summary refs log tree commit diff
path: root/synapse/storage/stats.py
blob: 8c1eaaa10b6661c7293dd3cda5669752986b37a7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
# -*- coding: utf-8 -*-
# Copyright 2018, 2019 New Vector Ltd
# Copyright 2019 The Matrix.org Foundation C.I.C.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from itertools import chain

from twisted.internet.defer import DeferredLock

from synapse.storage import PostgresEngine
from synapse.storage.state_deltas import StateDeltasStore
from synapse.util.caches.descriptors import cached

logger = logging.getLogger(__name__)

# these fields track absolutes (e.g. total number of rooms on the server)
# You can think of these as Prometheus Gauges.
# You can draw these stats on a line graph.
# Example: number of users in a room
ABSOLUTE_STATS_FIELDS = {
    "room": (
        "current_state_events",
        "joined_members",
        "invited_members",
        "left_members",
        "banned_members",
        "total_events",
        "total_event_bytes",
    ),
    "user": ("public_rooms", "private_rooms"),
}

# these fields are per-timeslice and so should be reset to 0 upon a new slice
# You can draw these stats on a histogram.
# Example: number of events sent locally during a time slice
PER_SLICE_FIELDS = {"room": (), "user": ()}

TYPE_TO_TABLE = {"room": ("room_stats", "room_id"), "user": ("user_stats", "user_id")}


class StatsStore(StateDeltasStore):
    def __init__(self, db_conn, hs):
        super(StatsStore, self).__init__(db_conn, hs)

        self.server_name = hs.hostname
        self.clock = self.hs.get_clock()
        self.stats_enabled = hs.config.stats_enabled
        self.stats_bucket_size = hs.config.stats_bucket_size

        self.stats_delta_processing_lock = DeferredLock()

        self.register_noop_background_update("populate_stats_createtables")
        self.register_noop_background_update("populate_stats_process_rooms")
        self.register_noop_background_update("populate_stats_cleanup")

    def quantise_stats_time(self, ts):
        """
        Quantises a timestamp to be a multiple of the bucket size.

        Args:
            ts (int): the timestamp to quantise, in milliseconds since the Unix
                Epoch

        Returns:
            int: a timestamp which
              - is divisible by the bucket size;
              - is no later than `ts`; and
              - is the largest such timestamp.
        """
        return (ts // self.stats_bucket_size) * self.stats_bucket_size

    def get_stats_positions(self, for_initial_processor=False):
        """
        Returns the stats processor positions.

        Args:
            for_initial_processor (bool, optional): If true, returns the position
                promised by the latest stats regeneration, rather than the current
                incremental processor's position.
                Otherwise (if false), return the incremental processor's position.

        Returns (dict):
            Dict containing :-
                state_delta_stream_id: stream_id of last-processed state delta
                total_events_min_stream_ordering: stream_ordering of latest-processed
                    backfilled event, in the context of total_events counting.
                total_events_max_stream_ordering: stream_ordering of latest-processed
                    non-backfilled event, in the context of total_events counting.
        """
        return self._simple_select_one(
            table="stats_incremental_position",
            keyvalues={"is_background_contract": for_initial_processor},
            retcols=(
                "state_delta_stream_id",
                "total_events_min_stream_ordering",
                "total_events_max_stream_ordering",
            ),
            desc="stats_incremental_position",
        )

    def _get_stats_positions_txn(self, txn, for_initial_processor=False):
        """
        See L{get_stats_positions}.

        Args:
             txn (cursor): Database cursor
        """
        return self._simple_select_one_txn(
            txn=txn,
            table="stats_incremental_position",
            keyvalues={"is_background_contract": for_initial_processor},
            retcols=(
                "state_delta_stream_id",
                "total_events_min_stream_ordering",
                "total_events_max_stream_ordering",
            ),
        )

    def update_stats_positions(self, positions, for_initial_processor=False):
        """
        Updates the stats processor positions.

        Args:
            positions: See L{get_stats_positions}
            for_initial_processor: See L{get_stats_positions}
        """
        if positions is None:
            positions = {
                "state_delta_stream_id": None,
                "total_events_min_stream_ordering": None,
                "total_events_max_stream_ordering": None,
            }
        return self._simple_update_one(
            table="stats_incremental_position",
            keyvalues={"is_background_contract": for_initial_processor},
            updatevalues=positions,
            desc="update_stats_incremental_position",
        )

    def _update_stats_positions_txn(self, txn, positions, for_initial_processor=False):
        """
        See L{update_stats_positions}
        """
        if positions is None:
            positions = {
                "state_delta_stream_id": None,
                "total_events_min_stream_ordering": None,
                "total_events_max_stream_ordering": None,
            }
        return self._simple_update_one_txn(
            txn,
            table="stats_incremental_position",
            keyvalues={"is_background_contract": for_initial_processor},
            updatevalues=positions,
        )

    def update_room_state(self, room_id, fields):
        """
        Args:
            room_id (str)
            fields (dict[str:Any])
        """

