summary refs log tree commit diff
path: root/synapse/storage/stats.py
blob: f20d8ba8a4c032651e6d005dde1187a80fcb7830 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
# -*- coding: utf-8 -*-
# Copyright 2018, 2019 New Vector Ltd
# Copyright 2019 The Matrix.org Foundation C.I.C.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from itertools import chain

from twisted.internet import defer
from twisted.internet.defer import DeferredLock

from synapse.api.constants import EventTypes, Membership
from synapse.storage import PostgresEngine
from synapse.storage.engines import Sqlite3Engine
from synapse.storage.state_deltas import StateDeltasStore
from synapse.util.caches.descriptors import cached

logger = logging.getLogger(__name__)

# these fields track absolutes (e.g. total number of rooms on the server)
# You can think of these as Prometheus Gauges.
# You can draw these stats on a line graph.
# Example: number of users in a room
ABSOLUTE_STATS_FIELDS = {
    "room": (
        "current_state_events",
        "joined_members",
        "invited_members",
        "left_members",
        "banned_members",
        "total_events",
        "total_event_bytes",
    ),
    "user": ("public_rooms", "private_rooms"),
}

# these fields are per-timeslice and so should be reset to 0 upon a new slice
# You can draw these stats on a histogram.
# Example: number of events sent locally during a time slice
PER_SLICE_FIELDS = {"room": (), "user": ()}

TYPE_TO_TABLE = {"room": ("room_stats", "room_id"), "user": ("user_stats", "user_id")}

# these are the tables (& ID columns) which contain our actual subjects
TYPE_TO_ORIGIN_TABLE = {"room": ("rooms", "room_id"), "user": ("users", "name")}


class StatsStore(StateDeltasStore):
    def __init__(self, db_conn, hs):
        super(StatsStore, self).__init__(db_conn, hs)

        self.server_name = hs.hostname
        self.clock = self.hs.get_clock()
        self.stats_enabled = hs.config.stats_enabled
        self.stats_bucket_size = hs.config.stats_bucket_size

        self.stats_delta_processing_lock = DeferredLock()

        self.register_background_update_handler(
            "populate_stats_prepare", self._populate_stats_prepare
        )
        self.register_background_update_handler(
            "populate_stats_process_rooms", self._populate_stats_process_rooms
        )
        self.register_background_update_handler(
            "populate_stats_process_users", self._populate_stats_process_users
        )
        # we no longer need to perform clean-up, but we will give ourselves
        # the potential to reintroduce it in the future – so documentation
        # will still encourage the use of this no-op handler.
        self.register_noop_background_update("populate_stats_cleanup")

    def quantise_stats_time(self, ts):
        """
        Quantises a timestamp to be a multiple of the bucket size.

        Args:
            ts (int): the timestamp to quantise, in milliseconds since the Unix
                Epoch

        Returns:
            int: a timestamp which
              - is divisible by the bucket size;
              - is no later than `ts`; and
              - is the largest such timestamp.
        """
        return (ts // self.stats_bucket_size) * self.stats_bucket_size

    @defer.inlineCallbacks
    def _unwedge_incremental_processor(self, forced_promise):
        """
        Make a promise about what this stats regeneration will handle,
        so that we can allow the incremental processor to start doing things
        right away – 'unwedging' it.

        Args:
            forced_promise (dict of positions):
                If supplied, this is the promise that is made.
                Otherwise, a promise is made that reduces the amount of work
                that must be performed by the incremental processor.
        """

        if forced_promise is None:
            promised_stats_delta_pos = (
                yield self.get_max_stream_id_in_current_state_deltas()
            )
            promised_max = self.get_room_max_stream_ordering()
            promised_min = self.get_room_min_stream_ordering()

            promised_positions = {
                "state_delta_stream_id": promised_stats_delta_pos,
                "total_events_min_stream_ordering": promised_min,
                "total_events_max_stream_ordering": promised_max,
            }
        else:
            promised_positions = forced_promise

        # this stores it for our reference later
        yield self.update_stats_positions(
            promised_positions, for_initial_processor=True
        )

        # this unwedges the incremental processor
        yield self.update_stats_positions(
            promised_positions, for_initial_processor=False
        )

        # with the delta processor unwedged, now let it catch up in case
        # anything was missed during the wedge period
        self.clock.call_later(0, self.hs.get_stats_handler().notify_new_event)

