summary refs log tree commit diff
path: root/synapse/storage/database.py
blob: 05775425b77bebc670cad2ee65380a7c77a0a90b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
# Copyright 2014-2016 OpenMarket Ltd
# Copyright 2017-2018 New Vector Ltd
# Copyright 2019 The Matrix.org Foundation C.I.C.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import itertools
import logging
import time
import types
from collections import defaultdict
from time import monotonic as monotonic_time
from typing import (
    TYPE_CHECKING,
    Any,
    Awaitable,
    Callable,
    Collection,
    Dict,
    Iterable,
    Iterator,
    List,
    Optional,
    Sequence,
    Tuple,
    Type,
    TypeVar,
    cast,
    overload,
)

import attr
from prometheus_client import Counter, Histogram
from typing_extensions import Concatenate, Literal, ParamSpec

from twisted.enterprise import adbapi
from twisted.internet.interfaces import IReactorCore

from synapse.api.errors import StoreError
from synapse.config.database import DatabaseConnectionConfig
from synapse.logging import opentracing
from synapse.logging.context import (
    LoggingContext,
    current_context,
    make_deferred_yieldable,
)
from synapse.metrics import LaterGauge, register_threadpool
from synapse.metrics.background_process_metrics import run_as_background_process
from synapse.storage.background_updates import BackgroundUpdater
from synapse.storage.engines import (
    BaseDatabaseEngine,
    Psycopg2Engine,
    PsycopgEngine,
    Sqlite3Engine,
    PostgresEngine,
)
from synapse.storage.types import Connection, Cursor, SQLQueryParameters
from synapse.util.async_helpers import delay_cancellation
from synapse.util.iterutils import batch_iter

if TYPE_CHECKING:
    from synapse.server import HomeServer

# python 3 does not have a maximum int value
MAX_TXN_ID = 2**63 - 1

logger = logging.getLogger(__name__)

sql_logger = logging.getLogger("synapse.storage.SQL")
transaction_logger = logging.getLogger("synapse.storage.txn")
perf_logger = logging.getLogger("synapse.storage.TIME")

sql_scheduling_timer = Histogram("synapse_storage_schedule_time", "sec")

sql_query_timer = Histogram("synapse_storage_query_time", "sec", ["verb"])
sql_txn_count = Counter("synapse_storage_transaction_time_count", "sec", ["desc"])
sql_txn_duration = Counter("synapse_storage_transaction_time_sum", "sec", ["desc"])


# Unique indexes which have been added in background updates. Maps from table name
# to the name of the background update which added the unique index to that table.
#
# This is used by the upsert logic to figure out which tables are safe to do a proper
# UPSERT on: until the relevant background update has completed, we
# have to emulate an upsert by locking the table.
#
UNIQUE_INDEX_BACKGROUND_UPDATES = {
    "user_ips": "user_ips_device_unique_index",
    "device_lists_remote_extremeties": "device_lists_remote_extremeties_unique_idx",
    "device_lists_remote_cache": "device_lists_remote_cache_unique_idx",
    "event_search": "event_search_event_id_idx",
    "local_media_repository_thumbnails": "local_media_repository_thumbnails_method_idx",
    "remote_media_cache_thumbnails": "remote_media_repository_thumbnails_method_idx",
    "event_push_summary": "event_push_summary_unique_index2",
    "receipts_linearized": "receipts_linearized_unique_index",
    "receipts_graph": "receipts_graph_unique_index",
}


class _PoolConnection(Connection):
    """
    A Connection from twisted.enterprise.adbapi.Connection.
    """

    def reconnect(self) -> None:
        ...


def make_pool(
    reactor: IReactorCore,
    db_config: DatabaseConnectionConfig,
    engine: BaseDatabaseEngine,
) -> adbapi.ConnectionPool:
    """Get the connection pool for the database."""

    # By default enable `cp_reconnect`. We need to fiddle with db_args in case
    # someone has explicitly set `cp_reconnect`.
    db_args = dict(db_config.config.get("args", {}))
    db_args.setdefault("cp_reconnect", True)

    def _on_new_connection(conn: Connection) -> None:
        # Ensure we have a logging context so we can correctly track queries,
        # etc.
        with LoggingContext("db.on_new_connection"):
            engine.on_new_connection(
                LoggingDatabaseConnection(conn, engine, "on_new_connection")
            )

    connection_pool = adbapi.ConnectionPool(
        db_config.config["name"],
        cp_reactor=reactor,
        cp_openfun=_on_new_connection,
        **db_args,
    )

    register_threadpool(f"database-{db_config.name}", connection_pool.threadpool)

    return connection_pool


def make_conn(
    db_config: DatabaseConnectionConfig,
    engine: BaseDatabaseEngine,
    default_txn_name: str,
) -> "LoggingDatabaseConnection":
    """Make a new connection to the database and return it.

    Returns:
        Connection
    """

    db_params = {
        k: v
        for k, v in db_config.config.get("args", {}).items()
        if not k.startswith("cp_")
    }
    native_db_conn = engine.module.connect(**db_params)
    db_conn = LoggingDatabaseConnection(native_db_conn, engine, default_txn_name)

    engine.on_new_connection(db_conn)
    return db_conn


@attr.s(slots=True, auto_attribs=True)
class LoggingDatabaseConnection:
    """A wrapper around a database connection that returns `LoggingTransaction`
    as its cursor class.

    This is mainly used on startup to ensure that queries get logged correctly
    """

    conn: Connection
    engine: BaseDatabaseEngine
    default_txn_name: str

    def cursor(
        self,
        *,
        txn_name: Optional[str] = None,
        after_callbacks: Optional[List["_CallbackListEntry"]] = None,
        async_after_callbacks: Optional[List["_AsyncCallbackListEntry"]] = None,
        exception_callbacks: Optional[List["_CallbackListEntry"]] = None,
    ) -> "LoggingTransaction":
        if not txn_name:
            txn_name = self.default_txn_name

        return LoggingTransaction(
            self.conn.cursor(),
            name=txn_name,
            database_engine=self.engine,
            after_callbacks=after_callbacks,
            async_after_callbacks=async_after_callbacks,
            exception_callbacks=exception_callbacks,
        )

    def close(self) -> None:
        self.conn.close()

    def commit(self) -> None:
        self.conn.commit()

    def rollback(self) -> None:
        self.conn.rollback()

    def __enter__(self) -> "LoggingDatabaseConnection":
        self.conn.__enter__()
        return self

    def __exit__(
        self,
        exc_type: Optional[Type[BaseException]],
        exc_value: Optional[BaseException],
        traceback: Optional[types.TracebackType],
    ) -> Optional[bool]:
        return self.conn.__exit__(exc_type, exc_value, traceback)

    # Proxy through any unknown lookups to the DB conn class.
    def __getattr__(self, name: str) -> Any:
        return getattr(self.conn, name)


# The type of entry which goes on our after_callbacks and exception_callbacks lists.
_CallbackListEntry = Tuple[Callable[..., object], Tuple[object, ...], Dict[str, object]]
_AsyncCallbackListEntry = Tuple[
    Callable[..., Awaitable], Tuple[object, ...], Dict[str, object]
]

P = ParamSpec("P")
R = TypeVar("R")


class LoggingTransaction:
    """An object that almost-transparently proxies for the 'txn' object
    passed to the constructor. Adds logging and metrics to the .execute()
    method.

    Args:
        txn: The database transaction object to wrap.
        name: The name of this transactions for logging.
        database_engine
        after_callbacks: A list that callbacks will be appended to
            that have been added by `call_after` which should be run on
            successful completion of the transaction. None indicates that no
            callbacks should be allowed to be scheduled to run.
        async_after_callbacks: A list that asynchronous callbacks will be appended
            to by `async_call_after` which should run, before after_callbacks, on
            successful completion of the transaction. None indicates that no
            callbacks should be allowed to be scheduled to run.
        exception_callbacks: A list that callbacks will be appended
            to that have been added by `call_on_exception` which should be run
            if transaction ends with an error. None indicates that no callbacks
            should be allowed to be scheduled to run.
    """

    __slots__ = [
        "txn",
        "name",
        "database_engine",
        "after_callbacks",
        "async_after_callbacks",
        "exception_callbacks",
    ]

    def __init__(
        self,
        txn: Cursor,
        name: str,
        database_engine: BaseDatabaseEngine,
        after_callbacks: Optional[List[_CallbackListEntry]] = None,
        async_after_callbacks: Optional[List[_AsyncCallbackListEntry]] = None,
        exception_callbacks: Optional[List[_CallbackListEntry]] = None,
    ):
        self.txn = txn
        self.name = name
        self.database_engine = database_engine
        self.after_callbacks = after_callbacks
        self.async_after_callbacks = async_after_callbacks
        self.exception_callbacks = exception_callbacks

    def call_after(
        self, callback: Callable[P, object], *args: P.args, **kwargs: P.kwargs
    ) -> None:
        """Call the given callback on the main twisted thread after the transaction has
        finished.

        Mostly used to invalidate the caches on the correct thread.

        Note that transactions may be retried a few times if they encounter database
        errors such as serialization failures. Callbacks given to `call_after`
        will accumulate across transaction attempts and will _all_ be called once a
        transaction attempt succeeds, regardless of whether previous transaction
        attempts failed. Otherwise, if all transaction attempts fail, all
        `call_on_exception` callbacks will be run instead.
        """
        # if self.after_callbacks is None, that means that whatever constructed the
        # LoggingTransaction isn't expecting there to be any callbacks; assert that
        # is not the case.
        assert self.after_callbacks is not None
        self.after_callbacks.append((callback, args, kwargs))

    def async_call_after(
        self, callback: Callable[P, Awaitable], *args: P.args, **kwargs: P.kwargs
    ) -> None:
        """Call the given asynchronous callback on the main twisted thread after
        the transaction has finished (but before those added in `call_after`).

        Mostly used to invalidate remote caches after transactions.

