: sign > value.sign ? 1
+				: sign == 0 ? 0
+				: sign * CompareNoLeadingZeroes(0, magnitude, 0, value.magnitude);
+		}
+
+		/**
+		 * return z = x / y - done in place (z value preserved, x contains the
+		 * remainder)
+		 */
+		private int[] Divide(
+			int[]	x,
+			int[]	y)
+		{
+			int xStart = 0;
+			while (xStart < x.Length && x[xStart] == 0)
+			{
+				++xStart;
+			}
+
+			int yStart = 0;
+			while (yStart < y.Length && y[yStart] == 0)
+			{
+				++yStart;
+			}
+
+			Debug.Assert(yStart < y.Length);
+
+			int xyCmp = CompareNoLeadingZeroes(xStart, x, yStart, y);
+			int[] count;
+
+			if (xyCmp > 0)
+			{
+				int yBitLength = CalcBitLength(1, yStart, y);
+				int xBitLength = CalcBitLength(1, xStart, x);
+				int shift = xBitLength - yBitLength;
+
+				int[] iCount;
+				int iCountStart = 0;
+
+				int[] c;
+				int cStart = 0;
+				int cBitLength = yBitLength;
+				if (shift > 0)
+				{
+//					iCount = ShiftLeft(One.magnitude, shift);
+					iCount = new int[(shift >> 5) + 1];
+					iCount[0] = 1 << (shift % 32);
+
+					c = ShiftLeft(y, shift);
+					cBitLength += shift;
+				}
+				else
+				{
+					iCount = new int[] { 1 };
+
+					int len = y.Length - yStart;
+					c = new int[len];
+					Array.Copy(y, yStart, c, 0, len);
+				}
+
+				count = new int[iCount.Length];
+
+				for (;;)
+				{
+					if (cBitLength < xBitLength
+						|| CompareNoLeadingZeroes(xStart, x, cStart, c) >= 0)
+					{
+						Subtract(xStart, x, cStart, c);
+						AddMagnitudes(count, iCount);
+
+						while (x[xStart] == 0)
+						{
+							if (++xStart == x.Length)
+								return count;
+						}
+
+						//xBitLength = CalcBitLength(xStart, x);
+						xBitLength = 32 * (x.Length - xStart - 1) + BitLen(x[xStart]);
+
+						if (xBitLength <= yBitLength)
+						{
+							if (xBitLength < yBitLength)
+								return count;
+
+							xyCmp = CompareNoLeadingZeroes(xStart, x, yStart, y);
+
+							if (xyCmp <= 0)
+								break;
+						}
+					}
+
+					shift = cBitLength - xBitLength;
+
+					// NB: The case where c[cStart] is 1-bit is harmless
+					if (shift == 1)
+					{
+						uint firstC = (uint) c[cStart] >> 1;
+						uint firstX = (uint) x[xStart];
+						if (firstC > firstX)
+							++shift;
+					}
+
+					if (shift < 2)
+					{
+						ShiftRightOneInPlace(cStart, c);
+						--cBitLength;
+						ShiftRightOneInPlace(iCountStart, iCount);
+					}
+					else
+					{
+						ShiftRightInPlace(cStart, c, shift);
+						cBitLength -= shift;
+						ShiftRightInPlace(iCountStart, iCount, shift);
+					}
+
+					//cStart = c.Length - ((cBitLength + 31) / 32);
+					while (c[cStart] == 0)
+					{
+						++cStart;
+					}
+
+					while (iCount[iCountStart] == 0)
+					{
+						++iCountStart;
+					}
+				}
+			}
+			else
+			{
+				count = new int[1];
+			}
+
+			if (xyCmp == 0)
+			{
+				AddMagnitudes(count, One.magnitude);
+				Array.Clear(x, xStart, x.Length - xStart);
+			}
+
+			return count;
+		}
+
+		public BigInteger Divide(
+			BigInteger val)
+		{
+			if (val.sign == 0)
+				throw new ArithmeticException("Division by zero error");
+
+			if (sign == 0)
+				return Zero;
+
+			if (val.QuickPow2Check()) // val is power of two
+			{
+				BigInteger result = this.Abs().ShiftRight(val.Abs().BitLength - 1);
+				return val.sign == this.sign ? result : result.Negate();
+			}
+
+			int[] mag = (int[]) this.magnitude.Clone();
+
+			return new BigInteger(this.sign * val.sign, Divide(mag, val.magnitude), true);
+		}
+
+		public BigInteger[] DivideAndRemainder(
+			BigInteger val)
+		{
+			if (val.sign == 0)
+				throw new ArithmeticException("Division by zero error");
+
+			BigInteger[] biggies = new BigInteger[2];
+
+			if (sign == 0)
+			{
+				biggies[0] = Zero;
+				biggies[1] = Zero;
+			}
+			else if (val.QuickPow2Check()) // val is power of two
+			{
+				int e = val.Abs().BitLength - 1;
+				BigInteger quotient = this.Abs().ShiftRight(e);
+				int[] remainder = this.LastNBits(e);
+
+				biggies[0] = val.sign == this.sign ? quotient : quotient.Negate();
+				biggies[1] = new BigInteger(this.sign, remainder, true);
+			}
+			else
+			{
+				int[] remainder = (int[]) this.magnitude.Clone();
+				int[] quotient = Divide(remainder, val.magnitude);
+
+				biggies[0] = new BigInteger(this.sign * val.sign, quotient, true);
+				biggies[1] = new BigInteger(this.sign, remainder, true);
+			}
+
+			return biggies;
+		}
+
+		public override bool Equals(
+			object obj)
+		{
+			if (obj == this)
+				return true;
+
+			BigInteger biggie = obj as BigInteger;
+			if (biggie == null)
+				return false;
+
+            return sign == biggie.sign && IsEqualMagnitude(biggie);
+		}
+
+        private bool IsEqualMagnitude(BigInteger x)
+        {
+            int[] xMag = x.magnitude;
+            if (magnitude.Length != x.magnitude.Length)
+                return false;
+            for (int i = 0; i < magnitude.Length; i++)
+            {
+                if (magnitude[i] != x.magnitude[i])
+                    return false;
+            }
+            return true;
+        }
+
+        public BigInteger Gcd(
+			BigInteger value)
+		{
+			if (value.sign == 0)
+				return Abs();
+
+			if (sign == 0)
+				return value.Abs();
+
+			BigInteger r;
+			BigInteger u = this;
+			BigInteger v = value;
+
+			while (v.sign != 0)
+			{
+				r = u.Mod(v);
+				u = v;
+				v = r;
+			}
+
+			return u;
+		}
+
+		public override int GetHashCode()
+		{
+			int hc = magnitude.Length;
+			if (magnitude.Length > 0)
+			{
+				hc ^= magnitude[0];
+
+				if (magnitude.Length > 1)
+				{
+					hc ^= magnitude[magnitude.Length - 1];
+				}
+			}
+
+			return sign < 0 ? ~hc : hc;
+		}
+
+		// TODO Make public?
+		private BigInteger Inc()
+		{
+			if (this.sign == 0)
+				return One;
+
+			if (this.sign < 0)
+				return new BigInteger(-1, doSubBigLil(this.magnitude, One.magnitude), true);
+
+			return AddToMagnitude(One.magnitude);
+		}
+
+		public int IntValue
+		{
+            get
+            {
+                if (sign == 0)
+                    return 0;
+
+                int n = magnitude.Length;
+
+                int v = magnitude[n - 1];
+
+                return sign < 0 ? -v : v;
+            }
+		}
+
+        /**
+		 * return whether or not a BigInteger is probably prime with a
+		 * probability of 1 - (1/2)**certainty.
+		 * <p>From Knuth Vol 2, pg 395.</p>
+		 */
+		public bool IsProbablePrime(
+			int certainty)
+		{
+			if (certainty <= 0)
+				return true;
+
+			BigInteger n = Abs();
+
+			if (!n.TestBit(0))
+				return n.Equals(Two);
+
+			if (n.Equals(One))
+				return false;
+
+			return n.CheckProbablePrime(certainty, RandomSource);
+		}
+
+		private bool CheckProbablePrime(
+			int		certainty,
+			Random	random)
+		{
+			Debug.Assert(certainty > 0);
+			Debug.Assert(CompareTo(Two) > 0);
+			Debug.Assert(TestBit(0));
+
+
+			// Try to reduce the penalty for really small numbers
+			int numLists = System.Math.Min(BitLength - 1, primeLists.Length);
+
+			for (int i = 0; i < numLists; ++i)
+			{
+				int test = Remainder(primeProducts[i]);
+
+				int[] primeList = primeLists[i];
+				for (int j = 0; j < primeList.Length; ++j)
+				{
+					int prime = primeList[j];
+					int qRem = test % prime;
+					if (qRem == 0)
+					{
+						// We may find small numbers in the list
+						return BitLength < 16 && IntValue == prime;
+					}
+				}
+			}
+
+
+			// TODO Special case for < 10^16 (RabinMiller fixed list)
+//			if (BitLength < 30)
+//			{
+//				RabinMiller against 2, 3, 5, 7, 11, 13, 23 is sufficient
+//			}
+
+
+			// TODO Is it worth trying to create a hybrid of these two?
