summary refs log tree commit diff
path: root/synapse/util/caches/lrucache.py
blob: e4804f79e07d86f51f49c502d46c0047d618477a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# -*- coding: utf-8 -*-
# Copyright 2015, 2016 OpenMarket Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import threading
from functools import wraps
from typing import Callable, Optional, Type, Union

from synapse.config import cache as cache_config
from synapse.util.caches import CacheMetric, register_cache
from synapse.util.caches.treecache import TreeCache


def enumerate_leaves(node, depth):
    if depth == 0:
        yield node
    else:
        for n in node.values():
            for m in enumerate_leaves(n, depth - 1):
                yield m


class _Node:
    __slots__ = ["prev_node", "next_node", "key", "value", "callbacks"]

    def __init__(self, prev_node, next_node, key, value, callbacks=set()):
        self.prev_node = prev_node
        self.next_node = next_node
        self.key = key
        self.value = value
        self.callbacks = callbacks


class LruCache:
    """
    Least-recently-used cache, supporting prometheus metrics and invalidation callbacks.

    Supports del_multi only if cache_type=TreeCache
    If cache_type=TreeCache, all keys must be tuples.
    """

    def __init__(
        self,
        max_size: int,
        cache_name: Optional[str] = None,
        keylen: int = 1,
        cache_type: Type[Union[dict, TreeCache]] = dict,
        size_callback: Optional[Callable] = None,
        metrics_collection_callback: Optional[Callable[[], None]] = None,
        apply_cache_factor_from_config: bool = True,
    ):
        """
        Args:
            max_size: The maximum amount of entries the cache can hold

            cache_name: The name of this cache, for the prometheus metrics. If unset,
                no metrics will be reported on this cache.

            keylen: The length of the tuple used as the cache key. Ignored unless
                cache_type is `TreeCache`.

            cache_type (type):
                type of underlying cache to be used. Typically one of dict
                or TreeCache.

            size_callback (func(V) -> int | None):

            metrics_collection_callback:
                metrics collection callback. This is called early in the metrics
                collection process, before any of the metrics registered with the
                prometheus Registry are collected, so can be used to update any dynamic
                metrics.

                Ignored if cache_name is None.

            apply_cache_factor_from_config (bool): If true, `max_size` will be
                multiplied by a cache factor derived from the homeserver config
        """
        cache = cache_type()
        self.cache = cache  # Used for introspection.
        self.apply_cache_factor_from_config = apply_cache_factor_from_config

        # Save the original max size, and apply the default size factor.
        self._original_max_size = max_size
        # We previously didn't apply the cache factor here, and as such some caches were
        # not affected by the global cache factor. Add an option here to disable applying
        # the cache factor when a cache is created
        if apply_cache_factor_from_config:
            self.max_size = int(max_size * cache_config.properties.default_factor_size)
        else:
            self.max_size = int(max_size)

        if cache_name is not None:
            metrics = register_cache(
                "lru_cache",
                cache_name,
                self,
                collect_callback=metrics_collection_callback,
            )  # type: Optional[CacheMetric]
        else:
            metrics = None

        # this is exposed for access from outside this class
        self.metrics = metrics

        list_root = _Node(None, None, None, None)
        list_root.next_node = list_root
        list_root.prev_node = list_root

        lock = threading.Lock()

        def evict():
            while cache_len() > self.max_size:
                todelete = list_root.prev_node
                evicted_len = delete_node(todelete)
                cache.pop(todelete.key, None)
                if metrics:
                    metrics.inc_evictions(evicted_len)

        def synchronized(f):
            @wraps(f)
            def inner(*args, **kwargs):
                with lock:
                    return f(*args, **kwargs)

            return inner

        cached_cache_len = [0]
        if size_callback is not None:

            def cache_len():
                return cached_cache_len[0]

        else:

            def cache_len():
                return len(cache)

        self.len = synchronized(cache_len)

        def add_node(key, value, callbacks=set()):
            prev_node = list_root
            next_node = prev_node.next_node
            node = _Node(prev_node, next_node, key, value, callbacks)
            prev_node.next_node = node
            next_node.prev_node = node
            cache[key] = node

            if size_callback:
                cached_cache_len[0] += size_callback(node.value)