    @defer.inlineCallbacks
    def _populate_stats_prepare(self, progress, batch_size):
        """
        This is a background update, which prepares the database for
        statistics regeneration.
        """

        if not self.stats_enabled:
            yield self._end_background_update("populate_stats_prepare")
            return 1

        def _wedge_incremental_processor(txn):
            """
            Wedge the incremental processor (by setting its positions to NULL),
            and return its previous positions – atomically.
            """

            old = self._get_stats_positions_txn(txn, for_initial_processor=False)
            self._update_stats_positions_txn(txn, None, for_initial_processor=False)

            return old

        def _make_skeletons(txn, stats_type):
            """
            Get all the rooms and users that we want to process, and create
            'skeletons' (incomplete _stats_current rows) for them, if they do
            not already have a row.
            """

            if isinstance(self.database_engine, Sqlite3Engine):
                sql = """
                        INSERT OR IGNORE INTO %(table)s_current
                        (%(id_col)s, completed_delta_stream_id, %(zero_cols)s)
                        SELECT %(origin_id_col)s, NULL, %(zeroes)s FROM %(origin_table)s
                    """
            else:
                sql = """
                        INSERT INTO %(table)s_current
                        (%(id_col)s, completed_delta_stream_id, %(zero_cols)s)
                        SELECT %(origin_id_col)s, NULL, %(zeroes)s FROM %(origin_table)s
                        ON CONFLICT DO NOTHING
                    """

            table, id_col = TYPE_TO_TABLE[stats_type]
            origin_table, origin_id_col = TYPE_TO_ORIGIN_TABLE[stats_type]
            zero_cols = list(
                chain(ABSOLUTE_STATS_FIELDS[stats_type], PER_SLICE_FIELDS[stats_type])
            )

            txn.execute(
                sql
                % {
                    "table": table,
                    "id_col": id_col,
                    "origin_id_col": origin_id_col,
                    "origin_table": origin_table,
                    "zero_cols": ", ".join(zero_cols),
                    "zeroes": ", ".join(["0"] * len(zero_cols)),
                }
            )

        def _delete_dirty_skeletons(txn):
            """
            Delete pre-existing rows which are incomplete.
            """
            sql = """
                    DELETE FROM %s_current
                    WHERE completed_delta_stream_id IS NULL
            """

            for _k, (table, id_col) in TYPE_TO_TABLE.items():
                txn.execute(sql % (table,))

        # first wedge the incremental processor and reset our promise
        yield self.stats_delta_processing_lock.acquire()
        try:
            old_positions = yield self.runInteraction(
                "populate_stats_wedge", _wedge_incremental_processor
            )
        finally:
            yield self.stats_delta_processing_lock.release()

        if None in old_positions.values():
            old_positions = None

        # with the incremental processor wedged, we delete dirty skeleton rows
        # since we don't want to double-count them.
        yield self.runInteraction(
            "populate_stats_delete_dirty_skeletons", _delete_dirty_skeletons
        )

        yield self._unwedge_incremental_processor(old_positions)

        yield self.runInteraction(
            "populate_stats_make_skeletons", _make_skeletons, "room"
        )
        yield self.runInteraction(
            "populate_stats_make_skeletons", _make_skeletons, "user"
        )
        self.get_earliest_token_for_stats.invalidate_all()

        yield self._end_background_update("populate_stats_prepare")
        return 1

    @defer.inlineCallbacks
    def _populate_stats_process_users(self, progress, batch_size):
        """
        This is a background update which regenerates statistics for users.
        """
        if not self.stats_enabled:
            yield self._end_background_update("populate_stats_process_users")
            return 1

        def _get_next_batch(txn):
            # Only fetch 250 users, so we don't fetch too many at once, even
            # if those 250 users have less than batch_size state events.
            sql = """
                    SELECT user_id FROM user_stats_current
                    WHERE completed_delta_stream_id IS NULL
                    LIMIT 250
                """
            txn.execute(sql)
            users_to_work_on = txn.fetchall()

            if not users_to_work_on:
                return None

            # Get how many are left to process, so we can give status on how
            # far we are in processing
            sql = """
                    SELECT COUNT(*) FROM user_stats_current
                    WHERE completed_delta_stream_id IS NULL
                """
            txn.execute(sql)
            progress["remaining"] = txn.fetchone()[0]

            return users_to_work_on

        users_to_work_on = yield self.runInteraction(
            "populate_stats_users_get_batch", _get_next_batch
        )