+			return RabinMillerTest(certainty, random);
+//			return SolovayStrassenTest(certainty, random);
+
+//			bool rbTest = RabinMillerTest(certainty, random);
+//			bool ssTest = SolovayStrassenTest(certainty, random);
+//
+//			Debug.Assert(rbTest == ssTest);
+//
+//			return rbTest;
+		}
+
+		public bool RabinMillerTest(int certainty, Random random)
+		{
+			Debug.Assert(certainty > 0);
+			Debug.Assert(BitLength > 2);
+			Debug.Assert(TestBit(0));
+
+			// let n = 1 + d . 2^s
+            BigInteger n = this;
+            int s = n.GetLowestSetBitMaskFirst(-1 << 1);
+            Debug.Assert(s >= 1);
+            BigInteger r = n.ShiftRight(s);
+
+            // NOTE: Avoid conversion to/from Montgomery form and check for R/-R as result instead
+
+            BigInteger montRadix = One.ShiftLeft(32 * n.magnitude.Length).Remainder(n);
+            BigInteger minusMontRadix = n.Subtract(montRadix);
+
+            do
+			{
+				BigInteger a;
+                do
+                {
+                    a = new BigInteger(n.BitLength, random);
+                }
+                while (a.sign == 0 || a.CompareTo(n) >= 0
+                    || a.IsEqualMagnitude(montRadix) || a.IsEqualMagnitude(minusMontRadix));
+
+				BigInteger y = ModPowMonty(a, r, n, false);
+
+                if (!y.Equals(montRadix))
+                {
+                    int j = 0;
+                    while (!y.Equals(minusMontRadix))
+					{
+						if (++j == s)
+							return false;
+
+						y = ModPowMonty(y, Two, n, false);
+
+                        if (y.Equals(montRadix))
+							return false;
+					}
+				}
+
+				certainty -= 2; // composites pass for only 1/4 possible 'a'
+			}
+			while (certainty > 0);
+
+			return true;
+		}
+
+//		private bool SolovayStrassenTest(
+//			int		certainty,
+//			Random	random)
+//		{
+//			Debug.Assert(certainty > 0);
+//			Debug.Assert(CompareTo(Two) > 0);
+//			Debug.Assert(TestBit(0));
+//
+//			BigInteger n = this;
+//			BigInteger nMinusOne = n.Subtract(One);
+//			BigInteger e = nMinusOne.ShiftRight(1);
+//
+//			do
+//			{
+//				BigInteger a;
+//				do
+//				{
+//					a = new BigInteger(nBitLength, random);
+//				}
+//				// NB: Spec says 0 < x < n, but 1 is trivial
+//				while (a.CompareTo(One) <= 0 || a.CompareTo(n) >= 0);
+//
+//
+//				// TODO Check this is redundant given the way Jacobi() works?
+////				if (!a.Gcd(n).Equals(One))
+////					return false;
+//
+//				int x = Jacobi(a, n);
+//
+//				if (x == 0)
+//					return false;
+//
+//				BigInteger check = a.ModPow(e, n);
+//
+//				if (x == 1 && !check.Equals(One))
+//					return false;
+//
+//				if (x == -1 && !check.Equals(nMinusOne))
+//					return false;
+//
+//				--certainty;
+//			}
+//			while (certainty > 0);
+//
+//			return true;
+//		}
+//
+//		private static int Jacobi(
+//			BigInteger	a,
+//			BigInteger	b)
+//		{
+//			Debug.Assert(a.sign >= 0);
+//			Debug.Assert(b.sign > 0);
+//			Debug.Assert(b.TestBit(0));
+//			Debug.Assert(a.CompareTo(b) < 0);
+//
+//			int totalS = 1;
+//			for (;;)
+//			{
+//				if (a.sign == 0)
+//					return 0;
+//
+//				if (a.Equals(One))
+//					break;
+//
+//				int e = a.GetLowestSetBit();
+//
+//				int bLsw = b.magnitude[b.magnitude.Length - 1];
+//				if ((e & 1) != 0 && ((bLsw & 7) == 3 || (bLsw & 7) == 5))
+//					totalS = -totalS;
+//
+//				// TODO Confirm this is faster than later a1.Equals(One) test
+//				if (a.BitLength == e + 1)
+//					break;
+//				BigInteger a1 = a.ShiftRight(e);
+////				if (a1.Equals(One))
+////					break;
+//
+//				int a1Lsw = a1.magnitude[a1.magnitude.Length - 1];
+//				if ((bLsw & 3) == 3 && (a1Lsw & 3) == 3)
+//					totalS = -totalS;
+//
+////				a = b.Mod(a1);
+//				a = b.Remainder(a1);
+//				b = a1;
+//			}
+//			return totalS;
+//		}
+
+		public long LongValue
+		{
+            get
+            {
+                if (sign == 0)
+                    return 0;
+
+                int n = magnitude.Length;
+
+                long v = magnitude[n - 1] & IMASK;
+                if (n > 1)
+                {
+                    v |= (magnitude[n - 2] & IMASK) << 32;
+                }
+
+                return sign < 0 ? -v : v;
+            }
+        }
+
+        public BigInteger Max(
+			BigInteger value)
+		{
+			return CompareTo(value) > 0 ? this : value;
+		}
+
+		public BigInteger Min(
+			BigInteger value)
+		{
+			return CompareTo(value) < 0 ? this : value;
+		}
+
+		public BigInteger Mod(
+			BigInteger m)
+		{
+			if (m.sign < 1)
+				throw new ArithmeticException("Modulus must be positive");
+
+			BigInteger biggie = Remainder(m);
+
+			return (biggie.sign >= 0 ? biggie : biggie.Add(m));
+		}
+
+		public BigInteger ModInverse(
+			BigInteger m)
+		{
+			if (m.sign < 1)
+				throw new ArithmeticException("Modulus must be positive");
+
+			// TODO Too slow at the moment
+//			// "Fast Key Exchange with Elliptic Curve Systems" R.Schoeppel
+//			if (m.TestBit(0))
+//			{
+//				//The Almost Inverse Algorithm
+//				int k = 0;
+//				BigInteger B = One, C = Zero, F = this, G = m, tmp;
+//
+//				for (;;)
+//				{
+//					// While F is even, do F=F/u, C=C*u, k=k+1.
+//					int zeroes = F.GetLowestSetBit();
+//					if (zeroes > 0)
+//					{
+//						F = F.ShiftRight(zeroes);
+//						C = C.ShiftLeft(zeroes);
+//						k += zeroes;
+//					}
+//
+//					// If F = 1, then return B,k.
+//					if (F.Equals(One))
+//					{
+//						BigInteger half = m.Add(One).ShiftRight(1);
+//						BigInteger halfK = half.ModPow(BigInteger.ValueOf(k), m);
+//						return B.Multiply(halfK).Mod(m);
+//					}
+//
+//					if (F.CompareTo(G) < 0)
+//					{
+//						tmp = G; G = F; F = tmp;
+//						tmp = B; B = C; C = tmp;
+//					}
+//
+//					F = F.Add(G);
+//					B = B.Add(C);
+//				}
+//			}
+
+            if (m.QuickPow2Check())
+            {
+                return ModInversePow2(m);
+            }
+
+            BigInteger d = this.Remainder(m);
+            BigInteger x;
+            BigInteger gcd = ExtEuclid(d, m, out x);
+
+			if (!gcd.Equals(One))
+				throw new ArithmeticException("Numbers not relatively prime.");
+
+			if (x.sign < 0)
+			{
+                x = x.Add(m);
+			}
+
+			return x;
+		}
+
+        private BigInteger ModInversePow2(BigInteger m)
+        {
+            Debug.Assert(m.SignValue > 0);
+            Debug.Assert(m.BitCount == 1);
+
+            if (!TestBit(0))
+            {
+                throw new ArithmeticException("Numbers not relatively prime.");
+            }
+
+            int pow = m.BitLength - 1;
+
+            long inv64 = ModInverse64(LongValue);
+            if (pow < 64)
+            {
+                inv64 &= ((1L << pow) - 1);
+            }
+
+            BigInteger x = BigInteger.ValueOf(inv64);
+
+            if (pow > 64)
+            {
+                BigInteger d = this.Remainder(m);
+                int bitsCorrect = 64;
+
+                do
+                {
+                    BigInteger t = x.Multiply(d).Remainder(m);
+                    x = x.Multiply(Two.Subtract(t)).Remainder(m);
+                    bitsCorrect <<= 1;
+                }
+                while (bitsCorrect < pow);
+
+                if (x.sign < 0)
+                {
+                    x = x.Add(m);
+                }
+            }
+
+            return x;
+        }
+
+        private static int ModInverse32(int d)
+        {
+            // Newton's method with initial estimate "correct to 4 bits"
+            Debug.Assert((d & 1) != 0);
+            int x = d + (((d + 1) & 4) << 1);   // d.x == 1 mod 2**4
+            Debug.Assert(((d * x) & 15) == 1);
+            x *= 2 - d * x;                     // d.x == 1 mod 2**8
+            x *= 2 - d * x;                     // d.x == 1 mod 2**16
+            x *= 2 - d * x;                     // d.x == 1 mod 2**32
+            Debug.Assert(d * x == 1);
+            return x;
+        }
+
+        private static long ModInverse64(long d)
+        {
+            // Newton's method with initial estimate "correct to 4 bits"
+            Debug.Assert((d & 1L) != 0);
+            long x = d + (((d + 1L) & 4L) << 1);    // d.x == 1 mod 2**4
+            Debug.Assert(((d * x) & 15L) == 1L);
+            x *= 2 - d * x;                         // d.x == 1 mod 2**8
+            x *= 2 - d * x;                         // d.x == 1 mod 2**16
+            x *= 2 - d * x;                         // d.x == 1 mod 2**32
+            x *= 2 - d * x;                         // d.x == 1 mod 2**64
+            Debug.Assert(d * x == 1L);
+            return x;
+        }
+
+		/**
+		 * Calculate the numbers u1, u2, and u3 such that:
+		 *
+		 * u1 * a + u2 * b = u3
+		 *
+		 * where u3 is the greatest common divider of a and b.