        # For whatever reason some of the fields may contain null bytes, which
        # postgres isn't a fan of, so we replace those fields with null.
        for col in (
            "join_rules",
            "history_visibility",
            "encryption",
            "name",
            "topic",
            "avatar",
            "canonical_alias",
        ):
            field = fields.get(col)
            if field and "\0" in field:
                fields[col] = None

        return self._simple_upsert(
            table="room_stats_state",
            keyvalues={"room_id": room_id},
            values=fields,
            desc="update_room_state",
        )

    @cached()
    def get_earliest_token_for_stats(self, stats_type, id):
        """
        Fetch the "earliest token". This is used by the room stats delta
        processor to ignore deltas that have been processed between the
        start of the background task and any particular room's stats
        being calculated.

        Returns:
            Deferred[int]
        """
        table, id_col = TYPE_TO_TABLE[stats_type]

        return self._simple_select_one_onecol(
            "%s_current" % (table,),
            {id_col: id},
            retcol="completed_delta_stream_id",
            allow_none=True,
        )

    def update_stats_delta(
        self, ts, stats_type, stats_id, fields, complete_with_stream_id=None
    ):
        """
        Updates the statistics for a subject, with a delta (difference/relative
        change).

        Args:
            ts (int): timestamp of the change
            stats_type (str): "room" or "user" – the kind of subject
            stats_id (str): the subject's ID (room ID or user ID)
            fields (dict[str, int]): Deltas of stats values.
            complete_with_stream_id (int, optional):
                If supplied, converts an incomplete row into a complete row,
                with the supplied stream_id marked as the stream_id where the
                row was completed.
        """

        return self.runInteraction(
            "update_stats_delta",
            self._update_stats_delta_txn,
            ts,
            stats_type,
            stats_id,
            fields,
            complete_with_stream_id=complete_with_stream_id,
        )

    def _update_stats_delta_txn(
        self,
        txn,
        ts,
        stats_type,
        stats_id,
        fields,
        complete_with_stream_id=None,
        absolute_field_overrides=None,
    ):
        """
        See L{update_stats_delta}
        Additional Args:
            absolute_field_overrides (dict[str, int]): Current stats values
                (i.e. not deltas) of absolute fields.
                Does not work with per-slice fields.
        """

        if absolute_field_overrides is None:
            absolute_field_overrides = {}

        table, id_col = TYPE_TO_TABLE[stats_type]

        quantised_ts = self.quantise_stats_time(int(ts))
        end_ts = quantised_ts + self.stats_bucket_size

        abs_field_names = ABSOLUTE_STATS_FIELDS[stats_type]
        slice_field_names = PER_SLICE_FIELDS[stats_type]
        for field in chain(fields.keys(), absolute_field_overrides.keys()):
            if field not in abs_field_names and field not in slice_field_names:
                # guard against potential SQL injection dodginess
                raise ValueError(
                    "%s is not a recognised field"
                    " for stats type %s" % (field, stats_type)
                )

        # only absolute stats fields are tracked in the `_current` stats tables,
        # so those are the only ones that we process deltas for when
        # we upsert against the `_current` table.

        # This calculates the deltas (`field = field + ?` values)
        # for absolute fields,
        # * defaulting to 0 if not specified
        #     (required for the INSERT part of upserting to work)
        # * omitting overrides specified in `absolute_field_overrides`
        deltas_of_absolute_fields = {
            key: fields.get(key, 0)
            for key in abs_field_names
            if key not in absolute_field_overrides
        }

        if complete_with_stream_id is not None:
            absolute_field_overrides = absolute_field_overrides.copy()
            absolute_field_overrides[
                "completed_delta_stream_id"
            ] = complete_with_stream_id

        # first upsert the `_current` table
        self._upsert_with_additive_relatives_txn(
            txn=txn,
            table=table + "_current",
            keyvalues={id_col: stats_id},
            absolutes=absolute_field_overrides,
            additive_relatives=deltas_of_absolute_fields,
        )

        if self.has_completed_background_updates():
            # TODO want to check specifically for stats regenerator, not all
            #   background updates…
            # then upsert the `_historical` table.
            # we don't support absolute_fields for per-slice fields as it makes
            # no sense.
            per_slice_additive_relatives = {
                key: fields.get(key, 0) for key in slice_field_names
            }
            self._upsert_copy_from_table_with_additive_relatives_txn(
                txn=txn,
                into_table=table + "_historical",
                keyvalues={id_col: stats_id},
                extra_dst_insvalues={"bucket_size": self.stats_bucket_size},
                extra_dst_keyvalues={"end_ts": end_ts},
                additive_relatives=per_slice_additive_relatives,
                src_table=table + "_current",
                copy_columns=abs_field_names,
                additional_where=" AND completed_delta_stream_id IS NOT NULL",
            )

    def _upsert_with_additive_relatives_txn(
        self, txn, table, keyvalues, absolutes, additive_relatives
    ):
        """Used to update values in the stats tables.