        # No more users -- complete the transaction.
        if not users_to_work_on:
            yield self._end_background_update("populate_stats_process_users")
            return 1

        logger.info(
            "Processing the next %d users of %d remaining",
            len(users_to_work_on),
            progress["remaining"],
        )

        processed_membership_count = 0

        promised_positions = yield self.get_stats_positions(for_initial_processor=True)

        if None in promised_positions:
            logger.error(
                "There is a None in promised_positions;"
                " dependency task must not have been run."
                " promised_positions: %r",
                promised_positions,
            )
            yield self._end_background_update("populate_stats_process_users")
            return 1

        for (user_id,) in users_to_work_on:
            now = self.clock.time_msec()

            def _process_user(txn):
                # Get the current token
                current_token = self._get_max_stream_id_in_current_state_deltas_txn(txn)

                sql = """
                        SELECT
                            (
                                join_rules = 'public'
                                OR history_visibility = 'world_readable'
                            ) AS is_public,
                            COUNT(*) AS count
                        FROM room_memberships
                        JOIN room_stats_state USING (room_id)
                        WHERE
                            user_id = ? AND membership = 'join'
                        GROUP BY is_public
                    """
                txn.execute(sql, (user_id,))
                room_counts_by_publicness = dict(txn.fetchall())

                self._update_stats_delta_txn(
                    txn,
                    now,
                    "user",
                    user_id,
                    {},
                    complete_with_stream_id=current_token,
                    absolute_field_overrides={
                        # these are counted absolutely because it is
                        # more difficult to count them from the promised time,
                        # because counting them now can use the quick lookup
                        # tables.
                        "public_rooms": room_counts_by_publicness.get(True, 0),
                        "private_rooms": room_counts_by_publicness.get(False, 0),
                    },
                )

                # we use this count for rate-limiting
                return sum(room_counts_by_publicness.values())

            processed_membership_count += yield self.runInteraction(
                "update_user_stats", _process_user
            )

            # Update the remaining counter.
            progress["remaining"] -= 1

            if processed_membership_count > batch_size:
                # Don't process any more users, we've hit our batch size.
                return processed_membership_count

        yield self.runInteraction(
            "populate_stats",
            self._background_update_progress_txn,
            "populate_stats_process_users",
            progress,
        )

        return processed_membership_count

    @defer.inlineCallbacks
    def _populate_stats_process_rooms(self, progress, batch_size):
        """
        This is a background update which regenerates statistics for rooms.
        """
        if not self.stats_enabled:
            yield self._end_background_update("populate_stats_process_rooms")
            return 1

        def _get_next_batch(txn):
            # Only fetch 250 rooms, so we don't fetch too many at once, even
            # if those 250 rooms have less than batch_size state events.
            sql = """
                    SELECT room_id FROM room_stats_current
                    WHERE completed_delta_stream_id IS NULL
                    LIMIT 250
                """
            txn.execute(sql)
            rooms_to_work_on = txn.fetchall()

            if not rooms_to_work_on:
                return None

            # Get how many are left to process, so we can give status on how
            # far we are in processing
            sql = """
                    SELECT COUNT(*) FROM room_stats_current
                    WHERE completed_delta_stream_id IS NULL
                """
            txn.execute(sql)
            progress["remaining"] = txn.fetchone()[0]

            return rooms_to_work_on

        rooms_to_work_on = yield self.runInteraction(
            "populate_stats_rooms_get_batch", _get_next_batch
        )

        # No more rooms -- complete the transaction.
        if not rooms_to_work_on:
            yield self._end_background_update("populate_stats_process_rooms")
            return 1

        logger.info(
            "Processing the next %d rooms of %d remaining",
            len(rooms_to_work_on),
            progress["remaining"],
        )

        # Number of state events we've processed by going through each room
        processed_event_count = 0

        promised_positions = yield self.get_stats_positions(for_initial_processor=True)

        if None in promised_positions:
            logger.error(
                "There is a None in promised_positions;"
                " dependency task must not have been run."
                " promised_positions: %s",
                promised_positions,
            )
            yield self._end_background_update("populate_stats_process_rooms")
            return 1

        for (room_id,) in rooms_to_work_on:
            current_state_ids = yield self.get_current_state_ids(room_id)

            join_rules_id = current_state_ids.get((EventTypes.JoinRules, ""))
            history_visibility_id = current_state_ids.get(
                (EventTypes.RoomHistoryVisibility, "")
            )
            encryption_id = current_state_ids.get((EventTypes.RoomEncryption, ""))
            name_id = current_state_ids.get((EventTypes.Name, ""))
            topic_id = current_state_ids.get((EventTypes.Topic, ""))
            avatar_id = current_state_ids.get((EventTypes.RoomAvatar, ""))
            canonical_alias_id = current_state_ids.get((EventTypes.CanonicalAlias, ""))