        Note that transactions may be retried a few times if they encounter database
        errors such as serialization failures. Callbacks given to `async_call_after`
        will accumulate across transaction attempts and will _all_ be called once a
        transaction attempt succeeds, regardless of whether previous transaction
        attempts failed. Otherwise, if all transaction attempts fail, all
        `call_on_exception` callbacks will be run instead.
        """
        # if self.async_after_callbacks is None, that means that whatever constructed the
        # LoggingTransaction isn't expecting there to be any callbacks; assert that
        # is not the case.
        assert self.async_after_callbacks is not None
        self.async_after_callbacks.append((callback, args, kwargs))

    def call_on_exception(
        self, callback: Callable[P, object], *args: P.args, **kwargs: P.kwargs
    ) -> None:
        """Call the given callback on the main twisted thread after the transaction has
        failed.

        Note that transactions may be retried a few times if they encounter database
        errors such as serialization failures. Callbacks given to `call_on_exception`
        will accumulate across transaction attempts and will _all_ be called once the
        final transaction attempt fails. No `call_on_exception` callbacks will be run
        if any transaction attempt succeeds.
        """
        # if self.exception_callbacks is None, that means that whatever constructed the
        # LoggingTransaction isn't expecting there to be any callbacks; assert that
        # is not the case.
        assert self.exception_callbacks is not None
        self.exception_callbacks.append((callback, args, kwargs))

    def fetchone(self) -> Optional[Tuple]:
        return self.txn.fetchone()

    def fetchmany(self, size: int = 0) -> List[Tuple]:
        # XXX This can also be called with no arguments.
        return self.txn.fetchmany(size=size)

    def fetchall(self) -> List[Tuple]:
        return self.txn.fetchall()

    def __iter__(self) -> Iterator[Tuple]:
        return self.txn.__iter__()

    @property
    def rowcount(self) -> int:
        return self.txn.rowcount

    @property
    def description(
        self,
    ) -> Optional[Sequence[Any]]:
        return self.txn.description

    def execute_batch(self, sql: str, args: Iterable[Iterable[Any]]) -> None:
        """Similar to `executemany`, except `txn.rowcount` will not be correct
        afterwards.

        More efficient than `executemany` on PostgreSQL
        """

        if isinstance(self.database_engine, Psycopg2Engine):
            from psycopg2.extras import execute_batch

            # TODO: is it safe for values to be Iterable[Iterable[Any]] here?
            # https://www.psycopg.org/docs/extras.html?highlight=execute_batch#psycopg2.extras.execute_batch
            # suggests each arg in args should be a sequence or mapping
            self._do_execute(
                lambda the_sql: execute_batch(self.txn, the_sql, args), sql
            )

            # TODO Can psycopg3 do anything better?
        else:
            # TODO: is it safe for values to be Iterable[Iterable[Any]] here?
            # https://docs.python.org/3/library/sqlite3.html?highlight=sqlite3#sqlite3.Cursor.executemany
            # suggests that the outer collection may be iterable, but
            # https://docs.python.org/3/library/sqlite3.html?highlight=sqlite3#how-to-use-placeholders-to-bind-values-in-sql-queries
            # suggests that the inner collection should be a sequence or dict.
            self.executemany(sql, args)

    def execute_values(
        self,
        sql: str,
        values: Sequence[Sequence[Any]],
        template: Optional[str] = None,
        fetch: bool = True,
    ) -> List[Tuple]:
        """Corresponds to psycopg2.extras.execute_values. Only available when
        using postgres.

        The `fetch` parameter must be set to False if the query does not return
        rows (e.g. INSERTs).

        The `template` is the snippet to merge to every item in argslist to
        compose the query.
        """
        assert isinstance(self.database_engine, PostgresEngine)

        if isinstance(self.database_engine, Psycopg2Engine):
            from psycopg2.extras import execute_values

            return self._do_execute(
                # TODO: is it safe for values to be Iterable[Iterable[Any]] here?
                # https://www.psycopg.org/docs/extras.html?highlight=execute_batch#psycopg2.extras.execute_values says values should be Sequence[Sequence]
                lambda the_sql, the_values: execute_values(
                    self.txn, the_sql, the_values, template=template, fetch=fetch
                ),
                sql,
                values,
            )
        else:
            # We use fetch = False to mean a writable query. You *might* be able
            # to morph that into a COPY (...) FROM STDIN, but it isn't worth the
            # effort for the few places we set fetch = False.
            assert fetch is True

            # execute_values requires a single replacement, but we need to expand it
            # for COPY. This assumes all inner sequences are the same length.
            value_str = "(" + ", ".join("?" for _ in next(iter(values))) + ")"
            sql = sql.replace("?", ", ".join(value_str for _ in values))

            # Wrap the SQL in the COPY statement.
            sql = f"COPY ({sql}) TO STDOUT"

            def f(
                the_sql: str, the_args: Sequence[Sequence[Any]]
            ) -> Iterable[Tuple[Any, ...]]:
                with self.txn.copy(the_sql, the_args) as copy:
                    yield from copy.rows()

            # Flatten the values.
            return self._do_execute(f, sql, list(itertools.chain.from_iterable(values)))

    def copy_write(
        self, sql: str, args: Iterable[Any], values: Iterable[Iterable[Any]]
    ) -> None:
        """Corresponds to a PostgreSQL COPY (...) FROM STDIN call."""
        assert isinstance(self.database_engine, PsycopgEngine)

        def f(
            the_sql: str, the_args: Iterable[Any], the_values: Iterable[Iterable[Any]]
        ) -> None:
            with self.txn.copy(the_sql, the_args) as copy:
                for record in the_values:
                    copy.write_row(record)

        self._do_execute(f, sql, args, values)

    def execute(self, sql: str, parameters: SQLQueryParameters = ()) -> None:
        self._do_execute(self.txn.execute, sql, parameters)

    def executemany(self, sql: str, *args: Any) -> None:
        """Repeatedly execute the same piece of SQL with different parameters.

        See https://peps.python.org/pep-0249/#executemany. Note in particular that

        > Use of this method for an operation which produces one or more result sets
        > constitutes undefined behavior

        so you can't use this for e.g. a SELECT, an UPDATE ... RETURNING, or a
        DELETE FROM... RETURNING.
        """
        # TODO: we should add a type for *args here. Looking at Cursor.executemany
        # and DBAPI2 it ought to be Sequence[_Parameter], but we pass in
        # Iterable[Iterable[Any]] in execute_batch and execute_values above, which mypy
        # complains about.
        self._do_execute(self.txn.executemany, sql, *args)

    def executescript(self, sql: str) -> None:
        if isinstance(self.database_engine, Sqlite3Engine):
            self._do_execute(self.txn.executescript, sql)  # type: ignore[attr-defined]
        else:
            raise NotImplementedError(
                f"executescript only exists for sqlite driver, not {type(self.database_engine)}"
            )

    def _make_sql_one_line(self, sql: str) -> str:
        "Strip newlines out of SQL so that the loggers in the DB are on one line"
        if isinstance(self.database_engine, PsycopgEngine):
            import psycopg.sql

            if isinstance(sql, psycopg.sql.Composed):
                return sql.as_string(None)

        return " ".join(line.strip() for line in sql.splitlines() if line.strip())

    def _do_execute(
        self,
        func: Callable[Concatenate[str, P], R],
        sql: str,
        *args: P.args,
        **kwargs: P.kwargs,
    ) -> R:
        # Generate a one-line version of the SQL to better log it.
        one_line_sql = self._make_sql_one_line(sql)

        # TODO(paul): Maybe use 'info' and 'debug' for values?
        sql_logger.debug("[SQL] {%s} %s", self.name, one_line_sql)

        sql = self.database_engine.convert_param_style(sql)
        if args:
            try:
                sql_logger.debug("[SQL values] {%s} %r", self.name, args[0])
            except Exception:
                # Don't let logging failures stop SQL from working
                pass

        start = time.time()

        try:
            with opentracing.start_active_span(
                "db.query",
                tags={
                    opentracing.tags.DATABASE_TYPE: "sql",
                    opentracing.tags.DATABASE_STATEMENT: one_line_sql,
                },
            ):
                return func(sql, *args, **kwargs)
        except Exception as e:
            sql_logger.debug("[SQL FAIL] {%s} %s", self.name, e)
            raise
        finally:
            secs = time.time() - start
            sql_logger.debug("[SQL time] {%s} %f sec", self.name, secs)
            sql_query_timer.labels(one_line_sql.split()[0]).observe(secs)

    def close(self) -> None:
        self.txn.close()

    def __enter__(self) -> "LoggingTransaction":
        return self

    def __exit__(
        self,
        exc_type: Optional[Type[BaseException]],
        exc_value: Optional[BaseException],
        traceback: Optional[types.TracebackType],
    ) -> None:
        self.close()


class PerformanceCounters:
    def __init__(self) -> None:
        self.current_counters: Dict[str, Tuple[int, float]] = {}
        self.previous_counters: Dict[str, Tuple[int, float]] = {}

    def update(self, key: str, duration_secs: float) -> None:
        count, cum_time = self.current_counters.get(key, (0, 0.0))
        count += 1
        cum_time += duration_secs
        self.current_counters[key] = (count, cum_time)

    def interval(self, interval_duration_secs: float, limit: int = 3) -> str:
        counters = []
        for name, (count, cum_time) in self.current_counters.items():
            prev_count, prev_time = self.previous_counters.get(name, (0, 0))
            counters.append(
                (
                    (cum_time - prev_time) / interval_duration_secs,
                    count - prev_count,
                    name,
                )
            )

        self.previous_counters = dict(self.current_counters)

        counters.sort(reverse=True)

        top_n_counters = ", ".join(
            "%s(%d): %.3f%%" % (name, count, 100 * ratio)
            for ratio, count, name in counters[:limit]
        )

        return top_n_counters


class DatabasePool:
    """Wraps a single physical database and connection pool.

