1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
|
# Copyright 2020 The Matrix.org Foundation C.I.C.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List
from synapse.util.iterutils import chunk_seq, sorted_topologically
from tests.unittest import TestCase
class ChunkSeqTests(TestCase):
def test_short_seq(self):
parts = chunk_seq("123", 8)
self.assertEqual(
list(parts),
["123"],
)
def test_long_seq(self):
parts = chunk_seq("abcdefghijklmnop", 8)
self.assertEqual(
list(parts),
["abcdefgh", "ijklmnop"],
)
def test_uneven_parts(self):
parts = chunk_seq("abcdefghijklmnop", 5)
self.assertEqual(
list(parts),
["abcde", "fghij", "klmno", "p"],
)
def test_empty_input(self):
parts = chunk_seq([], 5)
self.assertEqual(
list(parts),
[],
)
class SortTopologically(TestCase):
def test_empty(self):
"Test that an empty graph works correctly"
graph = {} # type: Dict[int, List[int]]
self.assertEqual(list(sorted_topologically([], graph)), [])
def test_handle_empty_graph(self):
"Test that a graph where a node doesn't have an entry is treated as empty"
graph = {} # type: Dict[int, List[int]]
# For disconnected nodes the output is simply sorted.
self.assertEqual(list(sorted_topologically([1, 2], graph)), [1, 2])
def test_disconnected(self):
"Test that a graph with no edges work"
graph = {1: [], 2: []} # type: Dict[int, List[int]]
# For disconnected nodes the output is simply sorted.
self.assertEqual(list(sorted_topologically([1, 2], graph)), [1, 2])
def test_linear(self):
"Test that a simple `4 -> 3 -> 2 -> 1` graph works"
graph = {1: [], 2: [1], 3: [2], 4: [3]} # type: Dict[int, List[int]]
self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])
def test_subset(self):
"Test that only sorting a subset of the graph works"
graph = {1: [], 2: [1], 3: [2], 4: [3]} # type: Dict[int, List[int]]
self.assertEqual(list(sorted_topologically([4, 3], graph)), [3, 4])
def test_fork(self):
"Test that a forked graph works"
graph = {1: [], 2: [1], 3: [1], 4: [2, 3]} # type: Dict[int, List[int]]
# Valid orderings are `[1, 3, 2, 4]` or `[1, 2, 3, 4]`, but we should
# always get the same one.
self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])
def test_duplicates(self):
"Test that a graph with duplicate edges work"
graph = {1: [], 2: [1, 1], 3: [2, 2], 4: [3]} # type: Dict[int, List[int]]
self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])
def test_multiple_paths(self):
"Test that a graph with multiple paths between two nodes work"
graph = {1: [], 2: [1], 3: [2], 4: [3, 2, 1]} # type: Dict[int, List[int]]
self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])
|