            event_ids = [
                join_rules_id,
                history_visibility_id,
                encryption_id,
                name_id,
                topic_id,
                avatar_id,
                canonical_alias_id,
            ]

            state_events = yield self.get_events(
                [ev for ev in event_ids if ev is not None]
            )

            def _get_or_none(event_id, arg):
                event = state_events.get(event_id)
                if event:
                    return event.content.get(arg)
                return None

            yield self.update_room_state(
                room_id,
                {
                    "join_rules": _get_or_none(join_rules_id, "join_rule"),
                    "history_visibility": _get_or_none(
                        history_visibility_id, "history_visibility"
                    ),
                    "encryption": _get_or_none(encryption_id, "algorithm"),
                    "name": _get_or_none(name_id, "name"),
                    "topic": _get_or_none(topic_id, "topic"),
                    "avatar": _get_or_none(avatar_id, "url"),
                    "canonical_alias": _get_or_none(canonical_alias_id, "alias"),
                },
            )

            now = self.clock.time_msec()

            def _fetch_data(txn):
                # Get the current token of the room
                current_token = self._get_max_stream_id_in_current_state_deltas_txn(txn)

                current_state_events = len(current_state_ids)

                membership_counts = self._get_user_counts_in_room_txn(txn, room_id)

                room_total_event_count, room_total_event_bytes = self._count_events_and_bytes_in_room_txn(
                    txn,
                    room_id,
                    promised_positions["total_events_min_stream_ordering"],
                    promised_positions["total_events_max_stream_ordering"],
                )

                self._update_stats_delta_txn(
                    txn,
                    now,
                    "room",
                    room_id,
                    {
                        "total_events": room_total_event_count,
                        "total_event_bytes": room_total_event_bytes,
                    },
                    complete_with_stream_id=current_token,
                    absolute_field_overrides={
                        # these are counted absolutely because it is
                        # more difficult to count them from the promised time,
                        # because counting them now can use the quick lookup
                        # tables.
                        "current_state_events": current_state_events,
                        "joined_members": membership_counts.get(Membership.JOIN, 0),
                        "invited_members": membership_counts.get(Membership.INVITE, 0),
                        "left_members": membership_counts.get(Membership.LEAVE, 0),
                        "banned_members": membership_counts.get(Membership.BAN, 0),
                    },
                )

                # we use this count for rate-limiting
                return room_total_event_count

            room_event_count = yield self.runInteraction(
                "update_room_stats", _fetch_data
            )

            # Update the remaining counter.
            progress["remaining"] -= 1

            processed_event_count += room_event_count

            if processed_event_count > batch_size:
                # Don't process any more rooms, we've hit our batch size.
                return processed_event_count

        yield self.runInteraction(
            "populate_stats",
            self._background_update_progress_txn,
            "populate_stats_process_rooms",
            progress,
        )

        return processed_event_count

    def get_stats_positions(self, for_initial_processor=False):
        """
        Returns the stats processor positions.

        Args:
            for_initial_processor (bool, optional): If true, returns the position
                promised by the latest stats regeneration, rather than the current
                incremental processor's position.
                Otherwise (if false), return the incremental processor's position.

        Returns (dict):
            Dict containing :-
                state_delta_stream_id: stream_id of last-processed state delta
                total_events_min_stream_ordering: stream_ordering of latest-processed
                    backfilled event, in the context of total_events counting.
                total_events_max_stream_ordering: stream_ordering of latest-processed
                    non-backfilled event, in the context of total_events counting.
        """
        return self._simple_select_one(
            table="stats_incremental_position",
            keyvalues={"is_background_contract": for_initial_processor},
            retcols=(
                "state_delta_stream_id",
                "total_events_min_stream_ordering",
                "total_events_max_stream_ordering",
            ),
            desc="stats_incremental_position",
        )

    def _get_stats_positions_txn(self, txn, for_initial_processor=False):
        """
        See L{get_stats_positions}.

        Args:
             txn (cursor): Database cursor
        """
        return self._simple_select_one_txn(
            txn=txn,
            table="stats_incremental_position",
            keyvalues={"is_background_contract": for_initial_processor},
            retcols=(
                "state_delta_stream_id",
                "total_events_min_stream_ordering",
                "total_events_max_stream_ordering",
            ),
        )

    def update_stats_positions(self, positions, for_initial_processor=False):
        """
        Updates the stats processor positions.