    A single database may be used by multiple data stores.
    """

    _TXN_ID = 0
    engine: BaseDatabaseEngine

    def __init__(
        self,
        hs: "HomeServer",
        database_config: DatabaseConnectionConfig,
        engine: BaseDatabaseEngine,
    ):
        self.hs = hs
        self._clock = hs.get_clock()
        self._txn_limit = database_config.config.get("txn_limit", 0)
        self._database_config = database_config
        self._db_pool = make_pool(hs.get_reactor(), database_config, engine)

        self.updates = BackgroundUpdater(hs, self)
        LaterGauge(
            "synapse_background_update_status",
            "Background update status",
            [],
            self.updates.get_status,
        )

        self._previous_txn_total_time = 0.0
        self._current_txn_total_time = 0.0
        self._previous_loop_ts = 0.0

        # Transaction counter: key is the twisted thread id, value is the current count
        self._txn_counters: Dict[int, int] = defaultdict(int)

        # TODO(paul): These can eventually be removed once the metrics code
        #   is running in mainline, and we have some nice monitoring frontends
        #   to watch it
        self._txn_perf_counters = PerformanceCounters()

        self.engine = engine

        # A set of tables that are not safe to use native upserts in.
        self._unsafe_to_upsert_tables = set(UNIQUE_INDEX_BACKGROUND_UPDATES.keys())

        # The user_directory_search table is unsafe to use native upserts
        # on SQLite because the existing search table does not have an index.
        if isinstance(self.engine, Sqlite3Engine):
            self._unsafe_to_upsert_tables.add("user_directory_search")

        # Check ASAP (and then later, every 1s) to see if we have finished
        # background updates of tables that aren't safe to update.
        self._clock.call_later(
            0.0,
            run_as_background_process,
            "upsert_safety_check",
            self._check_safe_to_upsert,
        )

    def name(self) -> str:
        "Return the name of this database"
        return self._database_config.name

    def is_running(self) -> bool:
        """Is the database pool currently running"""
        return self._db_pool.running

    async def _check_safe_to_upsert(self) -> None:
        """
        Is it safe to use native UPSERT?

        If there are background updates, we will need to wait, as they may be
        the addition of indexes that set the UNIQUE constraint that we require.

        If the background updates have not completed, wait 15 sec and check again.
        """
        updates = cast(
            List[Tuple[str]],
            await self.simple_select_list(
                "background_updates",
                keyvalues=None,
                retcols=["update_name"],
                desc="check_background_updates",
            ),
        )
        background_update_names = [x[0] for x in updates]

        for table, update_name in UNIQUE_INDEX_BACKGROUND_UPDATES.items():
            if update_name not in background_update_names:
                logger.debug("Now safe to upsert in %s", table)
                self._unsafe_to_upsert_tables.discard(table)

        # If there's any updates still running, reschedule to run.
        if background_update_names:
            self._clock.call_later(
                15.0,
                run_as_background_process,
                "upsert_safety_check",
                self._check_safe_to_upsert,
            )

    def start_profiling(self) -> None:
        self._previous_loop_ts = monotonic_time()

        def loop() -> None:
            curr = self._current_txn_total_time
            prev = self._previous_txn_total_time
            self._previous_txn_total_time = curr

            time_now = monotonic_time()
            time_then = self._previous_loop_ts
            self._previous_loop_ts = time_now

            duration = time_now - time_then
            ratio = (curr - prev) / duration

            top_three_counters = self._txn_perf_counters.interval(duration, limit=3)

            perf_logger.debug(
                "Total database time: %.3f%% {%s}", ratio * 100, top_three_counters
            )

        self._clock.looping_call(loop, 10000)

    def new_transaction(
        self,
        conn: LoggingDatabaseConnection,
        desc: str,
        after_callbacks: List[_CallbackListEntry],
        async_after_callbacks: List[_AsyncCallbackListEntry],
        exception_callbacks: List[_CallbackListEntry],
        func: Callable[Concatenate[LoggingTransaction, P], R],
        *args: P.args,
        **kwargs: P.kwargs,
    ) -> R:
        """Start a new database transaction with the given connection.

        Note: The given func may be called multiple times under certain
        failure modes. This is normally fine when in a standard transaction,
        but care must be taken if the connection is in `autocommit` mode that
        the function will correctly handle being aborted and retried half way
        through its execution.

        Similarly, the arguments to `func` (`args`, `kwargs`) should not be generators,
        since they could be evaluated multiple times (which would produce an empty
        result on the second or subsequent evaluation). Likewise, the closure of `func`
        must not reference any generators.  This method attempts to detect such usage
        and will log an error.

        Args:
            conn
            desc
            after_callbacks
            async_after_callbacks
            exception_callbacks
            func
            *args
            **kwargs
        """

        # Robustness check: ensure that none of the arguments are generators, since that
        # will fail if we have to repeat the transaction.
        # For now, we just log an error, and hope that it works on the first attempt.
        # TODO: raise an exception.

        for i, arg in enumerate(args):
            if inspect.isgenerator(arg):
                logger.error(
                    "Programming error: generator passed to new_transaction as "
                    "argument %i to function %s",
                    i,
                    func,
                )
        for name, val in kwargs.items():
            if inspect.isgenerator(val):
                logger.error(
                    "Programming error: generator passed to new_transaction as "
                    "argument %s to function %s",
                    name,
                    func,
                )
        # also check variables referenced in func's closure
        if inspect.isfunction(func):
            # Keep the cast for now---it helps PyCharm to understand what `func` is.
            f = cast(types.FunctionType, func)  # type: ignore[redundant-cast]
            if f.__closure__:
                for i, cell in enumerate(f.__closure__):
                    try:
                        contents = cell.cell_contents
                    except ValueError:
                        # cell.cell_contents can raise if the "cell" is empty,
                        # which indicates that the variable is currently
                        # unbound.
                        continue

                    if inspect.isgenerator(contents):
                        logger.error(
                            "Programming error: function %s references generator %s "
                            "via its closure",
                            f,
                            f.__code__.co_freevars[i],
                        )

        start = monotonic_time()
        txn_id = self._TXN_ID

        # We don't really need these to be unique, so lets stop it from
        # growing really large.
        self._TXN_ID = (self._TXN_ID + 1) % (MAX_TXN_ID)

        name = "%s-%x" % (desc, txn_id)

        transaction_logger.debug("[TXN START] {%s}", name)

        try:
            i = 0
            N = 5
            while True:
                cursor = conn.cursor(
                    txn_name=name,
                    after_callbacks=after_callbacks,
                    async_after_callbacks=async_after_callbacks,
                    exception_callbacks=exception_callbacks,
                )
                try:
                    with opentracing.start_active_span(
                        "db.txn",
                        tags={
                            opentracing.SynapseTags.DB_TXN_DESC: desc,
                            opentracing.SynapseTags.DB_TXN_ID: name,
                        },
                    ):
                        r = func(cursor, *args, **kwargs)
                        opentracing.log_kv({"message": "commit"})
                        conn.commit()
                        return r
                except self.engine.module.OperationalError as e:
                    # This can happen if the database disappears mid
                    # transaction.
                    transaction_logger.warning(
                        "[TXN OPERROR] {%s} %s %d/%d",
                        name,
                        e,
                        i,
                        N,
                    )
                    if i < N:
                        i += 1
                        try:
                            with opentracing.start_active_span("db.rollback"):
                                conn.rollback()
                        except self.engine.module.Error as e1:
                            transaction_logger.warning("[TXN EROLL] {%s} %s", name, e1)
                        continue
                    raise
                except self.engine.module.DatabaseError as e:
                    if self.engine.is_deadlock(e):
                        transaction_logger.warning(
                            "[TXN DEADLOCK] {%s} %d/%d", name, i, N
                        )
                        if i < N:
                            i += 1
                            try:
                                with opentracing.start_active_span("db.rollback"):
                                    conn.rollback()
                            except self.engine.module.Error as e1:
                                transaction_logger.warning(
                                    "[TXN EROLL] {%s} %s",
                                    name,
                                    e1,
                                )
                            continue
                    raise
                finally:
                    # we're either about to retry with a new cursor, or we're about to
                    # release the connection. Once we release the connection, it could
                    # get used for another query, which might do a conn.rollback().
                    #
                    # In the latter case, even though that probably wouldn't affect the
                    # results of this transaction, python's sqlite will reset all
                    # statements on the connection [1], which will make our cursor
                    # invalid [2].
                    #
                    # In any case, continuing to read rows after commit()ing seems
                    # dubious from the PoV of ACID transactional semantics
                    # (sqlite explicitly says that once you commit, you may see rows
                    # from subsequent updates.)
                    #
                    # In psycopg2, cursors are essentially a client-side fabrication -
                    # all the data is transferred to the client side when the statement
                    # finishes executing - so in theory we could go on streaming results
                    # from the cursor, but attempting to do so would make us
                    # incompatible with sqlite, so let's make sure we're not doing that
                    # by closing the cursor.
                    #
                    # (*named* cursors in psycopg2 are different and are proper server-
                    # side things, but (a) we don't use them and (b) they are implicitly
                    # closed by ending the transaction anyway.)
                    #
                    # In short, if we haven't finished with the cursor yet, that's a
                    # problem waiting to bite us.
                    #
                    # TL;DR: we're done with the cursor, so we can close it.
                    #
                    # [1]: https://github.com/python/cpython/blob/v3.8.0/Modules/_sqlite/connection.c#L465
                    # [2]: https://github.com/python/cpython/blob/v3.8.0/Modules/_sqlite/cursor.c#L236
                    cursor.close()
        except Exception as e:
            transaction_logger.debug("[TXN FAIL] {%s} %s", name, e)
            raise
        finally:
            end = monotonic_time()
            duration = end - start

            current_context().add_database_transaction(duration)

            transaction_logger.debug("[TXN END] {%s} %f sec", name, duration)

            self._current_txn_total_time += duration
            self._txn_perf_counters.update(desc, duration)
            sql_txn_count.labels(desc).inc(1)
            sql_txn_duration.labels(desc).inc(duration)

    async def runInteraction(
        self,
        desc: str,
        func: Callable[..., R],
        *args: Any,
        db_autocommit: bool = False,
        isolation_level: Optional[int] = None,
        **kwargs: Any,
    ) -> R:
        """Starts a transaction on the database and runs a given function

        Arguments:
            desc: description of the transaction, for logging and metrics
            func: callback function, which will be called with a
                database transaction (twisted.enterprise.adbapi.Transaction) as
                its first argument, followed by `args` and `kwargs`.

            db_autocommit: Whether to run the function in "autocommit" mode,
                i.e. outside of a transaction. This is useful for transactions
                that are only a single query.