+		 * a and b using the extended Euclid algorithm (refer p. 323
+		 * of The Art of Computer Programming vol 2, 2nd ed).
+		 * This also seems to have the side effect of calculating
+		 * some form of multiplicative inverse.
+		 *
+		 * @param a    First number to calculate gcd for
+		 * @param b    Second number to calculate gcd for
+		 * @param u1Out      the return object for the u1 value
+		 * @param u2Out      the return object for the u2 value
+		 * @return     The greatest common divisor of a and b
+		 */
+		private static BigInteger ExtEuclid(
+			BigInteger	    a,
+			BigInteger	    b,
+			out BigInteger  u1Out)
+            //BigInteger	    u2Out)
+		{
+			BigInteger u1 = One;
+			BigInteger u3 = a;
+			BigInteger v1 = Zero;
+			BigInteger v3 = b;
+
+			while (v3.sign > 0)
+			{
+				BigInteger[] q = u3.DivideAndRemainder(v3);
+
+				BigInteger tmp = v1.Multiply(q[0]);
+				BigInteger tn = u1.Subtract(tmp);
+				u1 = v1;
+				v1 = tn;
+
+				u3 = v3;
+				v3 = q[1];
+			}
+
+            //if (u1Out != null)
+            //{
+            //    u1Out.sign = u1.sign;
+            //    u1Out.magnitude = u1.magnitude;
+            //}
+            u1Out = u1;
+
+            //if (u2Out != null)
+            //{
+            //    BigInteger tmp = u1.Multiply(a);
+            //    tmp = u3.Subtract(tmp);
+            //    BigInteger res = tmp.Divide(b);
+            //    u2Out.sign = res.sign;
+            //    u2Out.magnitude = res.magnitude;
+            //}
+
+			return u3;
+		}
+
+		private static void ZeroOut(
+			int[] x)
+		{
+			Array.Clear(x, 0, x.Length);
+		}
+
+        public BigInteger ModPow(BigInteger e, BigInteger m)
+        {
+            if (m.sign < 1)
+                throw new ArithmeticException("Modulus must be positive");
+
+            if (m.Equals(One))
+                return Zero;
+
+            if (e.sign == 0)
+                return One;
+
+            if (sign == 0)
+                return Zero;
+
+            bool negExp = e.sign < 0;
+            if (negExp)
+                e = e.Negate();
+
+            BigInteger result = this.Mod(m);
+            if (!e.Equals(One))
+            {
+                if ((m.magnitude[m.magnitude.Length - 1] & 1) == 0)
+                {
+                    result = ModPowBarrett(result, e, m);
+                }
+                else
+                {
+                    result = ModPowMonty(result, e, m, true);
+                }
+            }
+
+            if (negExp)
+                result = result.ModInverse(m);
+
+            return result;
+        }
+
+        private static BigInteger ModPowBarrett(BigInteger b, BigInteger e, BigInteger m)
+        {
+            int k = m.magnitude.Length;
+            BigInteger mr = One.ShiftLeft((k + 1) << 5);
+            BigInteger yu = One.ShiftLeft(k << 6).Divide(m);
+
+            // Sliding window from MSW to LSW
+            int extraBits = 0, expLength = e.BitLength;
+            while (expLength > ExpWindowThresholds[extraBits])
+            {
+                ++extraBits;
+            }
+
+            int numPowers = 1 << extraBits;
+            BigInteger[] oddPowers = new BigInteger[numPowers];
+            oddPowers[0] = b;
+
+            BigInteger b2 = ReduceBarrett(b.Square(), m, mr, yu);
+
+            for (int i = 1; i < numPowers; ++i)
+            {
+                oddPowers[i] = ReduceBarrett(oddPowers[i - 1].Multiply(b2), m, mr, yu);
+            }
+
+            int[] windowList = GetWindowList(e.magnitude, extraBits);
+            Debug.Assert(windowList.Length > 0);
+
+            int window = windowList[0];
+            int mult = window & 0xFF, lastZeroes = window >> 8;
+
+            BigInteger y;
+            if (mult == 1)
+            {
+                y = b2;
+                --lastZeroes;
+            }
+            else
+            {
+                y = oddPowers[mult >> 1];
+            }
+
+            int windowPos = 1;
+            while ((window = windowList[windowPos++]) != -1)
+            {
+                mult = window & 0xFF;
+
+                int bits = lastZeroes + BitLengthTable[mult];
+                for (int j = 0; j < bits; ++j)
+                {
+                    y = ReduceBarrett(y.Square(), m, mr, yu);
+                }
+
+                y = ReduceBarrett(y.Multiply(oddPowers[mult >> 1]), m, mr, yu);
+
+                lastZeroes = window >> 8;
+            }
+
+            for (int i = 0; i < lastZeroes; ++i)
+            {
+                y = ReduceBarrett(y.Square(), m, mr, yu);
+            }
+
+            return y;
+        }
+
+        private static BigInteger ReduceBarrett(BigInteger x, BigInteger m, BigInteger mr, BigInteger yu)
+        {
+            int xLen = x.BitLength, mLen = m.BitLength;
+            if (xLen < mLen)
+                return x;
+
+            if (xLen - mLen > 1)
+            {
+                int k = m.magnitude.Length;
+
+                BigInteger q1 = x.DivideWords(k - 1);
+                BigInteger q2 = q1.Multiply(yu); // TODO Only need partial multiplication here
+                BigInteger q3 = q2.DivideWords(k + 1);
+
+                BigInteger r1 = x.RemainderWords(k + 1);
+                BigInteger r2 = q3.Multiply(m); // TODO Only need partial multiplication here
+                BigInteger r3 = r2.RemainderWords(k + 1);
+
+                x = r1.Subtract(r3);
+                if (x.sign < 0)
+                {
+                    x = x.Add(mr);
+                }
+            }
+
+            while (x.CompareTo(m) >= 0)
+            {
+                x = x.Subtract(m);
+            }
+
+            return x;
+        }
+
+        private static BigInteger ModPowMonty(BigInteger b, BigInteger e, BigInteger m, bool convert)
+        {
+            int n = m.magnitude.Length;
+            int powR = 32 * n;
+            bool smallMontyModulus = m.BitLength + 2 <= powR;
+            uint mDash = (uint)m.GetMQuote();
+
+            // tmp = this * R mod m
+            if (convert)
+            {
+                b = b.ShiftLeft(powR).Remainder(m);
+            }
+
+            int[] yAccum = new int[n + 1];
+
+            int[] zVal = b.magnitude;
+            Debug.Assert(zVal.Length <= n);
+            if (zVal.Length < n)
+            {
+                int[] tmp = new int[n];
+                zVal.CopyTo(tmp, n - zVal.Length);
+                zVal = tmp;
+            }
+
+            // Sliding window from MSW to LSW
+
+            int extraBits = 0;
+
+            // Filter the common case of small RSA exponents with few bits set
+            if (e.magnitude.Length > 1 || e.BitCount > 2)
+            {
+                int expLength = e.BitLength;
+                while (expLength > ExpWindowThresholds[extraBits])
+                {
+                    ++extraBits;
+                }
+            }
+
+            int numPowers = 1 << extraBits;
+            int[][] oddPowers = new int[numPowers][];
+            oddPowers[0] = zVal;
+
+            int[] zSquared = Arrays.Clone(zVal);
+            SquareMonty(yAccum, zSquared, m.magnitude, mDash, smallMontyModulus);
+
+            for (int i = 1; i < numPowers; ++i)
+            {
+                oddPowers[i] = Arrays.Clone(oddPowers[i - 1]);
+                MultiplyMonty(yAccum, oddPowers[i], zSquared, m.magnitude, mDash, smallMontyModulus);