        Args:
            positions: See L{get_stats_positions}
            for_initial_processor: See L{get_stats_positions}
        """
        if positions is None:
            positions = {
                "state_delta_stream_id": None,
                "total_events_min_stream_ordering": None,
                "total_events_max_stream_ordering": None,
            }
        return self._simple_update_one(
            table="stats_incremental_position",
            keyvalues={"is_background_contract": for_initial_processor},
            updatevalues=positions,
            desc="update_stats_incremental_position",
        )

    def _update_stats_positions_txn(self, txn, positions, for_initial_processor=False):
        """
        See L{update_stats_positions}
        """
        if positions is None:
            positions = {
                "state_delta_stream_id": None,
                "total_events_min_stream_ordering": None,
                "total_events_max_stream_ordering": None,
            }
        return self._simple_update_one_txn(
            txn,
            table="stats_incremental_position",
            keyvalues={"is_background_contract": for_initial_processor},
            updatevalues=positions,
        )

    def update_room_state(self, room_id, fields):
        """
        Args:
            room_id (str)
            fields (dict[str:Any])
        """

        # For whatever reason some of the fields may contain null bytes, which
        # postgres isn't a fan of, so we replace those fields with null.
        for col in (
            "join_rules",
            "history_visibility",
            "encryption",
            "name",
            "topic",
            "avatar",
            "canonical_alias",
        ):
            field = fields.get(col)
            if field and "\0" in field:
                fields[col] = None

        return self._simple_upsert(
            table="room_stats_state",
            keyvalues={"room_id": room_id},
            values=fields,
            desc="update_room_state",
        )

    def get_statistics_for_subject(self, stats_type, stats_id, start, size=100):
        """
        Get statistics for a given subject.

        Args:
            stats_type (str): The type of subject
            stats_id (str): The ID of the subject (e.g. room_id or user_id)
            start (int): Pagination start. Number of entries, not timestamp.
            size (int): How many entries to return.

        Returns:
            Deferred[list[dict]], where the dict has the keys of
            ABSOLUTE_STATS_FIELDS[stats_type],  and "bucket_size" and "end_ts".
        """
        return self.runInteraction(
            "get_statistics_for_subject",
            self._get_statistics_for_subject_txn,
            stats_type,
            stats_id,
            start,
            size,
        )

    def _get_statistics_for_subject_txn(
        self, txn, stats_type, stats_id, start, size=100
    ):
        """
        Transaction-bound version of L{get_statistics_for_subject}.
        """

        table, id_col = TYPE_TO_TABLE[stats_type]
        selected_columns = list(
            ABSOLUTE_STATS_FIELDS[stats_type] + PER_SLICE_FIELDS[stats_type]
        )

        slice_list = self._simple_select_list_paginate_txn(
            txn,
            table + "_historical",
            {id_col: stats_id},
            "end_ts",
            start,
            size,
            retcols=selected_columns + ["bucket_size", "end_ts"],
            order_direction="DESC",
        )

        return slice_list

    def get_room_stats_state(self, room_id):
        """
        Returns the current room_stats_state for a room.

        Args:
            room_id (str): The ID of the room to return state for.

        Returns (dict):
            Dictionary containing these keys:
                "name", "topic", "canonical_alias", "avatar", "join_rules",
                "history_visibility"
        """
        return self._simple_select_one(
            "room_stats_state",
            {"room_id": room_id},
            retcols=(
                "name",
                "topic",
                "canonical_alias",
                "avatar",
                "join_rules",
                "history_visibility",
            ),
        )

    @cached()
    def get_earliest_token_for_stats(self, stats_type, id):
        """
        Fetch the "earliest token". This is used by the room stats delta
        processor to ignore deltas that have been processed between the
        start of the background task and any particular room's stats
        being calculated.

        Returns:
            Deferred[int]
        """
        table, id_col = TYPE_TO_TABLE[stats_type]

        return self._simple_select_one_onecol(
            "%s_current" % (table,),
            {id_col: id},
            retcol="completed_delta_stream_id",
            allow_none=True,
        )

    def update_stats_delta(
        self, ts, stats_type, stats_id, fields, complete_with_stream_id=None
    ):
        """
        Updates the statistics for a subject, with a delta (difference/relative
        change).