                Currently, this is only implemented for Postgres. SQLite will still
                run the function inside a transaction.

                WARNING: This means that if func fails half way through then
                the changes will *not* be rolled back. `func` may also get
                called multiple times if the transaction is retried, so must
                correctly handle that case.

            isolation_level: Set the server isolation level for this transaction.
            args: positional args to pass to `func`
            kwargs: named args to pass to `func`

        Returns:
            The result of func
        """

        async def _runInteraction() -> R:
            after_callbacks: List[_CallbackListEntry] = []
            async_after_callbacks: List[_AsyncCallbackListEntry] = []
            exception_callbacks: List[_CallbackListEntry] = []

            if not current_context():
                logger.warning("Starting db txn '%s' from sentinel context", desc)

            try:
                with opentracing.start_active_span(f"db.{desc}"):
                    result = await self.runWithConnection(
                        # mypy seems to have an issue with this, maybe a bug?
                        self.new_transaction,  # type: ignore[arg-type]
                        desc,
                        after_callbacks,
                        async_after_callbacks,
                        exception_callbacks,
                        func,
                        *args,
                        db_autocommit=db_autocommit,
                        isolation_level=isolation_level,
                        **kwargs,
                    )

                # We order these assuming that async functions call out to external
                # systems (e.g. to invalidate a cache) and the sync functions make these
                # changes on any local in-memory caches/similar, and thus must be second.
                for async_callback, async_args, async_kwargs in async_after_callbacks:
                    await async_callback(*async_args, **async_kwargs)
                for after_callback, after_args, after_kwargs in after_callbacks:
                    after_callback(*after_args, **after_kwargs)
                return cast(R, result)
            except Exception:
                for exception_callback, after_args, after_kwargs in exception_callbacks:
                    exception_callback(*after_args, **after_kwargs)
                raise

        # To handle cancellation, we ensure that `after_callback`s and
        # `exception_callback`s are always run, since the transaction will complete
        # on another thread regardless of cancellation.
        #
        # We also wait until everything above is done before releasing the
        # `CancelledError`, so that logging contexts won't get used after they have been
        # finished.
        return await delay_cancellation(_runInteraction())

    async def runWithConnection(
        self,
        func: Callable[Concatenate[LoggingDatabaseConnection, P], R],
        *args: Any,
        db_autocommit: bool = False,
        isolation_level: Optional[int] = None,
        **kwargs: Any,
    ) -> R:
        """Wraps the .runWithConnection() method on the underlying db_pool.

        Arguments:
            func: callback function, which will be called with a
                database connection (twisted.enterprise.adbapi.Connection) as
                its first argument, followed by `args` and `kwargs`.
            args: positional args to pass to `func`
            db_autocommit: Whether to run the function in "autocommit" mode,
                i.e. outside of a transaction. This is useful for transaction
                that are only a single query. Currently only affects postgres.
            isolation_level: Set the server isolation level for this transaction.
            kwargs: named args to pass to `func`

        Returns:
            The result of func
        """
        curr_context = current_context()
        if not curr_context:
            logger.warning(
                "Starting db connection from sentinel context: metrics will be lost"
            )
            parent_context = None
        else:
            assert isinstance(curr_context, LoggingContext)
            parent_context = curr_context

        start_time = monotonic_time()

        def inner_func(conn: _PoolConnection, *args: P.args, **kwargs: P.kwargs) -> R:
            # We shouldn't be in a transaction. If we are then something
            # somewhere hasn't committed after doing work. (This is likely only
            # possible during startup, as `run*` will ensure changes are
            # committed/rolled back before putting the connection back in the
            # pool).
            assert not self.engine.in_transaction(conn)

            with LoggingContext(
                str(curr_context), parent_context=parent_context
            ) as context:
                with opentracing.start_active_span(
                    operation_name="db.connection",
                ):
                    sched_duration_sec = monotonic_time() - start_time
                    sql_scheduling_timer.observe(sched_duration_sec)
                    context.add_database_scheduled(sched_duration_sec)

                    if self._txn_limit > 0:
                        tid = self._db_pool.threadID()
                        self._txn_counters[tid] += 1

                        if self._txn_counters[tid] > self._txn_limit:
                            logger.debug(
                                "Reconnecting database connection over transaction limit"
                            )
                            conn.reconnect()
                            opentracing.log_kv(
                                {"message": "reconnected due to txn limit"}
                            )
                            self._txn_counters[tid] = 1

                    if self.engine.is_connection_closed(conn):
                        logger.debug("Reconnecting closed database connection")
                        conn.reconnect()
                        opentracing.log_kv({"message": "reconnected"})
                        if self._txn_limit > 0:
                            self._txn_counters[tid] = 1

                    try:
                        if db_autocommit:
                            self.engine.attempt_to_set_autocommit(conn, True)
                        if isolation_level is not None:
                            self.engine.attempt_to_set_isolation_level(
                                conn, isolation_level
                            )

                        db_conn = LoggingDatabaseConnection(
                            conn, self.engine, "runWithConnection"
                        )
                        return func(db_conn, *args, **kwargs)
                    finally:
                        if db_autocommit:
                            self.engine.attempt_to_set_autocommit(conn, False)
                        if isolation_level:
                            self.engine.attempt_to_set_isolation_level(conn, None)

        return await make_deferred_yieldable(
            self._db_pool.runWithConnection(inner_func, *args, **kwargs)
        )

    async def execute(self, desc: str, query: str, *args: Any) -> List[Tuple[Any, ...]]:
        """Runs a single query for a result set.

        Args:
            desc: description of the transaction, for logging and metrics
            query - The query string to execute
            *args - Query args.
        Returns:
            The result of decoder(results)
        """

        def interaction(txn: LoggingTransaction) -> List[Tuple[Any, ...]]:
            txn.execute(query, args)
            return txn.fetchall()

        return await self.runInteraction(desc, interaction)

    # "Simple" SQL API methods that operate on a single table with no JOINs,
    # no complex WHERE clauses, just a dict of values for columns.

    async def simple_insert(
        self,
        table: str,
        values: Dict[str, Any],
        desc: str = "simple_insert",
    ) -> None:
        """Executes an INSERT query on the named table.

        Args:
            table: string giving the table name
            values: dict of new column names and values for them
            desc: description of the transaction, for logging and metrics
        """
        await self.runInteraction(desc, self.simple_insert_txn, table, values)

    @staticmethod
    def simple_insert_txn(
        txn: LoggingTransaction, table: str, values: Dict[str, Any]
    ) -> None:
        keys, vals = zip(*values.items())

        sql = "INSERT INTO %s (%s) VALUES(%s)" % (
            table,
            ", ".join(k for k in keys),
            ", ".join("?" for _ in keys),
        )

        txn.execute(sql, vals)

    async def simple_insert_many(
        self,
        table: str,
        keys: Collection[str],
        values: Collection[Collection[Any]],
        desc: str,
    ) -> None:
        """Executes an INSERT query on the named table.

        The input is given as a list of rows, where each row is a list of values.
        (Actually any iterable is fine.)

        Args:
            table: string giving the table name
            keys: list of column names
            values: for each row, a list of values in the same order as `keys`
            desc: description of the transaction, for logging and metrics
        """
        await self.runInteraction(
            desc, self.simple_insert_many_txn, table, keys, values
        )

    @staticmethod
    def simple_insert_many_txn(
        txn: LoggingTransaction,
        table: str,
        keys: Collection[str],
        values: Sequence[Sequence[Any]],
    ) -> None:
        """Executes an INSERT query on the named table.

        The input is given as a list of rows, where each row is a list of values.
        (Actually any iterable is fine.)

        Args:
            txn: The transaction to use.
            table: string giving the table name
            keys: list of column names
            values: for each row, a list of values in the same order as `keys`
        """
        # If there's nothing to insert, then skip executing the query.
        if not values:
            return

        if isinstance(txn.database_engine, Psycopg2Engine):
            # We use `execute_values` as it can be a lot faster than `execute_batch`,
            # but it's only available on postgres.
            sql = "INSERT INTO %s (%s) VALUES ?" % (
                table,
                ", ".join(k for k in keys),
            )

            txn.execute_values(sql, values, fetch=False)

        elif isinstance(txn.database_engine, PsycopgEngine):
            sql = "COPY %s (%s) FROM STDIN" % (
                table,
                ", ".join(k for k in keys),
            )
            txn.copy_write(sql, (), values)

        else:
            sql = "INSERT INTO %s (%s) VALUES(%s)" % (
                table,
                ", ".join(k for k in keys),
                ", ".join("?" for _ in keys),
            )

            txn.execute_batch(sql, values)

    async def simple_upsert(
        self,
        table: str,
        keyvalues: Dict[str, Any],
        values: Dict[str, Any],
        insertion_values: Optional[Dict[str, Any]] = None,
        where_clause: Optional[str] = None,
        desc: str = "simple_upsert",
    ) -> bool:
        """Insert a row with values + insertion_values; on conflict, update with values.

        All of our supported databases accept the nonstandard "upsert" statement in
        their dialect of SQL. We call this a "native upsert". The syntax looks roughly
        like:

            INSERT INTO table VALUES (values + insertion_values)
            ON CONFLICT (keyvalues)
            DO UPDATE SET (values); -- overwrite `values` columns only

        If (values) is empty, the resulting query is slighlty simpler:

            INSERT INTO table VALUES (insertion_values)
            ON CONFLICT (keyvalues)
            DO NOTHING;             -- do not overwrite any columns

        This function is a helper to build such queries.