+            }
+
+            int[] windowList = GetWindowList(e.magnitude, extraBits);
+            Debug.Assert(windowList.Length > 1);
+
+            int window = windowList[0];
+            int mult = window & 0xFF, lastZeroes = window >> 8;
+
+            int[] yVal;
+            if (mult == 1)
+            {
+                yVal = zSquared;
+                --lastZeroes;
+            }
+            else
+            {
+                yVal = Arrays.Clone(oddPowers[mult >> 1]);
+            }
+
+            int windowPos = 1;
+            while ((window = windowList[windowPos++]) != -1)
+            {
+                mult = window & 0xFF;
+
+                int bits = lastZeroes + BitLengthTable[mult];
+                for (int j = 0; j < bits; ++j)
+                {
+                    SquareMonty(yAccum, yVal, m.magnitude, mDash, smallMontyModulus);
+                }
+
+                MultiplyMonty(yAccum, yVal, oddPowers[mult >> 1], m.magnitude, mDash, smallMontyModulus);
+
+                lastZeroes = window >> 8;
+            }
+
+            for (int i = 0; i < lastZeroes; ++i)
+            {
+                SquareMonty(yAccum, yVal, m.magnitude, mDash, smallMontyModulus);
+            }
+
+            if (convert)
+            {
+                // Return y * R^(-1) mod m
+                MontgomeryReduce(yVal, m.magnitude, mDash);
+            }
+            else if (smallMontyModulus && CompareTo(0, yVal, 0, m.magnitude) >= 0)
+            {
+                Subtract(0, yVal, 0, m.magnitude);
+            }
+
+            return new BigInteger(1, yVal, true);
+        }
+
+        private static int[] GetWindowList(int[] mag, int extraBits)
+        {
+            int v = mag[0];
+            Debug.Assert(v != 0);
+
+            int leadingBits = BitLen(v);
+
+            int resultSize = (((mag.Length - 1) << 5) + leadingBits) / (1 + extraBits) + 2;
+            int[] result = new int[resultSize];
+            int resultPos = 0;
+
+            int bitPos = 33 - leadingBits;
+            v <<= bitPos;
+
+            int mult = 1, multLimit = 1 << extraBits;
+            int zeroes = 0;
+
+            int i = 0;
+            for (; ; )
+            {
+                for (; bitPos < 32; ++bitPos)
+                {
+                    if (mult < multLimit)
+                    {
+                        mult = (mult << 1) | (int)((uint)v >> 31);
+                    }
+                    else if (v < 0)
+                    {
+                        result[resultPos++] = CreateWindowEntry(mult, zeroes);
+                        mult = 1;
+                        zeroes = 0;
+                    }
+                    else
+                    {
+                        ++zeroes;
+                    }
+
+                    v <<= 1;
+                }
+
+                if (++i == mag.Length)
+                {
+                    result[resultPos++] = CreateWindowEntry(mult, zeroes);
+                    break;
+                }
+
+                v = mag[i];
+                bitPos = 0;
+            }
+
+            result[resultPos] = -1;
+            return result;
+        }
+
+        private static int CreateWindowEntry(int mult, int zeroes)
+        {
+            while ((mult & 1) == 0)
+            {
+                mult >>= 1;
+                ++zeroes;
+            }
+
+            return mult | (zeroes << 8);
+        }
+
+        /**
+		 * return w with w = x * x - w is assumed to have enough space.
+		 */
+		private static int[] Square(
+			int[]	w,
+			int[]	x)
+		{
+            // Note: this method allows w to be only (2 * x.Length - 1) words if result will fit
+//			if (w.Length != 2 * x.Length)
+//				throw new ArgumentException("no I don't think so...");
+
+            ulong c;
+
+            int wBase = w.Length - 1;
+
+            for (int i = x.Length - 1; i > 0; --i)
+            {
+                ulong v = (uint)x[i];
+
+                c = v * v + (uint)w[wBase];
+                w[wBase] = (int)c;
+                c >>= 32;
+
+                for (int j = i - 1; j >= 0; --j)
+                {
+                    ulong prod = v * (uint)x[j];
+
+                    c += ((uint)w[--wBase] & UIMASK) + ((uint)prod << 1);
+                    w[wBase] = (int)c;
+                    c = (c >> 32) + (prod >> 31);
+                }
+
+                c += (uint)w[--wBase];
+                w[wBase] = (int)c;
+
+                if (--wBase >= 0)
+                {
+                    w[wBase] = (int)(c >> 32);
+                }
+                else
+                {
+                    Debug.Assert((c >> 32) == 0);
+                }
+
+                wBase += i;
+            }
+
+            c = (uint)x[0];
+
+            c = c * c + (uint)w[wBase];
+            w[wBase] = (int)c;
+
+            if (--wBase >= 0)
+            {
+                w[wBase] += (int)(c >> 32);
+            }
+            else
+            {
+                Debug.Assert((c >> 32) == 0);
+            }
+
+            return w;
+		}
+
+        /**
+		 * return x with x = y * z - x is assumed to have enough space.
+		 */
+		private static int[] Multiply(int[]	x, int[] y, int[] z)
+		{
+			int i = z.Length;
+
+			if (i < 1)
+				return x;
+
+			int xBase = x.Length - y.Length;
+
+			do
+			{
+				long a = z[--i] & IMASK;
+				long val = 0;
+
+				if (a != 0)
+				{
+					for (int j = y.Length - 1; j >= 0; j--)
+					{
+						val += a * (y[j] & IMASK) + (x[xBase + j] & IMASK);
+	
+						x[xBase + j] = (int)val;
+	
+						val = (long)((ulong)val >> 32);
+					}
+				}
+
+				--xBase;
+
+				if (xBase >= 0)
+				{
+					x[xBase] = (int)val;
+				}
+				else
+				{
+					Debug.Assert(val == 0);
+				}
+			}
+			while (i > 0);
+
+			return x;
+		}
+
+        /**
+		 * Calculate mQuote = -m^(-1) mod b with b = 2^32 (32 = word size)
+		 */
+        private int GetMQuote()
+		{
+			if (mQuote != 0)
+			{
+				return mQuote; // already calculated
+			}
+
+            Debug.Assert(this.sign > 0);
+
+            int d = -magnitude[magnitude.Length - 1];
+
+            Debug.Assert((d & 1) != 0);
+
+            return mQuote = ModInverse32(d);
+		}
+
+        private static void MontgomeryReduce(int[] x, int[] m, uint mDash) // mDash = -m^(-1) mod b
+        {
+            // NOTE: Not a general purpose reduction (which would allow x up to twice the bitlength of m)
+            Debug.Assert(x.Length == m.Length);
+
+            int n = m.Length;
+
+            for (int i = n - 1; i >= 0; --i)
+            {
+                uint x0 = (uint)x[n - 1];
+                ulong t = x0 * mDash;
+
+                ulong carry = t * (uint)m[n - 1] + x0;
+                Debug.Assert((uint)carry == 0);
+                carry >>= 32;
+
+                for (int j = n - 2; j >= 0; --j)
+                {
+                    carry += t * (uint)m[j] + (uint)x[j];
+                    x[j + 1] = (int)carry;
+                    carry >>= 32;
+                }
+
+                x[0] = (int)carry;
+                Debug.Assert(carry >> 32 == 0);
+            }
+
+            if (CompareTo(0, x, 0, m) >= 0)
+            {
+                Subtract(0, x, 0, m);
+            }
+        }
+
+        /**
+		 * Montgomery multiplication: a = x * y * R^(-1) mod m
+		 * <br/>
+		 * Based algorithm 14.36 of Handbook of Applied Cryptography.