        def move_node_to_front(node):
            prev_node = node.prev_node
            next_node = node.next_node
            prev_node.next_node = next_node
            next_node.prev_node = prev_node
            prev_node = list_root
            next_node = prev_node.next_node
            node.prev_node = prev_node
            node.next_node = next_node
            prev_node.next_node = node
            next_node.prev_node = node

        def delete_node(node):
            prev_node = node.prev_node
            next_node = node.next_node
            prev_node.next_node = next_node
            next_node.prev_node = prev_node

            deleted_len = 1
            if size_callback:
                deleted_len = size_callback(node.value)
                cached_cache_len[0] -= deleted_len

            for cb in node.callbacks:
                cb()
            node.callbacks.clear()
            return deleted_len

        @synchronized
        def cache_get(key, default=None, callbacks=[], update_metrics=True):
            node = cache.get(key, None)
            if node is not None:
                move_node_to_front(node)
                node.callbacks.update(callbacks)
                if update_metrics and metrics:
                    metrics.inc_hits()
                return node.value
            else:
                if update_metrics and metrics:
                    metrics.inc_misses()
                return default

        @synchronized
        def cache_set(key, value, callbacks=[]):
            node = cache.get(key, None)
            if node is not None:
                # We sometimes store large objects, e.g. dicts, which cause
                # the inequality check to take a long time. So let's only do
                # the check if we have some callbacks to call.
                if node.callbacks and value != node.value:
                    for cb in node.callbacks:
                        cb()
                    node.callbacks.clear()

                # We don't bother to protect this by value != node.value as
                # generally size_callback will be cheap compared with equality
                # checks. (For example, taking the size of two dicts is quicker
                # than comparing them for equality.)
                if size_callback:
                    cached_cache_len[0] -= size_callback(node.value)
                    cached_cache_len[0] += size_callback(value)

                node.callbacks.update(callbacks)

                move_node_to_front(node)
                node.value = value
            else:
                add_node(key, value, set(callbacks))

            evict()

        @synchronized
        def cache_set_default(key, value):
            node = cache.get(key, None)
            if node is not None:
                return node.value
            else:
                add_node(key, value)
                evict()
                return value

        @synchronized
        def cache_pop(key, default=None):
            node = cache.get(key, None)
            if node:
                delete_node(node)
                cache.pop(node.key, None)
                return node.value
            else:
                return default

        @synchronized
        def cache_del_multi(key):
            """
            This will only work if constructed with cache_type=TreeCache
            """
            popped = cache.pop(key)
            if popped is None:
                return
            for leaf in enumerate_leaves(popped, keylen - len(key)):
                delete_node(leaf)

        @synchronized
        def cache_clear():
            list_root.next_node = list_root
            list_root.prev_node = list_root
            for node in cache.values():
                for cb in node.callbacks:
                    cb()
            cache.clear()
            if size_callback:
                cached_cache_len[0] = 0

        @synchronized
        def cache_contains(key):
            return key in cache

        self.sentinel = object()
        self._on_resize = evict
        self.get = cache_get
        self.set = cache_set
        self.setdefault = cache_set_default
        self.pop = cache_pop
        if cache_type is TreeCache:
            self.del_multi = cache_del_multi
        self.len = synchronized(cache_len)
        self.contains = cache_contains
        self.clear = cache_clear

    def __getitem__(self, key):
        result = self.get(key, self.sentinel)
        if result is self.sentinel:
            raise KeyError()
        else:
            return result

    def __setitem__(self, key, value):
        self.set(key, value)

    def __delitem__(self, key, value):
        result = self.pop(key, self.sentinel)
        if result is self.sentinel:
            raise KeyError()

    def __len__(self):
        return self.len()

    def __contains__(self, key):
        return self.contains(key)

    def set_cache_factor(self, factor: float) -> bool:
        """
        Set the cache factor for this individual cache.

        This will trigger a resize if it changes, which may require evicting
        items from the cache.

        Returns:
            bool: Whether the cache changed size or not.
        """
        if not self.apply_cache_factor_from_config:
            return False

        new_size = int(self._original_max_size * factor)
        if new_size != self.max_size:
            self.max_size = new_size
            self._on_resize()
            return True
        return False