        Args:
            txn: Transaction
            table (str): Table name
            keyvalues (dict[str, any]): Row-identifying key values
            absolutes (dict[str, any]): Absolute (set) fields
            additive_relatives (dict[str, int]): Fields that will be added onto
                if existing row present.
        """
        if self.database_engine.can_native_upsert:
            absolute_updates = [
                "%(field)s = EXCLUDED.%(field)s" % {"field": field}
                for field in absolutes.keys()
            ]

            relative_updates = [
                "%(field)s = EXCLUDED.%(field)s + %(table)s.%(field)s"
                % {"table": table, "field": field}
                for field in additive_relatives.keys()
            ]

            insert_cols = []
            qargs = []

            for (key, val) in chain(
                keyvalues.items(), absolutes.items(), additive_relatives.items()
            ):
                insert_cols.append(key)
                qargs.append(val)

            sql = """
                INSERT INTO %(table)s (%(insert_cols_cs)s)
                VALUES (%(insert_vals_qs)s)
                ON CONFLICT (%(key_columns)s) DO UPDATE SET %(updates)s
            """ % {
                "table": table,
                "insert_cols_cs": ", ".join(insert_cols),
                "insert_vals_qs": ", ".join(
                    ["?"] * (len(keyvalues) + len(absolutes) + len(additive_relatives))
                ),
                "key_columns": ", ".join(keyvalues),
                "updates": ", ".join(chain(absolute_updates, relative_updates)),
            }

            txn.execute(sql, qargs)
        else:
            self.database_engine.lock_table(txn, table)
            retcols = list(chain(absolutes.keys(), additive_relatives.keys()))
            current_row = self._simple_select_one_txn(
                txn, table, keyvalues, retcols, allow_none=True
            )
            if current_row is None:
                merged_dict = {**keyvalues, **absolutes, **additive_relatives}
                self._simple_insert_txn(txn, table, merged_dict)
            else:
                for (key, val) in additive_relatives.items():
                    current_row[key] += val
                current_row.update(absolutes)
                self._simple_update_one_txn(txn, table, keyvalues, current_row)

    def _upsert_copy_from_table_with_additive_relatives_txn(
        self,
        txn,
        into_table,
        keyvalues,
        extra_dst_keyvalues,
        extra_dst_insvalues,
        additive_relatives,
        src_table,
        copy_columns,
        additional_where="",
    ):
        """
        Args:
             txn: Transaction
             into_table (str): The destination table to UPSERT the row into
             keyvalues (dict[str, any]): Row-identifying key values
             extra_dst_keyvalues (dict[str, any]): Additional keyvalues
                for `into_table`.
             extra_dst_insvalues (dict[str, any]): Additional values to insert
                on new row creation for `into_table`.
             additive_relatives (dict[str, any]): Fields that will be added onto
                if existing row present. (Must be disjoint from copy_columns.)
             src_table (str): The source table to copy from
             copy_columns (iterable[str]): The list of columns to copy
             additional_where (str): Additional SQL for where (prefix with AND
                if using).
        """
        if self.database_engine.can_native_upsert:
            ins_columns = chain(
                keyvalues,
                copy_columns,
                additive_relatives,
                extra_dst_keyvalues,
                extra_dst_insvalues,
            )
            sel_exprs = chain(
                keyvalues,
                copy_columns,
                (
                    "?"
                    for _ in chain(
                        additive_relatives, extra_dst_keyvalues, extra_dst_insvalues
                    )
                ),
            )
            keyvalues_where = ("%s = ?" % f for f in keyvalues)

            sets_cc = ("%s = EXCLUDED.%s" % (f, f) for f in copy_columns)
            sets_ar = (
                "%s = EXCLUDED.%s + %s.%s" % (f, f, into_table, f)
                for f in additive_relatives
            )

            sql = """
                INSERT INTO %(into_table)s (%(ins_columns)s)
                SELECT %(sel_exprs)s
                FROM %(src_table)s
                WHERE %(keyvalues_where)s %(additional_where)s
                ON CONFLICT (%(keyvalues)s)
                DO UPDATE SET %(sets)s
            """ % {
                "into_table": into_table,
                "ins_columns": ", ".join(ins_columns),
                "sel_exprs": ", ".join(sel_exprs),
                "keyvalues_where": " AND ".join(keyvalues_where),
                "src_table": src_table,
                "keyvalues": ", ".join(
                    chain(keyvalues.keys(), extra_dst_keyvalues.keys())
                ),
                "sets": ", ".join(chain(sets_cc, sets_ar)),
                "additional_where": additional_where,
            }