        In order for upserts to make sense, the database must be able to determine when
        an upsert CONFLICTs with an existing row. Postgres and SQLite ensure this by
        requiring that a unique index exist on the column names used to detect a
        conflict (i.e. `keyvalues.keys()`).

        If there is no such index yet[*], we can "emulate" an upsert with a SELECT
        followed by either an INSERT or an UPDATE. This is unsafe unless *all* upserters
        run at the SERIALIZABLE isolation level: we cannot make the same atomicity
        guarantees that a native upsert can and are very vulnerable to races and
        crashes. Therefore to upsert without an appropriate unique index, we acquire a
        table-level lock before the emulated upsert.

        [*]: Some tables have unique indices added to them in the background. Those
             tables `T` are keys in the dictionary UNIQUE_INDEX_BACKGROUND_UPDATES,
             where `T` maps to the background update that adds a unique index to `T`.
             This dictionary is maintained by hand.

             At runtime, we constantly check to see if each of these background updates
             has run. If so, we deem the coresponding table safe to upsert into, because
             we can now use a native insert to do so. If not, we deem the table unsafe
             to upsert into and require an emulated upsert.

             Tables that do not appear in this dictionary are assumed to have an
             appropriate unique index and therefore be safe to upsert into.

        Args:
            table: The table to upsert into
            keyvalues: The unique key columns and their new values
            values: The nonunique columns and their new values
            insertion_values: additional key/values to use only when inserting
            where_clause: An index predicate to apply to the upsert.
            desc: description of the transaction, for logging and metrics
        Returns:
            Returns True if a row was inserted or updated (i.e. if `values` is
            not empty then this always returns True)
        """
        insertion_values = insertion_values or {}

        attempts = 0
        while True:
            try:
                # We can autocommit if it is safe to upsert
                autocommit = table not in self._unsafe_to_upsert_tables

                return await self.runInteraction(
                    desc,
                    self.simple_upsert_txn,
                    table,
                    keyvalues,
                    values,
                    insertion_values,
                    where_clause,
                    db_autocommit=autocommit,
                )
            except self.engine.module.IntegrityError as e:
                attempts += 1
                if attempts >= 5:
                    # don't retry forever, because things other than races
                    # can cause IntegrityErrors
                    raise

                # presumably we raced with another transaction: let's retry.
                logger.warning(
                    "IntegrityError when upserting into %s; retrying: %s", table, e
                )

    def simple_upsert_txn(
        self,
        txn: LoggingTransaction,
        table: str,
        keyvalues: Dict[str, Any],
        values: Dict[str, Any],
        insertion_values: Optional[Dict[str, Any]] = None,
        where_clause: Optional[str] = None,
    ) -> bool:
        """
        Pick the UPSERT method which works best on the platform. Either the
        native one (Pg9.5+, SQLite >= 3.24), or fall back to an emulated method.

        Args:
            txn: The transaction to use.
            table: The table to upsert into
            keyvalues: The unique key tables and their new values
            values: The nonunique columns and their new values
            insertion_values: additional key/values to use only when inserting
            where_clause: An index predicate to apply to the upsert.
        Returns:
            Returns True if a row was inserted or updated (i.e. if `values` is
            not empty then this always returns True)
        """
        insertion_values = insertion_values or {}

        if table not in self._unsafe_to_upsert_tables:
            return self.simple_upsert_txn_native_upsert(
                txn,
                table,
                keyvalues,
                values,
                insertion_values=insertion_values,
                where_clause=where_clause,
            )
        else:
            return self.simple_upsert_txn_emulated(
                txn,
                table,
                keyvalues,
                values,
                insertion_values=insertion_values,
                where_clause=where_clause,
            )

    def simple_upsert_txn_emulated(
        self,
        txn: LoggingTransaction,
        table: str,
        keyvalues: Dict[str, Any],
        values: Dict[str, Any],
        insertion_values: Optional[Dict[str, Any]] = None,
        where_clause: Optional[str] = None,
        lock: bool = True,
    ) -> bool:
        """
        Args:
            table: The table to upsert into
            keyvalues: The unique key tables and their new values
            values: The nonunique columns and their new values
            insertion_values: additional key/values to use only when inserting
            where_clause: An index predicate to apply to the upsert.
            lock: True to lock the table when doing the upsert.
                Must not be False unless the table has already been locked.
        Returns:
            Returns True if a row was inserted or updated (i.e. if `values` is
            not empty then this always returns True)
        """
        insertion_values = insertion_values or {}

        if lock:
            # We need to lock the table :(
            self.engine.lock_table(txn, table)

        def _getwhere(key: str) -> str:
            # If the value we're passing in is None (aka NULL), we need to use
            # IS, not =, as NULL = NULL equals NULL (False).
            if keyvalues[key] is None:
                return "%s IS ?" % (key,)
            else:
                return "%s = ?" % (key,)

        # Generate a where clause of each keyvalue and optionally the provided
        # index predicate.
        where = [_getwhere(k) for k in keyvalues]
        if where_clause:
            where.append(where_clause)

        if not values:
            # If `values` is empty, then all of the values we care about are in
            # the unique key, so there is nothing to UPDATE. We can just do a
            # SELECT instead to see if it exists.
            sql = "SELECT 1 FROM %s WHERE %s" % (table, " AND ".join(where))
            sqlargs = list(keyvalues.values())
            txn.execute(sql, sqlargs)
            if txn.fetchall():
                # We have an existing record.
                return False
        else:
            # First try to update.
            sql = "UPDATE %s SET %s WHERE %s" % (
                table,
                ", ".join("%s = ?" % (k,) for k in values),
                " AND ".join(where),
            )
            sqlargs = list(values.values()) + list(keyvalues.values())

            txn.execute(sql, sqlargs)
            if txn.rowcount > 0:
                return True

        # We didn't find any existing rows, so insert a new one
        allvalues: Dict[str, Any] = {}
        allvalues.update(keyvalues)
        allvalues.update(values)
        allvalues.update(insertion_values)

        sql = "INSERT INTO %s (%s) VALUES (%s)" % (
            table,
            ", ".join(k for k in allvalues),
            ", ".join("?" for _ in allvalues),
        )
        txn.execute(sql, list(allvalues.values()))
        # successfully inserted
        return True

    def simple_upsert_txn_native_upsert(
        self,
        txn: LoggingTransaction,
        table: str,
        keyvalues: Dict[str, Any],
        values: Dict[str, Any],
        insertion_values: Optional[Dict[str, Any]] = None,
        where_clause: Optional[str] = None,
    ) -> bool:
        """
        Use the native UPSERT functionality in PostgreSQL.

        Args:
            table: The table to upsert into
            keyvalues: The unique key tables and their new values
            values: The nonunique columns and their new values
            insertion_values: additional key/values to use only when inserting
            where_clause: An index predicate to apply to the upsert.

        Returns:
            Returns True if a row was inserted or updated (i.e. if `values` is
            not empty then this always returns True)
        """
        allvalues: Dict[str, Any] = {}
        allvalues.update(keyvalues)
        allvalues.update(insertion_values or {})

        if not values:
            latter = "NOTHING"
        else:
            allvalues.update(values)
            latter = "UPDATE SET " + ", ".join(k + "=EXCLUDED." + k for k in values)

        sql = "INSERT INTO %s (%s) VALUES (%s) ON CONFLICT (%s) %sDO %s" % (
            table,
            ", ".join(k for k in allvalues),
            ", ".join("?" for _ in allvalues),
            ", ".join(k for k in keyvalues),
            f"WHERE {where_clause} " if where_clause else "",
            latter,
        )
        txn.execute(sql, list(allvalues.values()))

        return bool(txn.rowcount)

    async def simple_upsert_many(
        self,
        table: str,
        key_names: Collection[str],
        key_values: Collection[Collection[Any]],
        value_names: Collection[str],
        value_values: Collection[Collection[Any]],
        desc: str,
    ) -> None:
        """
        Upsert, many times.

        Args:
            table: The table to upsert into
            key_names: The key column names.
            key_values: A list of each row's key column values.
            value_names: The value column names
            value_values: A list of each row's value column values.
                Ignored if value_names is empty.
        """

        # We can autocommit if it safe to upsert
        autocommit = table not in self._unsafe_to_upsert_tables

        await self.runInteraction(
            desc,
            self.simple_upsert_many_txn,
            table,
            key_names,
            key_values,
            value_names,
            value_values,
            db_autocommit=autocommit,
        )

    def simple_upsert_many_txn(
        self,
        txn: LoggingTransaction,
        table: str,
        key_names: Collection[str],
        key_values: Collection[Iterable[Any]],
        value_names: Collection[str],
        value_values: Collection[Iterable[Any]],
    ) -> None:
        """
        Upsert, many times.

        Args:
            table: The table to upsert into
            key_names: The key column names.
            key_values: A list of each row's key column values.
            value_names: The value column names
            value_values: A list of each row's value column values.
                Ignored if value_names is empty.
        """
        # If there's nothing to upsert, then skip executing the query.
        if not key_values:
            return

        # No value columns, therefore make a blank list so that the following
        # zip() works correctly.
        if not value_names:
            value_values = [() for x in range(len(key_values))]
        elif len(value_values) != len(key_values):
            raise ValueError(
                f"{len(key_values)} key rows and {len(value_values)} value rows: should be the same number."
            )

        if table not in self._unsafe_to_upsert_tables:
            return self.simple_upsert_many_txn_native_upsert(
                txn, table, key_names, key_values, value_names, value_values
            )
        else:
            return self.simple_upsert_many_txn_emulated(
                txn,
                table,
                key_names,
                key_values,
                value_names,
                value_values,
            )

    def simple_upsert_many_txn_emulated(
        self,
        txn: LoggingTransaction,
        table: str,
        key_names: Iterable[str],
        key_values: Collection[Iterable[Any]],
        value_names: Collection[str],
        value_values: Iterable[Iterable[Any]],
    ) -> None:
        """
        Upsert, many times, but without native UPSERT support or batching.