        Args:
            ts (int): timestamp of the change
            stats_type (str): "room" or "user" – the kind of subject
            stats_id (str): the subject's ID (room ID or user ID)
            fields (dict[str, int]): Deltas of stats values.
            complete_with_stream_id (int, optional):
                If supplied, converts an incomplete row into a complete row,
                with the supplied stream_id marked as the stream_id where the
                row was completed.
        """

        return self.runInteraction(
            "update_stats_delta",
            self._update_stats_delta_txn,
            ts,
            stats_type,
            stats_id,
            fields,
            complete_with_stream_id=complete_with_stream_id,
        )

    def _update_stats_delta_txn(
        self,
        txn,
        ts,
        stats_type,
        stats_id,
        fields,
        complete_with_stream_id=None,
        absolute_field_overrides=None,
    ):
        """
        See L{update_stats_delta}
        Additional Args:
            absolute_field_overrides (dict[str, int]): Current stats values
                (i.e. not deltas) of absolute fields.
                Does not work with per-slice fields.
        """

        if absolute_field_overrides is None:
            absolute_field_overrides = {}

        table, id_col = TYPE_TO_TABLE[stats_type]

        quantised_ts = self.quantise_stats_time(int(ts))
        end_ts = quantised_ts + self.stats_bucket_size

        abs_field_names = ABSOLUTE_STATS_FIELDS[stats_type]
        slice_field_names = PER_SLICE_FIELDS[stats_type]
        for field in chain(fields.keys(), absolute_field_overrides.keys()):
            if field not in abs_field_names and field not in slice_field_names:
                # guard against potential SQL injection dodginess
                raise ValueError(
                    "%s is not a recognised field"
                    " for stats type %s" % (field, stats_type)
                )

        # only absolute stats fields are tracked in the `_current` stats tables,
        # so those are the only ones that we process deltas for when
        # we upsert against the `_current` table.

        # This calculates the deltas (`field = field + ?` values)
        # for absolute fields,
        # * defaulting to 0 if not specified
        #     (required for the INSERT part of upserting to work)
        # * omitting overrides specified in `absolute_field_overrides`
        deltas_of_absolute_fields = {
            key: fields.get(key, 0)
            for key in abs_field_names
            if key not in absolute_field_overrides
        }

        if complete_with_stream_id is not None:
            absolute_field_overrides = absolute_field_overrides.copy()
            absolute_field_overrides[
                "completed_delta_stream_id"
            ] = complete_with_stream_id

        # first upsert the `_current` table
        self._upsert_with_additive_relatives_txn(
            txn=txn,
            table=table + "_current",
            keyvalues={id_col: stats_id},
            absolutes=absolute_field_overrides,
            additive_relatives=deltas_of_absolute_fields,
        )

        if self.has_completed_background_updates():
            # TODO want to check specifically for stats regenerator, not all
            #   background updates…
            # then upsert the `_historical` table.
            # we don't support absolute_fields for per-slice fields as it makes
            # no sense.
            per_slice_additive_relatives = {
                key: fields.get(key, 0) for key in slice_field_names
            }
            self._upsert_copy_from_table_with_additive_relatives_txn(
                txn=txn,
                into_table=table + "_historical",
                keyvalues={id_col: stats_id},
                extra_dst_insvalues={"bucket_size": self.stats_bucket_size},
                extra_dst_keyvalues={"end_ts": end_ts},
                additive_relatives=per_slice_additive_relatives,
                src_table=table + "_current",
                copy_columns=abs_field_names,
                additional_where=" AND completed_delta_stream_id IS NOT NULL",
            )

    def _upsert_with_additive_relatives_txn(
        self, txn, table, keyvalues, absolutes, additive_relatives
    ):
        """Used to update values in the stats tables.

        Args:
            txn: Transaction
            table (str): Table name
            keyvalues (dict[str, any]): Row-identifying key values
            absolutes (dict[str, any]): Absolute (set) fields
            additive_relatives (dict[str, int]): Fields that will be added onto
                if existing row present.
        """
        if self.database_engine.can_native_upsert:
            absolute_updates = [
                "%(field)s = EXCLUDED.%(field)s" % {"field": field}
                for field in absolutes.keys()
            ]

            relative_updates = [
                "%(field)s = EXCLUDED.%(field)s + %(table)s.%(field)s"
                % {"table": table, "field": field}
                for field in additive_relatives.keys()
            ]

            insert_cols = []
            qargs = []

            for (key, val) in chain(
                keyvalues.items(), absolutes.items(), additive_relatives.items()
            ):
                insert_cols.append(key)
                qargs.append(val)

            sql = """
                INSERT INTO %(table)s (%(insert_cols_cs)s)
                VALUES (%(insert_vals_qs)s)
                ON CONFLICT (%(key_columns)s) DO UPDATE SET %(updates)s
            """ % {
                "table": table,
                "insert_cols_cs": ", ".join(insert_cols),
                "insert_vals_qs": ", ".join(
                    ["?"] * (len(keyvalues) + len(absolutes) + len(additive_relatives))
                ),
                "key_columns": ", ".join(keyvalues),
                "updates": ", ".join(chain(absolute_updates, relative_updates)),
            }