+		 * <br/>
+		 * <li> m, x, y should have length n </li>
+		 * <li> a should have length (n + 1) </li>
+		 * <li> b = 2^32, R = b^n </li>
+		 * <br/>
+		 * The result is put in x
+		 * <br/>
+		 * NOTE: the indices of x, y, m, a different in HAC and in Java
+		 */
+		private static void MultiplyMonty(int[]	a, int[] x, int[] y, int[] m, uint mDash, bool smallMontyModulus)
+			// mDash = -m^(-1) mod b
+		{
+            int n = m.Length;
+
+            if (n == 1)
+            {
+                x[0] = (int)MultiplyMontyNIsOne((uint)x[0], (uint)y[0], (uint)m[0], mDash);
+                return;
+            }
+
+            uint y0 = (uint)y[n - 1];
+
+            {
+                ulong xi = (uint)x[n - 1];
+
+                ulong carry = xi * y0;
+                ulong t = (uint)carry * mDash;
+
+                ulong prod2 = t * (uint)m[n - 1];
+                carry += (uint)prod2;
+                Debug.Assert((uint)carry == 0);
+                carry = (carry >> 32) + (prod2 >> 32);
+
+                for (int j = n - 2; j >= 0; --j)
+                {
+                    ulong prod1 = xi * (uint)y[j];
+                    prod2 = t * (uint)m[j];
+
+                    carry += (prod1 & UIMASK) + (uint)prod2;
+                    a[j + 2] = (int)carry;
+                    carry = (carry >> 32) + (prod1 >> 32) + (prod2 >> 32);
+                }
+
+                a[1] = (int)carry;
+                a[0] = (int)(carry >> 32);
+            }
+
+            for (int i = n - 2; i >= 0; --i)
+            {
+                uint a0 = (uint)a[n];
+                ulong xi = (uint)x[i];
+
+                ulong prod1 = xi * y0;
+                ulong carry = (prod1 & UIMASK) + a0;
+                ulong t = (uint)carry * mDash;
+
+                ulong prod2 = t * (uint)m[n - 1];
+                carry += (uint)prod2;
+                Debug.Assert((uint)carry == 0);
+                carry = (carry >> 32) + (prod1 >> 32) + (prod2 >> 32);
+
+                for (int j = n - 2; j >= 0; --j)
+                {
+                    prod1 = xi * (uint)y[j];
+                    prod2 = t * (uint)m[j];
+
+                    carry += (prod1 & UIMASK) + (uint)prod2 + (uint)a[j + 1];
+                    a[j + 2] = (int)carry;
+                    carry = (carry >> 32) + (prod1 >> 32) + (prod2 >> 32);
+                }
+
+                carry += (uint)a[0];
+                a[1] = (int)carry;
+                a[0] = (int)(carry >> 32);
+            }
+
+            if (!smallMontyModulus && CompareTo(0, a, 0, m) >= 0)
+            {
+                Subtract(0, a, 0, m);
+            }
+
+            Array.Copy(a, 1, x, 0, n);
+        }
+
+        private static void SquareMonty(int[] a, int[] x, int[] m, uint mDash, bool smallMontyModulus)
+            // mDash = -m^(-1) mod b
+        {
+            int n = m.Length;
+
+            if (n == 1)
+            {
+                uint xVal = (uint)x[0];
+                x[0] = (int)MultiplyMontyNIsOne(xVal, xVal, (uint)m[0], mDash);
+                return;
+            }
+
+            ulong x0 = (uint)x[n - 1];
+
+            {
+                ulong carry = x0 * x0;
+                ulong t = (uint)carry * mDash;
+
+                ulong prod2 = t * (uint)m[n - 1];
+                carry += (uint)prod2;
+                Debug.Assert((uint)carry == 0);
+                carry = (carry >> 32) + (prod2 >> 32);
+
+                for (int j = n - 2; j >= 0; --j)
+                {
+                    ulong prod1 = x0 * (uint)x[j];
+                    prod2 = t * (uint)m[j];
+
+                    carry += (prod2 & UIMASK) + ((uint)prod1 << 1);
+                    a[j + 2] = (int)carry;
+                    carry = (carry >> 32) + (prod1 >> 31) + (prod2 >> 32);
+                }
+
+                a[1] = (int)carry;
+                a[0] = (int)(carry >> 32);
+            }
+
+            for (int i = n - 2; i >= 0; --i)
+            {
+                uint a0 = (uint)a[n];
+                ulong t = a0 * mDash;
+
+                ulong carry = t * (uint)m[n - 1] + a0;
+                Debug.Assert((uint)carry == 0);
+                carry >>= 32;
+
+                for (int j = n - 2; j > i; --j)
+                {
+                    carry += t * (uint)m[j] + (uint)a[j + 1];
+                    a[j + 2] = (int)carry;
+                    carry >>= 32;
+                }
+
+                ulong xi = (uint)x[i];
+
+                {
+                    ulong prod1 = xi * xi;
+                    ulong prod2 = t * (uint)m[i];
+
+                    carry += (prod1 & UIMASK) + (uint)prod2 + (uint)a[i + 1];
+                    a[i + 2] = (int)carry;
+                    carry = (carry >> 32) + (prod1 >> 32) + (prod2 >> 32);
+                }
+
+                for (int j = i - 1; j >= 0; --j)
+                {
+                    ulong prod1 = xi * (uint)x[j];
+                    ulong prod2 = t * (uint)m[j];
+
+                    carry += (prod2 & UIMASK) + ((uint)prod1 << 1) + (uint)a[j + 1];
+                    a[j + 2] = (int)carry;
+                    carry = (carry >> 32) + (prod1 >> 31) + (prod2 >> 32);
+                }
+
+                carry += (uint)a[0];
+                a[1] = (int)carry;
+                a[0] = (int)(carry >> 32);
+            }
+
+            if (!smallMontyModulus && CompareTo(0, a, 0, m) >= 0)
+            {
+                Subtract(0, a, 0, m);
+            }
+
+            Array.Copy(a, 1, x, 0, n);
+        }
+
+        private static uint MultiplyMontyNIsOne(uint x, uint y, uint m, uint mDash)
+		{
+            ulong carry = (ulong)x * y;
+            uint t = (uint)carry * mDash;
+            ulong um = m;
+            ulong prod2 = um * t;
+            carry += (uint)prod2;
+            Debug.Assert((uint)carry == 0);
+            carry = (carry >> 32) + (prod2 >> 32);
+            if (carry > um)
+            {
+                carry -= um;
+            }
+            Debug.Assert(carry < um);
+            return (uint)carry;
+		}
+
+        public BigInteger Multiply(
+			BigInteger val)
+		{
+            if (val == this)
+                return Square();
+
+            if ((sign & val.sign) == 0)
+				return Zero;
+
+            if (val.QuickPow2Check()) // val is power of two
+			{
+				BigInteger result = this.ShiftLeft(val.Abs().BitLength - 1);
+				return val.sign > 0 ? result : result.Negate();
+			}
+
+			if (this.QuickPow2Check()) // this is power of two
+			{
+				BigInteger result = val.ShiftLeft(this.Abs().BitLength - 1);
+				return this.sign > 0 ? result : result.Negate();
+			}
+
+            int resLength = magnitude.Length + val.magnitude.Length;
+            int[] res = new int[resLength];
+
+            Multiply(res, this.magnitude, val.magnitude);
+
+            int resSign = sign ^ val.sign ^ 1;
+            return new BigInteger(resSign, res, true);
+		}
+
+        public BigInteger Square()
+        {
+            if (sign == 0)
+                return Zero;
+            if (this.QuickPow2Check())
+                return ShiftLeft(Abs().BitLength - 1);
+            int resLength = magnitude.Length << 1;
+            if ((uint)magnitude[0] >> 16 == 0)
+                --resLength;
+            int[] res = new int[resLength];
+            Square(res, magnitude);
+            return new BigInteger(1, res, false);
+        }
+
+        public BigInteger Negate()
+		{
+			if (sign == 0)
+				return this;
+
+			return new BigInteger(-sign, magnitude, false);
+		}
+
+		public BigInteger NextProbablePrime()
+		{
+			if (sign < 0)
+				throw new ArithmeticException("Cannot be called on value < 0");
+
+			if (CompareTo(Two) < 0)
+				return Two;
+
+			BigInteger n = Inc().SetBit(0);
+
+			while (!n.CheckProbablePrime(100, RandomSource))
+			{
+				n = n.Add(Two);
+			}
+
+			return n;
+		}
+
+		public BigInteger Not()
+		{
+			return Inc().Negate();
+		}
+
+		public BigInteger Pow(int exp)
+		{
+			if (exp <= 0)
+			{
+                if (exp < 0)
+    				throw new ArithmeticException("Negative exponent");
+
+                return One;
+			}
+
+            if (sign == 0)
+			{
+				return this;
+			}
+