        Args:
            table: The table to upsert into
            key_names: The key column names.
            key_values: A list of each row's key column values.
            value_names: The value column names
            value_values: A list of each row's value column values.
                Ignored if value_names is empty.
        """

        # Lock the table just once, to prevent it being done once per row.
        # Note that, according to Postgres' documentation, once obtained,
        # the lock is held for the remainder of the current transaction.
        self.engine.lock_table(txn, table)

        for keyv, valv in zip(key_values, value_values):
            _keys = dict(zip(key_names, keyv))
            _vals = dict(zip(value_names, valv))

            self.simple_upsert_txn_emulated(txn, table, _keys, _vals, lock=False)

    def simple_upsert_many_txn_native_upsert(
        self,
        txn: LoggingTransaction,
        table: str,
        key_names: Collection[str],
        key_values: Collection[Iterable[Any]],
        value_names: Collection[str],
        value_values: Iterable[Iterable[Any]],
    ) -> None:
        """
        Upsert, many times, using batching where possible.

        Args:
            table: The table to upsert into
            key_names: The key column names.
            key_values: A list of each row's key column values.
            value_names: The value column names
            value_values: A list of each row's value column values.
                Ignored if value_names is empty.
        """
        allnames: List[str] = []
        allnames.extend(key_names)
        allnames.extend(value_names)

        if not value_names:
            latter = "NOTHING"
        else:
            latter = "UPDATE SET " + ", ".join(
                k + "=EXCLUDED." + k for k in value_names
            )

        args = []

        for x, y in zip(key_values, value_values):
            args.append(tuple(x) + tuple(y))

        if isinstance(txn.database_engine, Psycopg2Engine):
            # We use `execute_values` as it can be a lot faster than `execute_batch`,
            # but it's only available on postgres.
            sql = "INSERT INTO %s (%s) VALUES ? ON CONFLICT (%s) DO %s" % (
                table,
                ", ".join(k for k in allnames),
                ", ".join(key_names),
                latter,
            )

            txn.execute_values(sql, args, fetch=False)

        else:
            sql = "INSERT INTO %s (%s) VALUES (%s) ON CONFLICT (%s) DO %s" % (
                table,
                ", ".join(k for k in allnames),
                ", ".join("?" for _ in allnames),
                ", ".join(key_names),
                latter,
            )

            return txn.execute_batch(sql, args)

    @overload
    async def simple_select_one(
        self,
        table: str,
        keyvalues: Dict[str, Any],
        retcols: Collection[str],
        allow_none: Literal[False] = False,
        desc: str = "simple_select_one",
    ) -> Dict[str, Any]:
        ...

    @overload
    async def simple_select_one(
        self,
        table: str,
        keyvalues: Dict[str, Any],
        retcols: Collection[str],
        allow_none: Literal[True] = True,
        desc: str = "simple_select_one",
    ) -> Optional[Dict[str, Any]]:
        ...

    async def simple_select_one(
        self,
        table: str,
        keyvalues: Dict[str, Any],
        retcols: Collection[str],
        allow_none: bool = False,
        desc: str = "simple_select_one",
    ) -> Optional[Dict[str, Any]]:
        """Executes a SELECT query on the named table, which is expected to
        return a single row, returning multiple columns from it.

        Args:
            table: string giving the table name
            keyvalues: dict of column names and values to select the row with
            retcols: list of strings giving the names of the columns to return
            allow_none: If true, return None instead of failing if the SELECT
                statement returns no rows
            desc: description of the transaction, for logging and metrics
        """
        return await self.runInteraction(
            desc,
            self.simple_select_one_txn,
            table,
            keyvalues,
            retcols,
            allow_none,
            db_autocommit=True,
        )

    @overload
    async def simple_select_one_onecol(
        self,
        table: str,
        keyvalues: Dict[str, Any],
        retcol: str,
        allow_none: Literal[False] = False,
        desc: str = "simple_select_one_onecol",
    ) -> Any:
        ...

    @overload
    async def simple_select_one_onecol(
        self,
        table: str,
        keyvalues: Dict[str, Any],
        retcol: str,
        allow_none: Literal[True] = True,
        desc: str = "simple_select_one_onecol",
    ) -> Optional[Any]:
        ...

    async def simple_select_one_onecol(
        self,
        table: str,
        keyvalues: Dict[str, Any],
        retcol: str,
        allow_none: bool = False,
        desc: str = "simple_select_one_onecol",
    ) -> Optional[Any]:
        """Executes a SELECT query on the named table, which is expected to
        return a single row, returning a single column from it.

        Args:
            table: string giving the table name
            keyvalues: dict of column names and values to select the row with
            retcol: string giving the name of the column to return
            allow_none: If true, return None instead of raising StoreError if the SELECT
                statement returns no rows
            desc: description of the transaction, for logging and metrics
        """
        return await self.runInteraction(
            desc,
            self.simple_select_one_onecol_txn,
            table,
            keyvalues,
            retcol,
            allow_none=allow_none,
            db_autocommit=True,
        )

    @overload
    @classmethod
    def simple_select_one_onecol_txn(
        cls,
        txn: LoggingTransaction,
        table: str,
        keyvalues: Dict[str, Any],
        retcol: str,
        allow_none: Literal[False] = False,
    ) -> Any:
        ...

    @overload
    @classmethod
    def simple_select_one_onecol_txn(
        cls,
        txn: LoggingTransaction,
        table: str,
        keyvalues: Dict[str, Any],
        retcol: str,
        allow_none: Literal[True] = True,
    ) -> Optional[Any]:
        ...

    @classmethod
    def simple_select_one_onecol_txn(
        cls,
        txn: LoggingTransaction,
        table: str,
        keyvalues: Dict[str, Any],
        retcol: str,
        allow_none: bool = False,
    ) -> Optional[Any]:
        ret = cls.simple_select_onecol_txn(
            txn, table=table, keyvalues=keyvalues, retcol=retcol
        )

        if ret:
            return ret[0]
        else:
            if allow_none:
                return None
            else:
                raise StoreError(404, "No row found")

    @staticmethod
    def simple_select_onecol_txn(
        txn: LoggingTransaction,
        table: str,
        keyvalues: Dict[str, Any],
        retcol: str,
    ) -> List[Any]:
        sql = ("SELECT %(retcol)s FROM %(table)s") % {"retcol": retcol, "table": table}

        if keyvalues:
            sql += " WHERE %s" % " AND ".join("%s = ?" % k for k in keyvalues.keys())
            txn.execute(sql, list(keyvalues.values()))
        else:
            txn.execute(sql)

        return [r[0] for r in txn]

    async def simple_select_onecol(
        self,
        table: str,
        keyvalues: Optional[Dict[str, Any]],
        retcol: str,
        desc: str = "simple_select_onecol",
    ) -> List[Any]:
        """Executes a SELECT query on the named table, which returns a list
        comprising of the values of the named column from the selected rows.

        Args:
            table: table name
            keyvalues: column names and values to select the rows with
            retcol: column whos value we wish to retrieve.
            desc: description of the transaction, for logging and metrics

        Returns:
            Results in a list
        """
        return await self.runInteraction(
            desc,
            self.simple_select_onecol_txn,
            table,
            keyvalues,
            retcol,
            db_autocommit=True,
        )

    async def simple_select_list(
        self,
        table: str,
        keyvalues: Optional[Dict[str, Any]],
        retcols: Collection[str],
        desc: str = "simple_select_list",
    ) -> List[Tuple[Any, ...]]:
        """Executes a SELECT query on the named table, which may return zero or
        more rows, returning the result as a list of tuples.

        Args:
            table: the table name
            keyvalues:
                column names and values to select the rows with, or None to not
                apply a WHERE clause.
            retcols: the names of the columns to return
            desc: description of the transaction, for logging and metrics

        Returns:
            A list of tuples, one per result row, each the retcolumn's value for the row.
        """
        return await self.runInteraction(
            desc,
            self.simple_select_list_txn,
            table,
            keyvalues,
            retcols,
            db_autocommit=True,
        )

    @classmethod
    def simple_select_list_txn(
        cls,
        txn: LoggingTransaction,
        table: str,
        keyvalues: Optional[Dict[str, Any]],
        retcols: Iterable[str],
    ) -> List[Tuple[Any, ...]]:
        """Executes a SELECT query on the named table, which may return zero or
        more rows, returning the result as a list of tuples.

        Args:
            txn: Transaction object
            table: the table name
            keyvalues:
                column names and values to select the rows with, or None to not
                apply a WHERE clause.
            retcols: the names of the columns to return

        Returns:
            A list of tuples, one per result row, each the retcolumn's value for the row.
        """
        if keyvalues:
            sql = "SELECT %s FROM %s WHERE %s" % (
                ", ".join(retcols),
                table,
                " AND ".join("%s = ?" % (k,) for k in keyvalues),
            )
            txn.execute(sql, list(keyvalues.values()))
        else:
            sql = "SELECT %s FROM %s" % (", ".join(retcols), table)
            txn.execute(sql)

        return txn.fetchall()

    async def simple_select_many_batch(
        self,
        table: str,
        column: str,
        iterable: Iterable[Any],
        retcols: Collection[str],
        keyvalues: Optional[Dict[str, Any]] = None,
        desc: str = "simple_select_many_batch",
        batch_size: int = 100,
    ) -> List[Tuple[Any, ...]]:
        """Executes a SELECT query on the named table, which may return zero or
        more rows.

        Filters rows by whether the value of `column` is in `iterable`.

        Args:
            table: string giving the table name
            column: column name to test for inclusion against `iterable`
            iterable: list
            retcols: list of strings giving the names of the columns to return
            keyvalues: dict of column names and values to select the rows with
            desc: description of the transaction, for logging and metrics
            batch_size: the number of rows for each select query

        Returns:
            The results as a list of tuples.
        """
        keyvalues = keyvalues or {}

        results: List[Tuple[Any, ...]] = []

        for chunk in batch_iter(iterable, batch_size):
            rows = await self.runInteraction(
                desc,
                self.simple_select_many_txn,
                table,
                column,
                chunk,
                keyvalues,
                retcols,
                db_autocommit=True,
            )

            results.extend(rows)

        return results

    @classmethod
    def simple_select_many_txn(
        cls,
        txn: LoggingTransaction,
        table: str,
        column: str,
        iterable: Collection[Any],
        keyvalues: Dict[str, Any],
        retcols: Iterable[str],
    ) -> List[Tuple[Any, ...]]:
        """Executes a SELECT query on the named table, which may return zero or
        more rows.