            txn.execute(sql, qargs)
        else:
            self.database_engine.lock_table(txn, table)
            retcols = list(chain(absolutes.keys(), additive_relatives.keys()))
            current_row = self._simple_select_one_txn(
                txn, table, keyvalues, retcols, allow_none=True
            )
            if current_row is None:
                merged_dict = {**keyvalues, **absolutes, **additive_relatives}
                self._simple_insert_txn(txn, table, merged_dict)
            else:
                for (key, val) in additive_relatives.items():
                    current_row[key] += val
                current_row.update(absolutes)
                self._simple_update_one_txn(txn, table, keyvalues, current_row)

    def _upsert_copy_from_table_with_additive_relatives_txn(
        self,
        txn,
        into_table,
        keyvalues,
        extra_dst_keyvalues,
        extra_dst_insvalues,
        additive_relatives,
        src_table,
        copy_columns,
        additional_where="",
    ):
        """
        Args:
             txn: Transaction
             into_table (str): The destination table to UPSERT the row into
             keyvalues (dict[str, any]): Row-identifying key values
             extra_dst_keyvalues (dict[str, any]): Additional keyvalues
                for `into_table`.
             extra_dst_insvalues (dict[str, any]): Additional values to insert
                on new row creation for `into_table`.
             additive_relatives (dict[str, any]): Fields that will be added onto
                if existing row present. (Must be disjoint from copy_columns.)
             src_table (str): The source table to copy from
             copy_columns (iterable[str]): The list of columns to copy
             additional_where (str): Additional SQL for where (prefix with AND
                if using).
        """
        if self.database_engine.can_native_upsert:
            ins_columns = chain(
                keyvalues,
                copy_columns,
                additive_relatives,
                extra_dst_keyvalues,
                extra_dst_insvalues,
            )
            sel_exprs = chain(
                keyvalues,
                copy_columns,
                (
                    "?"
                    for _ in chain(
                        additive_relatives, extra_dst_keyvalues, extra_dst_insvalues
                    )
                ),
            )
            keyvalues_where = ("%s = ?" % f for f in keyvalues)

            sets_cc = ("%s = EXCLUDED.%s" % (f, f) for f in copy_columns)
            sets_ar = (
                "%s = EXCLUDED.%s + %s.%s" % (f, f, into_table, f)
                for f in additive_relatives
            )

            sql = """
                INSERT INTO %(into_table)s (%(ins_columns)s)
                SELECT %(sel_exprs)s
                FROM %(src_table)s
                WHERE %(keyvalues_where)s %(additional_where)s
                ON CONFLICT (%(keyvalues)s)
                DO UPDATE SET %(sets)s
            """ % {
                "into_table": into_table,
                "ins_columns": ", ".join(ins_columns),
                "sel_exprs": ", ".join(sel_exprs),
                "keyvalues_where": " AND ".join(keyvalues_where),
                "src_table": src_table,
                "keyvalues": ", ".join(
                    chain(keyvalues.keys(), extra_dst_keyvalues.keys())
                ),
                "sets": ", ".join(chain(sets_cc, sets_ar)),
                "additional_where": additional_where,
            }

            qargs = list(
                chain(
                    additive_relatives.values(),
                    extra_dst_keyvalues.values(),
                    extra_dst_insvalues.values(),
                    keyvalues.values(),
                )
            )
            txn.execute(sql, qargs)
        else:
            self.database_engine.lock_table(txn, into_table)
            src_row = self._simple_select_one_txn(
                txn, src_table, keyvalues, copy_columns
            )
            all_dest_keyvalues = {**keyvalues, **extra_dst_keyvalues}
            dest_current_row = self._simple_select_one_txn(
                txn,
                into_table,
                keyvalues=all_dest_keyvalues,
                retcols=list(chain(additive_relatives.keys(), copy_columns)),
                allow_none=True,
            )

            if dest_current_row is None:
                merged_dict = {
                    **keyvalues,
                    **extra_dst_keyvalues,
                    **extra_dst_insvalues,
                    **src_row,
                    **additive_relatives,
                }
                self._simple_insert_txn(txn, into_table, merged_dict)
            else:
                for (key, val) in additive_relatives.items():
                    src_row[key] = dest_current_row[key] + val
                self._simple_update_txn(txn, into_table, all_dest_keyvalues, src_row)

    def incremental_update_room_total_events_and_bytes(self, in_positions):
        """
        Counts the number of events and total event bytes per-room and then adds
        these to the respective total_events and total_event_bytes room counts.