+            if (QuickPow2Check())
+            {
+                long powOf2 = (long)exp * (BitLength - 1);
+                if (powOf2 > Int32.MaxValue)
+                {
+                    throw new ArithmeticException("Result too large");
+                }
+                return One.ShiftLeft((int)powOf2); 
+            }
+
+            BigInteger y = One;
+			BigInteger z = this;
+
+			for (;;)
+			{
+				if ((exp & 0x1) == 1)
+				{
+					y = y.Multiply(z);
+				}
+				exp >>= 1;
+				if (exp == 0) break;
+				z = z.Multiply(z);
+			}
+
+			return y;
+		}
+
+		public static BigInteger ProbablePrime(
+			int bitLength,
+			Random random)
+		{
+			return new BigInteger(bitLength, 100, random);
+		}
+
+		private int Remainder(
+			int m)
+		{
+			Debug.Assert(m > 0);
+
+			long acc = 0;
+			for (int pos = 0; pos < magnitude.Length; ++pos)
+			{
+				long posVal = (uint) magnitude[pos];
+				acc = (acc << 32 | posVal) % m;
+			}
+
+			return (int) acc;
+		}
+
+		/**
+		 * return x = x % y - done in place (y value preserved)
+		 */
+		private static int[] Remainder(
+			int[] x,
+			int[] y)
+		{
+			int xStart = 0;
+			while (xStart < x.Length && x[xStart] == 0)
+			{
+				++xStart;
+			}
+
+			int yStart = 0;
+			while (yStart < y.Length && y[yStart] == 0)
+			{
+				++yStart;
+			}
+
+			Debug.Assert(yStart < y.Length);
+
+			int xyCmp = CompareNoLeadingZeroes(xStart, x, yStart, y);
+
+			if (xyCmp > 0)
+			{
+				int yBitLength = CalcBitLength(1, yStart, y);
+				int xBitLength = CalcBitLength(1, xStart, x);
+				int shift = xBitLength - yBitLength;
+
+				int[] c;
+				int cStart = 0;
+				int cBitLength = yBitLength;
+				if (shift > 0)
+				{
+					c = ShiftLeft(y, shift);
+					cBitLength += shift;
+					Debug.Assert(c[0] != 0);
+				}
+				else
+				{
+					int len = y.Length - yStart;
+					c = new int[len];
+					Array.Copy(y, yStart, c, 0, len);
+				}
+
+				for (;;)
+				{
+					if (cBitLength < xBitLength
+						|| CompareNoLeadingZeroes(xStart, x, cStart, c) >= 0)
+					{
+						Subtract(xStart, x, cStart, c);
+
+						while (x[xStart] == 0)
+						{
+							if (++xStart == x.Length)
+								return x;
+						}
+
+						//xBitLength = CalcBitLength(xStart, x);
+						xBitLength = 32 * (x.Length - xStart - 1) + BitLen(x[xStart]);
+
+						if (xBitLength <= yBitLength)
+						{
+							if (xBitLength < yBitLength)
+								return x;
+
+							xyCmp = CompareNoLeadingZeroes(xStart, x, yStart, y);
+
+							if (xyCmp <= 0)
+								break;
+						}
+					}
+
+					shift = cBitLength - xBitLength;
+
+					// NB: The case where c[cStart] is 1-bit is harmless
+					if (shift == 1)
+					{
+						uint firstC = (uint) c[cStart] >> 1;
+						uint firstX = (uint) x[xStart];
+						if (firstC > firstX)
+							++shift;
+					}
+
+					if (shift < 2)
+					{
+						ShiftRightOneInPlace(cStart, c);
+						--cBitLength;
+					}
+					else
+					{
+						ShiftRightInPlace(cStart, c, shift);
+						cBitLength -= shift;
+					}
+
+					//cStart = c.Length - ((cBitLength + 31) / 32);
+					while (c[cStart] == 0)
+					{
+						++cStart;
+					}
+				}
+			}
+
+			if (xyCmp == 0)
+			{
+				Array.Clear(x, xStart, x.Length - xStart);
+			}
+
+			return x;
+		}
+
+		public BigInteger Remainder(
+			BigInteger n)
+		{
+			if (n.sign == 0)
+				throw new ArithmeticException("Division by zero error");
+
+			if (this.sign == 0)
+				return Zero;
+
+			// For small values, use fast remainder method
+			if (n.magnitude.Length == 1)
+			{
+				int val = n.magnitude[0];
+
+				if (val > 0)
+				{
+					if (val == 1)
+						return Zero;
+
+					// TODO Make this func work on uint, and handle val == 1?
+					int rem = Remainder(val);
+
+					return rem == 0
+						?	Zero
+						:	new BigInteger(sign, new int[]{ rem }, false);
+				}
+			}
+
+			if (CompareNoLeadingZeroes(0, magnitude, 0, n.magnitude) < 0)
+				return this;
+
+			int[] result;
+			if (n.QuickPow2Check())  // n is power of two
+			{
+				// TODO Move before small values branch above?
+				result = LastNBits(n.Abs().BitLength - 1);
+			}
+			else
+			{
+				result = (int[]) this.magnitude.Clone();
+				result = Remainder(result, n.magnitude);
+			}
+
+			return new BigInteger(sign, result, true);
+		}
+
+		private int[] LastNBits(
+			int n)
+		{
+			if (n < 1)
+				return ZeroMagnitude;
+
+			int numWords = (n + BitsPerInt - 1) / BitsPerInt;
+			numWords = System.Math.Min(numWords, this.magnitude.Length);
+			int[] result = new int[numWords];
+
+			Array.Copy(this.magnitude, this.magnitude.Length - numWords, result, 0, numWords);
+
+            int excessBits = (numWords << 5) - n;
+            if (excessBits > 0)
+            {
+                result[0] &= (int)(UInt32.MaxValue >> excessBits);
+            }
+
+            return result;
+		}
+
+        private BigInteger DivideWords(int w)
+        {
+            Debug.Assert(w >= 0);
+            int n = magnitude.Length;
+            if (w >= n)
+                return Zero;
+            int[] mag = new int[n - w];
+            Array.Copy(magnitude, 0, mag, 0, n - w);
+            return new BigInteger(sign, mag, false);
+        }
+
+        private BigInteger RemainderWords(int w)
+        {
+            Debug.Assert(w >= 0);
+            int n = magnitude.Length;
+            if (w >= n)
+                return this;
+            int[] mag = new int[w];
+            Array.Copy(magnitude, n - w, mag, 0, w);
+            return new BigInteger(sign, mag, false);
+        }
+
+        /**
+		 * do a left shift - this returns a new array.
+		 */
+		private static int[] ShiftLeft(
+			int[]	mag,
+			int		n)
+		{
+			int nInts = (int)((uint)n >> 5);
+			int nBits = n & 0x1f;
+			int magLen = mag.Length;
+			int[] newMag;
+
+			if (nBits == 0)
+			{
+				newMag = new int[magLen + nInts];
+				mag.CopyTo(newMag, 0);
+			}
+			else
+			{
+				int i = 0;
+				int nBits2 = 32 - nBits;
+				int highBits = (int)((uint)mag[0] >> nBits2);
+
+				if (highBits != 0)
+				{
+					newMag = new int[magLen + nInts + 1];
+					newMag[i++] = highBits;
+				}
+				else
+				{
+					newMag = new int[magLen + nInts];
+				}
+
+				int m = mag[0];
+				for (int j = 0; j < magLen - 1; j++)
+				{
+					int next = mag[j + 1];
+
+					newMag[i++] = (m << nBits) | (int)((uint)next >> nBits2);
+					m = next;
+				}
+
+				newMag[i] = mag[magLen - 1] << nBits;
+			}
+
+			return newMag;
+		}
+
+        private static int ShiftLeftOneInPlace(int[] x, int carry)
+        {
+            Debug.Assert(carry == 0 || carry == 1);
+            int pos = x.Length;
+            while (--pos >= 0)
+            {
+                uint val = (uint)x[pos];
+                x[pos] = (int)(val << 1) | carry;
+                carry = (int)(val >> 31);
+            }
+            return carry;
+        }
+
+		public BigInteger ShiftLeft(
+			int n)
+		{
+			if (sign == 0 || magnitude.Length == 0)
+				return Zero;
+
+			if (n == 0)
+				return this;
+
+			if (n < 0)
+				return ShiftRight(-n);
+
+			BigInteger result = new BigInteger(sign, ShiftLeft(magnitude, n), true);
+
+			if (this.nBits != -1)
+			{
+				result.nBits = sign > 0
+					?	this.nBits
+					:	this.nBits + n;
+			}
+
+			if (this.nBitLength != -1)
+			{
+				result.nBitLength = this.nBitLength + n;
+			}
+
+			return result;
+		}
+
+		/**
+		 * do a right shift - this does it in place.
+		 */
+		private static void ShiftRightInPlace(
+			int		start,
+			int[]	mag,
+			int		n)
+		{
+			int nInts = (int)((uint)n >> 5) + start;
+			int nBits = n & 0x1f;
+			int magEnd = mag.Length - 1;
+
+			if (nInts != start)
+			{
+				int delta = (nInts - start);
+
+				for (int i = magEnd; i >= nInts; i--)
+				{
+					mag[i] = mag[i - delta];
+				}
+				for (int i = nInts - 1; i >= start; i--)
+				{
+					mag[i] = 0;
+				}
+			}
+
+			if (nBits != 0)
+			{
+				int nBits2 = 32 - nBits;
+				int m = mag[magEnd];
+
+				for (int i = magEnd; i > nInts; --i)
+				{
+					int next = mag[i - 1];
+
+					mag[i] = (int)((uint)m >> nBits) | (next << nBits2);
+					m = next;
+				}
+
+				mag[nInts] = (int)((uint)mag[nInts] >> nBits);
+			}
+		}
+
+		/**
+		 * do a right shift by one - this does it in place.