        Filters rows by whether the value of `column` is in `iterable`.

        Args:
            txn: Transaction object
            table: string giving the table name
            column: column name to test for inclusion against `iterable`
            iterable: list
            keyvalues: dict of column names and values to select the rows with
            retcols: list of strings giving the names of the columns to return

        Returns:
            The results as a list of tuples.
        """
        # If there's nothing to select, then skip executing the query.
        if not iterable:
            return []

        clause, values = make_in_list_sql_clause(txn.database_engine, column, iterable)
        clauses = [clause]

        for key, value in keyvalues.items():
            clauses.append("%s = ?" % (key,))
            values.append(value)

        sql = "SELECT %s FROM %s WHERE %s" % (
            ", ".join(retcols),
            table,
            " AND ".join(clauses),
        )

        txn.execute(sql, values)
        return txn.fetchall()

    async def simple_update(
        self,
        table: str,
        keyvalues: Dict[str, Any],
        updatevalues: Dict[str, Any],
        desc: str,
    ) -> int:
        """
        Update rows in the given database table.
        If the given keyvalues don't match anything, nothing will be updated.

        Args:
            table: The database table to update.
            keyvalues: A mapping of column name to value to match rows on.
            updatevalues: A mapping of column name to value to replace in any matched rows.
            desc: description of the transaction, for logging and metrics.

        Returns:
            The number of rows that were updated. Will be 0 if no matching rows were found.
        """
        return await self.runInteraction(
            desc, self.simple_update_txn, table, keyvalues, updatevalues
        )

    @staticmethod
    def simple_update_txn(
        txn: LoggingTransaction,
        table: str,
        keyvalues: Dict[str, Any],
        updatevalues: Dict[str, Any],
    ) -> int:
        """
        Update rows in the given database table.
        If the given keyvalues don't match anything, nothing will be updated.

        Args:
            txn: The database transaction object.
            table: The database table to update.
            keyvalues: A mapping of column name to value to match rows on.
            updatevalues: A mapping of column name to value to replace in any matched rows.

        Returns:
            The number of rows that were updated. Will be 0 if no matching rows were found.
        """
        if keyvalues:
            where = "WHERE %s" % " AND ".join("%s = ?" % k for k in keyvalues.keys())
        else:
            where = ""

        update_sql = "UPDATE %s SET %s %s" % (
            table,
            ", ".join("%s = ?" % (k,) for k in updatevalues),
            where,
        )

        txn.execute(update_sql, list(updatevalues.values()) + list(keyvalues.values()))

        return txn.rowcount

    async def simple_update_many(
        self,
        table: str,
        key_names: Collection[str],
        key_values: Collection[Iterable[Any]],
        value_names: Collection[str],
        value_values: Iterable[Iterable[Any]],
        desc: str,
    ) -> None:
        """
        Update, many times, using batching where possible.
        If the keys don't match anything, nothing will be updated.

        Args:
            table: The table to update
            key_names: The key column names.
            key_values: A list of each row's key column values.
            value_names: The names of value columns to update.
            value_values: A list of each row's value column values.
        """

        await self.runInteraction(
            desc,
            self.simple_update_many_txn,
            table,
            key_names,
            key_values,
            value_names,
            value_values,
        )

    @staticmethod
    def simple_update_many_txn(
        txn: LoggingTransaction,
        table: str,
        key_names: Collection[str],
        key_values: Collection[Iterable[Any]],
        value_names: Collection[str],
        value_values: Collection[Iterable[Any]],
    ) -> None:
        """
        Update, many times, using batching where possible.
        If the keys don't match anything, nothing will be updated.

        Args:
            table: The table to update
            key_names: The key column names.
            key_values: A list of each row's key column values.
            value_names: The names of value columns to update.
            value_values: A list of each row's value column values.
        """

        if len(value_values) != len(key_values):
            raise ValueError(
                f"{len(key_values)} key rows and {len(value_values)} value rows: should be the same number."
            )
        # If there is nothing to update, then skip executing the query.
        if not key_values:
            return

        # List of tuples of (value values, then key values)
        # (This matches the order needed for the query)
        args = [tuple(vv) + tuple(kv) for vv, kv in zip(value_values, key_values)]

        # 'col1 = ?, col2 = ?, ...'
        set_clause = ", ".join(f"{n} = ?" for n in value_names)

        if key_names:
            # 'WHERE col3 = ? AND col4 = ? AND col5 = ?'
            where_clause = "WHERE " + (" AND ".join(f"{n} = ?" for n in key_names))
        else:
            where_clause = ""

        # UPDATE mytable SET col1 = ?, col2 = ? WHERE col3 = ? AND col4 = ?
        sql = f"UPDATE {table} SET {set_clause} {where_clause}"

        txn.execute_batch(sql, args)

    async def simple_update_one(
        self,
        table: str,
        keyvalues: Dict[str, Any],
        updatevalues: Dict[str, Any],
        desc: str = "simple_update_one",
    ) -> None:
        """Executes an UPDATE query on the named table, setting new values for
        columns in a row matching the key values.

        Args:
            table: string giving the table name
            keyvalues: dict of column names and values to select the row with
            updatevalues: dict giving column names and values to update
            desc: description of the transaction, for logging and metrics
        """
        await self.runInteraction(
            desc,
            self.simple_update_one_txn,
            table,
            keyvalues,
            updatevalues,
            db_autocommit=True,
        )

    @classmethod
    def simple_update_one_txn(
        cls,
        txn: LoggingTransaction,
        table: str,
        keyvalues: Dict[str, Any],
        updatevalues: Dict[str, Any],
    ) -> None:
        rowcount = cls.simple_update_txn(txn, table, keyvalues, updatevalues)

        if rowcount == 0:
            raise StoreError(404, "No row found (%s)" % (table,))
        if rowcount > 1:
            raise StoreError(500, "More than one row matched (%s)" % (table,))

    # Ideally we could use the overload decorator here to specify that the
    # return type is only optional if allow_none is True, but this does not work
    # when you call a static method from an instance.
    # See https://github.com/python/mypy/issues/7781
    @staticmethod
    def simple_select_one_txn(
        txn: LoggingTransaction,
        table: str,
        keyvalues: Dict[str, Any],
        retcols: Collection[str],
        allow_none: bool = False,
    ) -> Optional[Dict[str, Any]]:
        select_sql = "SELECT %s FROM %s" % (", ".join(retcols), table)

        if keyvalues:
            select_sql += " WHERE %s" % (" AND ".join("%s = ?" % k for k in keyvalues),)
            txn.execute(select_sql, list(keyvalues.values()))
        else:
            txn.execute(select_sql)

        row = txn.fetchone()

        if not row:
            if allow_none:
                return None
            raise StoreError(404, "No row found (%s)" % (table,))
        if txn.rowcount > 1:
            raise StoreError(500, "More than one row matched (%s)" % (table,))

        return dict(zip(retcols, row))

    async def simple_delete_one(
        self, table: str, keyvalues: Dict[str, Any], desc: str = "simple_delete_one"
    ) -> None:
        """Executes a DELETE query on the named table, expecting to delete a
        single row.

        Args:
            table: string giving the table name
            keyvalues: dict of column names and values to select the row with
            desc: description of the transaction, for logging and metrics
        """
        await self.runInteraction(
            desc,
            self.simple_delete_one_txn,
            table,
            keyvalues,
            db_autocommit=True,
        )

    @staticmethod
    def simple_delete_one_txn(
        txn: LoggingTransaction, table: str, keyvalues: Dict[str, Any]
    ) -> None:
        """Executes a DELETE query on the named table, expecting to delete a
        single row.

        Args:
            table: string giving the table name
            keyvalues: dict of column names and values to select the row with
        """
        sql = "DELETE FROM %s WHERE %s" % (
            table,
            " AND ".join("%s = ?" % (k,) for k in keyvalues),
        )

        txn.execute(sql, list(keyvalues.values()))
        if txn.rowcount == 0:
            raise StoreError(404, "No row found (%s)" % (table,))
        if txn.rowcount > 1:
            raise StoreError(500, "More than one row matched (%s)" % (table,))

    async def simple_delete(
        self, table: str, keyvalues: Dict[str, Any], desc: str
    ) -> int:
        """Executes a DELETE query on the named table.

        Filters rows by the key-value pairs.

        Args:
            table: string giving the table name
            keyvalues: dict of column names and values to select the row with
            desc: description of the transaction, for logging and metrics

        Returns:
            The number of deleted rows.
        """
        return await self.runInteraction(
            desc, self.simple_delete_txn, table, keyvalues, db_autocommit=True
        )

    @staticmethod
    def simple_delete_txn(
        txn: LoggingTransaction, table: str, keyvalues: Dict[str, Any]
    ) -> int:
        """Executes a DELETE query on the named table.

        Filters rows by the key-value pairs.

        Args:
            table: string giving the table name
            keyvalues: dict of column names and values to select the row with

        Returns:
            The number of deleted rows.
        """
        sql = "DELETE FROM %s WHERE %s" % (
            table,
            " AND ".join("%s = ?" % (k,) for k in keyvalues),
        )

        txn.execute(sql, list(keyvalues.values()))
        return txn.rowcount

    async def simple_delete_many(
        self,
        table: str,
        column: str,
        iterable: Collection[Any],
        keyvalues: Dict[str, Any],
        desc: str,
    ) -> int:
        """Executes a DELETE query on the named table.

        Filters rows by if value of `column` is in `iterable`.