        Args:
            in_positions (dict): Positions,
                as retrieved from L{get_stats_positions}.

        Returns (Deferred[tuple[dict, bool]]):
            First element (dict):
                The new positions. Note that this is for reference only –
                the new positions WILL be committed by this function.
            Second element (bool):
                true iff there was a change to the positions, false otherwise
        """

        def incremental_update_total_events_and_bytes_txn(txn):
            positions = in_positions.copy()

            max_pos = self.get_room_max_stream_ordering()
            min_pos = self.get_room_min_stream_ordering()
            self.update_total_event_and_bytes_count_between_txn(
                txn,
                low_pos=positions["total_events_max_stream_ordering"],
                high_pos=max_pos,
            )

            self.update_total_event_and_bytes_count_between_txn(
                txn,
                low_pos=min_pos,
                high_pos=positions["total_events_min_stream_ordering"],
            )

            if (
                positions["total_events_max_stream_ordering"] != max_pos
                or positions["total_events_min_stream_ordering"] != min_pos
            ):
                positions["total_events_max_stream_ordering"] = max_pos
                positions["total_events_min_stream_ordering"] = min_pos

                self._update_stats_positions_txn(txn, positions)

                return positions, True
            else:
                return positions, False

        return self.runInteraction(
            "stats_incremental_total_events_and_bytes",
            incremental_update_total_events_and_bytes_txn,
        )

    def update_total_event_and_bytes_count_between_txn(self, txn, low_pos, high_pos):
        """
        Updates the total_events and total_event_bytes counts for rooms,
            in a range of stream_orderings.

        Inclusivity of low_pos and high_pos is dependent upon their signs.
        This makes it intuitive to use this function for both backfilled
        and non-backfilled events.

        Examples:
        (low, high) → (kind)
        (3, 7) → 3 < … <= 7 (normal-filled; low already processed before)
        (-4, -2) → -4 <= … < -2 (backfilled; high already processed before)
        (-7, 7) → -7 <= … <= 7 (both)

        Args:
            txn: Database transaction.
            low_pos: Low stream ordering
            high_pos: High stream ordering
        """

        if low_pos >= high_pos:
            # nothing to do here.
            return

        now = self.clock.time_msec()

        # we choose comparators based on the signs
        low_comparator = "<=" if low_pos < 0 else "<"
        high_comparator = "<" if high_pos < 0 else "<="

        if isinstance(self.database_engine, PostgresEngine):
            new_bytes_expression = "OCTET_LENGTH(json)"
        else:
            new_bytes_expression = "LENGTH(CAST(json AS BLOB))"

        sql = """
            SELECT events.room_id, COUNT(*) AS new_events, SUM(%s) AS new_bytes
            FROM events INNER JOIN event_json USING (event_id)
            WHERE ? %s stream_ordering AND stream_ordering %s ?
            GROUP BY events.room_id
        """ % (
            new_bytes_expression,
            low_comparator,
            high_comparator,
        )

        txn.execute(sql, (low_pos, high_pos))

        for room_id, new_events, new_bytes in txn.fetchall():
            self._update_stats_delta_txn(
                txn,
                now,
                "room",
                room_id,
                {"total_events": new_events, "total_event_bytes": new_bytes},
            )

    def _count_events_and_bytes_in_room_txn(self, txn, room_id, low_token, high_token):
        """
        Count the number of events and event bytes in a room between two tokens,
        inclusive.
        Args:
            txn (cursor): The database
            room_id (str): The ID of the room to count events for
            low_token (int): the minimum stream ordering to count
            high_token (int): the maximum stream ordering to count

        Returns (tuple[int, int]):
            First element (int):
                the number of events
            Second element (int):
                the number of bytes in events' event JSON
        """

        if isinstance(self.database_engine, PostgresEngine):
            bytes_expression = "OCTET_LENGTH(json)"
        else:
            bytes_expression = "LENGTH(CAST(json AS BLOB))"

        sql = """
            SELECT COUNT(*) AS num_events, SUM(%s) AS num_bytes
            FROM events
            JOIN event_json USING (event_id)
            WHERE events.room_id = ?
                AND ? <= stream_ordering
                AND stream_ordering <= ?
        """ % (
            bytes_expression,
        )
        txn.execute(sql, (room_id, low_token, high_token))
        return txn.fetchone()