+		 */
+		private static void ShiftRightOneInPlace(
+			int		start,
+			int[]	mag)
+		{
+			int i = mag.Length;
+			int m = mag[i - 1];
+
+			while (--i > start)
+			{
+				int next = mag[i - 1];
+				mag[i] = ((int)((uint)m >> 1)) | (next << 31);
+				m = next;
+			}
+
+			mag[start] = (int)((uint)mag[start] >> 1);
+		}
+
+        public BigInteger ShiftRight(
+			int n)
+		{
+			if (n == 0)
+				return this;
+
+			if (n < 0)
+				return ShiftLeft(-n);
+
+			if (n >= BitLength)
+				return (this.sign < 0 ? One.Negate() : Zero);
+
+//			int[] res = (int[]) this.magnitude.Clone();
+//
+//			ShiftRightInPlace(0, res, n);
+//
+//			return new BigInteger(this.sign, res, true);
+
+			int resultLength = (BitLength - n + 31) >> 5;
+			int[] res = new int[resultLength];
+
+			int numInts = n >> 5;
+			int numBits = n & 31;
+
+			if (numBits == 0)
+			{
+				Array.Copy(this.magnitude, 0, res, 0, res.Length);
+			}
+			else
+			{
+				int numBits2 = 32 - numBits;
+
+				int magPos = this.magnitude.Length - 1 - numInts;
+				for (int i = resultLength - 1; i >= 0; --i)
+				{
+					res[i] = (int)((uint) this.magnitude[magPos--] >> numBits);
+
+					if (magPos >= 0)
+					{
+						res[i] |= this.magnitude[magPos] << numBits2;
+					}
+				}
+			}
+
+			Debug.Assert(res[0] != 0);
+
+			return new BigInteger(this.sign, res, false);
+		}
+
+        public int SignValue
+		{
+			get { return sign; }
+		}
+
+		/**
+		 * returns x = x - y - we assume x is >= y
+		 */
+		private static int[] Subtract(
+			int		xStart,
+			int[]	x,
+			int		yStart,
+			int[]	y)
+		{
+			Debug.Assert(yStart < y.Length);
+			Debug.Assert(x.Length - xStart >= y.Length - yStart);
+
+			int iT = x.Length;
+			int iV = y.Length;
+			long m;
+			int borrow = 0;
+
+			do
+			{
+				m = (x[--iT] & IMASK) - (y[--iV] & IMASK) + borrow;
+				x[iT] = (int) m;
+
+//				borrow = (m < 0) ? -1 : 0;
+				borrow = (int)(m >> 63);
+			}
+			while (iV > yStart);
+
+			if (borrow != 0)
+			{
+				while (--x[--iT] == -1)
+				{
+				}
+			}
+
+			return x;
+		}
+
+		public BigInteger Subtract(
+			BigInteger n)
+		{
+			if (n.sign == 0)
+				return this;
+
+			if (this.sign == 0)
+				return n.Negate();
+
+			if (this.sign != n.sign)
+				return Add(n.Negate());
+
+			int compare = CompareNoLeadingZeroes(0, magnitude, 0, n.magnitude);
+			if (compare == 0)
+				return Zero;
+
+			BigInteger bigun, lilun;
+			if (compare < 0)
+			{
+				bigun = n;
+				lilun = this;
+			}
+			else
+			{
+				bigun = this;
+				lilun = n;
+			}
+
+			return new BigInteger(this.sign * compare, doSubBigLil(bigun.magnitude, lilun.magnitude), true);
+		}
+
+		private static int[] doSubBigLil(
+			int[]	bigMag,
+			int[]	lilMag)
+		{
+			int[] res = (int[]) bigMag.Clone();
+
+			return Subtract(0, res, 0, lilMag);
+		}
+
+		public byte[] ToByteArray()
+		{
+			return ToByteArray(false);
+		}
+
+		public byte[] ToByteArrayUnsigned()
+		{
+			return ToByteArray(true);
+		}
+
+		private byte[] ToByteArray(
+			bool unsigned)
+		{
+			if (sign == 0)
+				return unsigned ? ZeroEncoding : new byte[1];
+
+			int nBits = (unsigned && sign > 0)
+				?	BitLength
+				:	BitLength + 1;
+
+			int nBytes = GetByteLength(nBits);
+			byte[] bytes = new byte[nBytes];
+
+			int magIndex = magnitude.Length;
+			int bytesIndex = bytes.Length;
+
+			if (sign > 0)
+			{
+				while (magIndex > 1)
+				{
+					uint mag = (uint) magnitude[--magIndex];
+					bytes[--bytesIndex] = (byte) mag;
+					bytes[--bytesIndex] = (byte)(mag >> 8);
+					bytes[--bytesIndex] = (byte)(mag >> 16);
+					bytes[--bytesIndex] = (byte)(mag >> 24);
+				}
+
+				uint lastMag = (uint) magnitude[0];
+				while (lastMag > byte.MaxValue)
+				{
+					bytes[--bytesIndex] = (byte) lastMag;
+					lastMag >>= 8;
+				}
+
+				bytes[--bytesIndex] = (byte) lastMag;
+			}
+			else // sign < 0
+			{
+				bool carry = true;
+
+				while (magIndex > 1)
+				{
+					uint mag = ~((uint) magnitude[--magIndex]);
+
+					if (carry)
+					{
+						carry = (++mag == uint.MinValue);
+					}
+
+					bytes[--bytesIndex] = (byte) mag;
+					bytes[--bytesIndex] = (byte)(mag >> 8);
+					bytes[--bytesIndex] = (byte)(mag >> 16);
+					bytes[--bytesIndex] = (byte)(mag >> 24);
+				}
+
+				uint lastMag = (uint) magnitude[0];
+
+				if (carry)
+				{
+					// Never wraps because magnitude[0] != 0
+					--lastMag;
+				}
+
+				while (lastMag > byte.MaxValue)
+				{
+					bytes[--bytesIndex] = (byte) ~lastMag;
+					lastMag >>= 8;
+				}
+
+				bytes[--bytesIndex] = (byte) ~lastMag;
+
+				if (bytesIndex > 0)
+				{
+					bytes[--bytesIndex] = byte.MaxValue;
+				}
+			}
+
+			return bytes;
+		}
+
+		public override string ToString()
+		{
+			return ToString(10);
+		}
+
+        public string ToString(int radix)
+        {
+            // TODO Make this method work for other radices (ideally 2 <= radix <= 36 as in Java)
+
+            switch (radix)
+            {
+                case 2:
+                case 8:
+                case 10:
+                case 16:
+                    break;
+                default:
+                    throw new FormatException("Only bases 2, 8, 10, 16 are allowed");
+            }
+
+            // NB: Can only happen to internally managed instances
+            if (magnitude == null)
+                return "null";
+
+            if (sign == 0)
+                return "0";
+
+
+            // NOTE: This *should* be unnecessary, since the magnitude *should* never have leading zero digits
+            int firstNonZero = 0;
+            while (firstNonZero < magnitude.Length)
+            {
+                if (magnitude[firstNonZero] != 0)
+                {
+                    break;
+                }
+                ++firstNonZero;
+            }
+
+            if (firstNonZero == magnitude.Length)
+            {
+                return "0";
+            }
+
+
+            StringBuilder sb = new StringBuilder();
+            if (sign == -1)
+            {
+                sb.Append('-');
+            }
+
+            switch (radix)
+            {
+            case 2:
+            {
+                int pos = firstNonZero;
+                sb.Append(Convert.ToString(magnitude[pos], 2));
+                while (++pos < magnitude.Length)
+                {
+                    AppendZeroExtendedString(sb, Convert.ToString(magnitude[pos], 2), 32);
+                }
+                break;
+            }
+            case 8:
+            {
+                int mask = (1 << 30) - 1;
+                BigInteger u = this.Abs();
+                int bits = u.BitLength;
+                IList S = Platform.CreateArrayList();
+                while (bits > 30)
+                {
+                    S.Add(Convert.ToString(u.IntValue & mask, 8));
+                    u = u.ShiftRight(30);
+                    bits -= 30;
+                }
+                sb.Append(Convert.ToString(u.IntValue, 8));
+                for (int i = S.Count - 1; i >= 0; --i)
+                {
+                    AppendZeroExtendedString(sb, (string)S[i], 10);
+                }
+                break;
+            }
+            case 16:
+            {
+                int pos = firstNonZero;
+                sb.Append(Convert.ToString(magnitude[pos], 16));
+                while (++pos < magnitude.Length)
+                {
+                    AppendZeroExtendedString(sb, Convert.ToString(magnitude[pos], 16), 8);
+                }
+                break;
+            }
+            // TODO This could work for other radices if there is an alternative to Convert.ToString method
+            //default:
+            case 10:
+            {
+                BigInteger q = this.Abs();
+                if (q.BitLength < 64)
+                {
+                    sb.Append(Convert.ToString(q.LongValue, radix));
+                    break;
+                }
+
+                // Based on algorithm 1a from chapter 4.4 in Seminumerical Algorithms (Knuth)
+
+                // Work out the largest power of 'rdx' that is a positive 64-bit integer
+                // TODO possibly cache power/exponent against radix?