        Args:
            table: string giving the table name
            column: column name to test for inclusion against `iterable`
            iterable: list of values to match against `column`. NB cannot be a generator
                as it may be evaluated multiple times.
            keyvalues: dict of column names and values to select the rows with
            desc: description of the transaction, for logging and metrics

        Returns:
            Number rows deleted
        """
        return await self.runInteraction(
            desc,
            self.simple_delete_many_txn,
            table,
            column,
            iterable,
            keyvalues,
            db_autocommit=True,
        )

    @staticmethod
    def simple_delete_many_txn(
        txn: LoggingTransaction,
        table: str,
        column: str,
        values: Collection[Any],
        keyvalues: Dict[str, Any],
    ) -> int:
        """Executes a DELETE query on the named table.

        Deletes the rows:
          - whose value of `column` is in `values`; AND
          - that match extra column-value pairs specified in `keyvalues`.

        Args:
            txn: Transaction object
            table: string giving the table name
            column: column name to test for inclusion against `values`
            values: values of `column` which choose rows to delete
            keyvalues: dict of extra column names and values to select the rows
                with. They will be ANDed together with the main predicate.

        Returns:
            Number rows deleted
        """
        # If there's nothing to delete, then skip executing the query.
        if not values:
            return 0

        clause, values = make_in_list_sql_clause(txn.database_engine, column, values)
        clauses = [clause]

        for key, value in keyvalues.items():
            clauses.append("%s = ?" % (key,))
            values.append(value)

        sql = "DELETE FROM %s WHERE %s" % (table, " AND ".join(clauses))
        txn.execute(sql, values)

        return txn.rowcount

    @staticmethod
    def simple_delete_many_batch_txn(
        txn: LoggingTransaction,
        table: str,
        keys: Collection[str],
        values: Iterable[Iterable[Any]],
    ) -> None:
        """Executes a DELETE query on the named table.

        The input is given as a list of rows, where each row is a list of values.
        (Actually any iterable is fine.)

        Args:
            txn: The transaction to use.
            table: string giving the table name
            keys: list of column names
            values: for each row, a list of values in the same order as `keys`
        """

        if isinstance(txn.database_engine, Psycopg2Engine):
            # We use `execute_values` as it can be a lot faster than `execute_batch`,
            # but it's only available on postgres.
            sql = "DELETE FROM %s WHERE (%s) IN (VALUES ?)" % (
                table,
                ", ".join(k for k in keys),
            )

            txn.execute_values(sql, values, fetch=False)
        else:
            sql = "DELETE FROM %s WHERE (%s) = (%s)" % (
                table,
                ", ".join(k for k in keys),
                ", ".join("?" for _ in keys),
            )

            txn.execute_batch(sql, values)

    def get_cache_dict(
        self,
        db_conn: LoggingDatabaseConnection,
        table: str,
        entity_column: str,
        stream_column: str,
        max_value: int,
        limit: int = 100000,
    ) -> Tuple[Dict[Any, int], int]:
        """Gets roughly the last N changes in the given stream table as a
        map from entity to the stream ID of the most recent change.

        Also returns the minimum stream ID.
        """

        # This may return many rows for the same entity, but the `limit` is only
        # a suggestion so we don't care that much.
        #
        # Note: Some stream tables can have multiple rows with the same stream
        # ID. Instead of handling this with complicated SQL, we instead simply
        # add one to the returned minimum stream ID to ensure correctness.
        sql = f"""
            SELECT {entity_column}, {stream_column}
            FROM {table}
            ORDER BY {stream_column} DESC
            LIMIT ?
        """

        txn = db_conn.cursor(txn_name="get_cache_dict")
        txn.execute(sql, (limit,))

        # The rows come out in reverse stream ID order, so we want to keep the
        # stream ID of the first row for each entity.
        cache: Dict[Any, int] = {}
        for row in txn:
            cache.setdefault(row[0], int(row[1]))

        txn.close()

        if cache:
            # We add one here as we don't know if we have all rows for the
            # minimum stream ID.
            min_val = min(cache.values()) + 1
        else:
            min_val = max_value

        return cache, min_val

    @classmethod
    def simple_select_list_paginate_txn(
        cls,
        txn: LoggingTransaction,
        table: str,
        orderby: str,
        start: int,
        limit: int,
        retcols: Iterable[str],
        filters: Optional[Dict[str, Any]] = None,
        keyvalues: Optional[Dict[str, Any]] = None,
        exclude_keyvalues: Optional[Dict[str, Any]] = None,
        order_direction: str = "ASC",
    ) -> List[Tuple[Any, ...]]:
        """
        Executes a SELECT query on the named table with start and limit,
        of row numbers, which may return zero or number of rows from start to limit,
        returning the result as a list of dicts.

        Use `filters` to search attributes using SQL wildcards and/or `keyvalues` to
        select attributes with exact matches. All constraints are joined together
        using 'AND'.

        Args:
            txn: Transaction object
            table: the table name
            orderby: Column to order the results by.
            start: Index to begin the query at.
            limit: Number of results to return.
            retcols: the names of the columns to return
            filters:
                column names and values to filter the rows with, or None to not
                apply a WHERE ? LIKE ? clause.
            keyvalues:
                column names and values to select the rows with, or None to not
                apply a WHERE key = value clause.
            exclude_keyvalues:
                column names and values to exclude rows with, or None to not
                apply a WHERE key != value clause.
            order_direction: Whether the results should be ordered "ASC" or "DESC".

        Returns:
            The result as a list of tuples.
        """
        if order_direction not in ["ASC", "DESC"]:
            raise ValueError("order_direction must be one of 'ASC' or 'DESC'.")

        where_clause = "WHERE " if filters or keyvalues or exclude_keyvalues else ""
        arg_list: List[Any] = []
        if filters:
            where_clause += " AND ".join("%s LIKE ?" % (k,) for k in filters)
            arg_list += list(filters.values())
        where_clause += " AND " if filters and keyvalues else ""
        if keyvalues:
            where_clause += " AND ".join("%s = ?" % (k,) for k in keyvalues)
            arg_list += list(keyvalues.values())
        if exclude_keyvalues:
            where_clause += " AND ".join("%s != ?" % (k,) for k in exclude_keyvalues)
            arg_list += list(exclude_keyvalues.values())

        sql = "SELECT %s FROM %s %s ORDER BY %s %s LIMIT ? OFFSET ?" % (
            ", ".join(retcols),
            table,
            where_clause,
            orderby,
            order_direction,
        )
        txn.execute(sql, arg_list + [limit, start])

        return txn.fetchall()


def make_in_list_sql_clause(
    database_engine: BaseDatabaseEngine, column: str, iterable: Collection[Any]
) -> Tuple[str, list]:
    """Returns an SQL clause that checks the given column is in the iterable.

    On SQLite this expands to `column IN (?, ?, ...)`, whereas on Postgres
    it expands to `column = ANY(?)`. While both DBs support the `IN` form,
    using the `ANY` form on postgres means that it views queries with
    different length iterables as the same, helping the query stats.

    Args:
        database_engine
        column: Name of the column
        iterable: The values to check the column against.

    Returns:
        A tuple of SQL query and the args
    """

    if database_engine.supports_using_any_list:
        # This should hopefully be faster, but also makes postgres query
        # stats easier to understand.
        return "%s = ANY(?)" % (column,), [list(iterable)]
    else:
        return "%s IN (%s)" % (column, ",".join("?" for _ in iterable)), list(iterable)


# These overloads ensure that `columns` and `iterable` values have the same length.
# Suppress "Single overload definition, multiple required" complaint.
@overload  # type: ignore[misc]
def make_tuple_in_list_sql_clause(
    database_engine: BaseDatabaseEngine,
    columns: Tuple[str, str],
    iterable: Collection[Tuple[Any, Any]],
) -> Tuple[str, list]:
    ...


def make_tuple_in_list_sql_clause(
    database_engine: BaseDatabaseEngine,
    columns: Tuple[str, ...],
    iterable: Collection[Tuple[Any, ...]],
) -> Tuple[str, list]:
    """Returns an SQL clause that checks the given tuple of columns is in the iterable.

    Args:
        database_engine
        columns: Names of the columns in the tuple.
        iterable: The tuples to check the columns against.

    Returns:
        A tuple of SQL query and the args
    """
    if len(columns) == 0:
        # Should be unreachable due to mypy, as long as the overloads are set up right.
        if () in iterable:
            return "TRUE", []
        else:
            return "FALSE", []

    if len(columns) == 1:
        # Use `= ANY(?)` on postgres.
        return make_in_list_sql_clause(
            database_engine, next(iter(columns)), [values[0] for values in iterable]
        )

    # There are multiple columns. Avoid using an `= ANY(?)` clause on postgres, as
    # indices are not used when there are multiple columns. Instead, use an `IN`
    # expression.
    #
    # `IN ((?, ...), ...)` with tuples is supported by postgres only, whereas
    # `IN (VALUES (?, ...), ...)` is supported by both sqlite and postgres.
    # Thus, the latter is chosen.

    if len(iterable) == 0:
        # A 0-length `VALUES` list is not allowed in sqlite or postgres.
        # Also note that a 0-length `IN (...)` clause (not using `VALUES`) is not
        # allowed in postgres.
        return "FALSE", []

    tuple_sql = "(%s)" % (",".join("?" for _ in columns),)
    return "(%s) IN (VALUES %s)" % (
        ",".join(column for column in columns),
        ",".join(tuple_sql for _ in iterable),
    ), [value for values in iterable for value in values]


KV = TypeVar("KV")


def make_tuple_comparison_clause(keys: List[Tuple[str, KV]]) -> Tuple[str, List[KV]]:
    """Returns a tuple comparison SQL clause

    Builds a SQL clause that looks like "(a, b) > (?, ?)"

    Args:
        keys: A set of (column, value) pairs to be compared.

    Returns:
        A tuple of SQL query and the args
    """
    return (
        "(%s) > (%s)" % (",".join(k[0] for k in keys), ",".join("?" for _ in keys)),
        [k[1] for k in keys],
    )