            qargs = list(
                chain(
                    additive_relatives.values(),
                    extra_dst_keyvalues.values(),
                    extra_dst_insvalues.values(),
                    keyvalues.values(),
                )
            )
            txn.execute(sql, qargs)
        else:
            self.database_engine.lock_table(txn, into_table)
            src_row = self._simple_select_one_txn(
                txn, src_table, keyvalues, copy_columns
            )
            dest_current_row = self._simple_select_one_txn(
                txn,
                into_table,
                keyvalues,
                retcols=list(chain(additive_relatives.keys(), copy_columns)),
                allow_none=True,
            )

            if dest_current_row is None:
                merged_dict = {
                    **keyvalues,
                    **extra_dst_keyvalues,
                    **extra_dst_insvalues,
                    **src_row,
                    **additive_relatives,
                }
                self._simple_insert_txn(txn, into_table, merged_dict)
            else:
                for (key, val) in additive_relatives.items():
                    src_row[key] = dest_current_row[key] + val
                self._simple_update_txn(txn, into_table, keyvalues, src_row)

    def incremental_update_room_total_events_and_bytes(self, in_positions):
        """
        Counts the number of events and total event bytes per-room and then adds
        these to the respective total_events and total_event_bytes room counts.

        Args:
            in_positions (dict): Positions,
                as retrieved from L{get_stats_positions}.

        Returns (Deferred[tuple[dict, bool]]):
            First element (dict):
                The new positions. Note that this is for reference only –
                the new positions WILL be committed by this function.
            Second element (bool):
                true iff there was a change to the positions, false otherwise
        """

        def incremental_update_total_events_and_bytes_txn(txn):
            positions = in_positions.copy()

            max_pos = self.get_room_max_stream_ordering()
            min_pos = self.get_room_min_stream_ordering()
            self.update_total_event_and_bytes_count_between_txn(
                txn,
                low_pos=positions["total_events_max_stream_ordering"],
                high_pos=max_pos,
            )

            self.update_total_event_and_bytes_count_between_txn(
                txn,
                low_pos=min_pos,
                high_pos=positions["total_events_min_stream_ordering"],
            )

            if (
                positions["total_events_max_stream_ordering"] != max_pos
                or positions["total_events_min_stream_ordering"] != min_pos
            ):
                positions["total_events_max_stream_ordering"] = max_pos
                positions["total_events_min_stream_ordering"] = min_pos

                self._update_stats_positions_txn(txn, positions)

                return positions, True
            else:
                return positions, False

        return self.runInteraction(
            "stats_incremental_total_events_and_bytes",
            incremental_update_total_events_and_bytes_txn,
        )

    def update_total_event_and_bytes_count_between_txn(self, txn, low_pos, high_pos):
        """
        Updates the total_events and total_event_bytes counts for rooms,
            in a range of stream_orderings.

        Inclusivity of low_pos and high_pos is dependent upon their signs.
        This makes it intuitive to use this function for both backfilled
        and non-backfilled events.

        Examples:
        (low, high) → (kind)
        (3, 7) → 3 <git … <= 7 (normal-filled; low already processed before)
        (-4, -2) → -4 <= … < -2 (backfilled; high already processed before)
        (-7, 7) → -7 <= … <= 7 (both)

        Args:
            txn: Database transaction.
            low_pos: Low stream ordering
            high_pos: High stream ordering
        """

        if low_pos >= high_pos:
            # nothing to do here.
            return

        now = self.hs.clock.time_msec()

        # we choose comparators based on the signs
        low_comparator = "<=" if low_pos < 0 else "<"
        high_comparator = "<" if high_pos < 0 else "<="

        if isinstance(self.database_engine, PostgresEngine):
            new_bytes_expression = "OCTET_LENGTH(json)"
        else:
            new_bytes_expression = "LENGTH(CAST(json AS BLOB))"

        sql = """
            SELECT room_id, COUNT(*) AS new_events, SUM(%s) AS new_bytes
            FROM events INNER JOIN event_json USING (event_id)
            WHERE ? %s stream_ordering AND stream_ordering %s ?
            GROUP BY room_id
        """ % (
            low_comparator,
            high_comparator,
            new_bytes_expression,
        )

        txn.execute(sql, (low_pos, high_pos))

        for room_id, new_events, new_bytes in txn.fetchall():
            self._update_stats_delta_txn(
                txn,
                now,
                "room",
                room_id,
                {"total_events": new_events, "total_event_bytes": new_bytes},
            )