+                long limit = Int64.MaxValue / radix;
+                long power = radix;
+                int exponent = 1;
+                while (power <= limit)
+                {
+                    power *= radix;
+                    ++exponent;
+                }
+
+                BigInteger bigPower = BigInteger.ValueOf(power);
+
+                IList S = Platform.CreateArrayList();
+                while (q.CompareTo(bigPower) >= 0)
+                {
+                    BigInteger[] qr = q.DivideAndRemainder(bigPower);
+                    S.Add(Convert.ToString(qr[1].LongValue, radix));
+                    q = qr[0];
+                }
+
+                sb.Append(Convert.ToString(q.LongValue, radix));
+                for (int i = S.Count - 1; i >= 0; --i)
+                {
+                    AppendZeroExtendedString(sb, (string)S[i], exponent);
+                }
+                break;
+            }
+            }
+
+            return sb.ToString();
+        }
+
+        private static void AppendZeroExtendedString(StringBuilder sb, string s, int minLength)
+        {
+            for (int len = s.Length; len < minLength; ++len)
+            {
+                sb.Append('0');
+            }
+            sb.Append(s);
+        }
+
+        private static BigInteger CreateUValueOf(
+			ulong value)
+		{
+			int msw = (int)(value >> 32);
+			int lsw = (int)value;
+
+			if (msw != 0)
+				return new BigInteger(1, new int[] { msw, lsw }, false);
+
+			if (lsw != 0)
+			{
+				BigInteger n = new BigInteger(1, new int[] { lsw }, false);
+				// Check for a power of two
+				if ((lsw & -lsw) == lsw)
+				{
+					n.nBits = 1;
+				}
+				return n;
+			}
+
+			return Zero;
+		}
+
+		private static BigInteger CreateValueOf(
+			long value)
+		{
+			if (value < 0)
+			{
+				if (value == long.MinValue)
+					return CreateValueOf(~value).Not();
+
+				return CreateValueOf(-value).Negate();
+			}
+
+			return CreateUValueOf((ulong)value);
+		}
+
+        public static BigInteger ValueOf(
+			long value)
+		{
+            if (value >= 0 && value < SMALL_CONSTANTS.Length)
+            {
+                return SMALL_CONSTANTS[value];
+            }
+
+            return CreateValueOf(value);
+		}
+
+        public int GetLowestSetBit()
+		{
+			if (this.sign == 0)
+				return -1;
+
+            return GetLowestSetBitMaskFirst(-1);
+		}
+
+        private int GetLowestSetBitMaskFirst(int firstWordMask)
+        {
+            int w = magnitude.Length, offset = 0;
+
+            uint word = (uint)(magnitude[--w] & firstWordMask);
+            Debug.Assert(magnitude[0] != 0);
+
+            while (word == 0)
+            {
+                word = (uint)magnitude[--w];
+                offset += 32;
+            }
+
+            while ((word & 0xFF) == 0)
+            {
+                word >>= 8;
+                offset += 8;
+            }
+
+            while ((word & 1) == 0)
+            {
+                word >>= 1;
+                ++offset;
+            }
+
+            return offset;
+        }
+
+        public bool TestBit(
+			int n)
+		{
+			if (n < 0)
+				throw new ArithmeticException("Bit position must not be negative");
+
+			if (sign < 0)
+				return !Not().TestBit(n);
+
+			int wordNum = n / 32;
+			if (wordNum >= magnitude.Length)
+				return false;
+
+			int word = magnitude[magnitude.Length - 1 - wordNum];
+			return ((word >> (n % 32)) & 1) > 0;
+		}
+
+		public BigInteger Or(
+			BigInteger value)
+		{
+			if (this.sign == 0)
+				return value;
+
+			if (value.sign == 0)
+				return this;
+
+			int[] aMag = this.sign > 0
+				? this.magnitude
+				: Add(One).magnitude;
+
+			int[] bMag = value.sign > 0
+				? value.magnitude
+				: value.Add(One).magnitude;
+
+			bool resultNeg = sign < 0 || value.sign < 0;
+			int resultLength = System.Math.Max(aMag.Length, bMag.Length);
+			int[] resultMag = new int[resultLength];
+
+			int aStart = resultMag.Length - aMag.Length;
+			int bStart = resultMag.Length - bMag.Length;
+
+			for (int i = 0; i < resultMag.Length; ++i)
+			{
+				int aWord = i >= aStart ? aMag[i - aStart] : 0;
+				int bWord = i >= bStart ? bMag[i - bStart] : 0;
+
+				if (this.sign < 0)
+				{
+					aWord = ~aWord;
+				}
+
+				if (value.sign < 0)
+				{
+					bWord = ~bWord;
+				}
+
+				resultMag[i] = aWord | bWord;
+
+				if (resultNeg)
+				{
+					resultMag[i] = ~resultMag[i];
+				}
+			}
+
+			BigInteger result = new BigInteger(1, resultMag, true);
+
+			// TODO Optimise this case
+			if (resultNeg)
+			{
+				result = result.Not();
+			}
+
+			return result;
+		}
+
+		public BigInteger Xor(
+			BigInteger value)
+		{
+			if (this.sign == 0)
+				return value;
+
+			if (value.sign == 0)
+				return this;
+
+			int[] aMag = this.sign > 0
+				? this.magnitude
+				: Add(One).magnitude;
+
+			int[] bMag = value.sign > 0
+				? value.magnitude
+				: value.Add(One).magnitude;
+
+			// TODO Can just replace with sign != value.sign?
+			bool resultNeg = (sign < 0 && value.sign >= 0) || (sign >= 0 && value.sign < 0);
+			int resultLength = System.Math.Max(aMag.Length, bMag.Length);
+			int[] resultMag = new int[resultLength];
+
+			int aStart = resultMag.Length - aMag.Length;
+			int bStart = resultMag.Length - bMag.Length;
+
+			for (int i = 0; i < resultMag.Length; ++i)
+			{
+				int aWord = i >= aStart ? aMag[i - aStart] : 0;
+				int bWord = i >= bStart ? bMag[i - bStart] : 0;
+
+				if (this.sign < 0)
+				{
+					aWord = ~aWord;
+				}
+
+				if (value.sign < 0)
+				{
+					bWord = ~bWord;
+				}
+
+				resultMag[i] = aWord ^ bWord;
+
+				if (resultNeg)
+				{
+					resultMag[i] = ~resultMag[i];
+				}
+			}
+
+			BigInteger result = new BigInteger(1, resultMag, true);
+
+			// TODO Optimise this case
+			if (resultNeg)
+			{
+				result = result.Not();
+			}
+
+			return result;
+		}
+
+		public BigInteger SetBit(
+			int n)
+		{
+			if (n < 0)
+				throw new ArithmeticException("Bit address less than zero");
+
+			if (TestBit(n))
+				return this;
+
+			// TODO Handle negative values and zero
+			if (sign > 0 && n < (BitLength - 1))
+				return FlipExistingBit(n);
+
+			return Or(One.ShiftLeft(n));
+		}
+
+		public BigInteger ClearBit(
+			int n)
+		{
+			if (n < 0)
+				throw new ArithmeticException("Bit address less than zero");
+
+			if (!TestBit(n))
+				return this;
+
+			// TODO Handle negative values
+			if (sign > 0 && n < (BitLength - 1))
+				return FlipExistingBit(n);
+
+			return AndNot(One.ShiftLeft(n));
+		}
+
+		public BigInteger FlipBit(
+			int n)
+		{
+			if (n < 0)
+				throw new ArithmeticException("Bit address less than zero");
+
+			// TODO Handle negative values and zero
+			if (sign > 0 && n < (BitLength - 1))
+				return FlipExistingBit(n);
+
+			return Xor(One.ShiftLeft(n));
+		}
+
+		private BigInteger FlipExistingBit(
+			int n)
+		{
+			Debug.Assert(sign > 0);
+			Debug.Assert(n >= 0);
+			Debug.Assert(n < BitLength - 1);
+
+			int[] mag = (int[]) this.magnitude.Clone();
+			mag[mag.Length - 1 - (n >> 5)] ^= (1 << (n & 31)); // Flip bit
+			//mag[mag.Length - 1 - (n / 32)] ^= (1 << (n % 32));
+			return new BigInteger(this.sign, mag, false);
+		}
+	}
+}