summary refs log tree commit diff
path: root/synapse/state/v2.py
blob: 8de16db1d02ae7fbcc673c6946d01360138d5865 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
#
# This file is licensed under the Affero General Public License (AGPL) version 3.
#
# Copyright (C) 2023 New Vector, Ltd
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# See the GNU Affero General Public License for more details:
# <https://www.gnu.org/licenses/agpl-3.0.html>.
#
# Originally licensed under the Apache License, Version 2.0:
# <http://www.apache.org/licenses/LICENSE-2.0>.
#
# [This file includes modifications made by New Vector Limited]
#
#

import heapq
import itertools
import logging
from typing import (
    Any,
    Awaitable,
    Callable,
    Dict,
    Generator,
    Iterable,
    List,
    Optional,
    Sequence,
    Set,
    Tuple,
    overload,
)

from typing_extensions import Literal, Protocol

from synapse import event_auth
from synapse.api.constants import EventTypes
from synapse.api.errors import AuthError
from synapse.api.room_versions import RoomVersion
from synapse.events import EventBase
from synapse.types import MutableStateMap, StateMap, StrCollection

logger = logging.getLogger(__name__)


class Clock(Protocol):
    # This is usually synapse.util.Clock, but it's replaced with a FakeClock in tests.
    # We only ever sleep(0) though, so that other async functions can make forward
    # progress without waiting for stateres to complete.
    def sleep(self, duration_ms: float) -> Awaitable[None]:
        ...


class StateResolutionStore(Protocol):
    # This is usually synapse.state.StateResolutionStore, but it's replaced with a
    # TestStateResolutionStore in tests.
    def get_events(
        self, event_ids: StrCollection, allow_rejected: bool = False
    ) -> Awaitable[Dict[str, EventBase]]:
        ...

    def get_auth_chain_difference(
        self, room_id: str, state_sets: List[Set[str]]
    ) -> Awaitable[Set[str]]:
        ...


# We want to await to the reactor occasionally during state res when dealing
# with large data sets, so that we don't exhaust the reactor. This is done by
# awaiting to reactor during loops every N iterations.
_AWAIT_AFTER_ITERATIONS = 100


__all__ = [
    "resolve_events_with_store",
]


async def resolve_events_with_store(
    clock: Clock,
    room_id: str,
    room_version: RoomVersion,
    state_sets: Sequence[StateMap[str]],
    event_map: Optional[Dict[str, EventBase]],
    state_res_store: StateResolutionStore,
) -> StateMap[str]:
    """Resolves the state using the v2 state resolution algorithm

    Args:
        clock
        room_id: the room we are working in
        room_version: The room version
        state_sets: List of dicts of (type, state_key) -> event_id,
            which are the different state groups to resolve.
        event_map:
            a dict from event_id to event, for any events that we happen to
            have in flight (eg, those currently being persisted). This will be
            used as a starting point for finding the state we need; any missing
            events will be requested via state_res_store.

            If None, all events will be fetched via state_res_store.

        state_res_store:

    Returns:
        A map from (type, state_key) to event_id.
    """

    logger.debug("Computing conflicted state")

    # We use event_map as a cache, so if its None we need to initialize it
    if event_map is None:
        event_map = {}

    # First split up the un/conflicted state
    unconflicted_state, conflicted_state = _seperate(state_sets)

    if not conflicted_state:
        return unconflicted_state

    logger.debug("%d conflicted state entries", len(conflicted_state))
    logger.debug("Calculating auth chain difference")

    # Also fetch all auth events that appear in only some of the state sets'
    # auth chains.
    auth_diff = await _get_auth_chain_difference(
        room_id, state_sets, event_map, state_res_store
    )

    full_conflicted_set = set(
        itertools.chain(
            itertools.chain.from_iterable(conflicted_state.values()), auth_diff
        )
    )

    events = await state_res_store.get_events(
        [eid for eid in full_conflicted_set if eid not in event_map],
        allow_rejected=True,
    )
    event_map.update(events)

    # everything in the event map should be in the right room
    for event in event_map.values():
        if event.room_id != room_id:
            raise Exception(
                "Attempting to state-resolve for room %s with event %s which is in %s"
                % (
                    room_id,
                    event.event_id,
                    event.room_id,
                )
            )

    full_conflicted_set = {eid for eid in full_conflicted_set if eid in event_map}

    logger.debug("%d full_conflicted_set entries", len(full_conflicted_set))

    # Get and sort all the power events (kicks/bans/etc)
    power_events = (
        eid for eid in full_conflicted_set if _is_power_event(event_map[eid])
    )

    sorted_power_events = await _reverse_topological_power_sort(
        clock, room_id, power_events, event_map, state_res_store, full_conflicted_set
    )

    logger.debug("sorted %d power events", len(sorted_power_events))

    # Now sequentially auth each one
    resolved_state = await _iterative_auth_checks(
        clock,
        room_id,
        room_version,
        sorted_power_events,
        unconflicted_state,
        event_map,
        state_res_store,
    )

    logger.debug("resolved power events")

    # OK, so we've now resolved the power events. Now sort the remaining
    # events using the mainline of the resolved power level.

    set_power_events = set(sorted_power_events)
    leftover_events = [
        ev_id for ev_id in full_conflicted_set if ev_id not in set_power_events
    ]

    logger.debug("sorting %d remaining events", len(leftover_events))

    pl = resolved_state.get((EventTypes.PowerLevels, ""), None)
    leftover_events = await _mainline_sort(
        clock, room_id, leftover_events, pl, event_map, state_res_store
    )

    logger.debug("resolving remaining events")

    resolved_state = await _iterative_auth_checks(
        clock,
        room_id,
        room_version,
        leftover_events,
        resolved_state,
        event_map,
        state_res_store,
    )

    logger.debug("resolved")

    # We make sure that unconflicted state always still applies.
    resolved_state.update(unconflicted_state)

    logger.debug("done")

    return resolved_state


async def _get_power_level_for_sender(
    room_id: str,
    event_id: str,
    event_map: Dict[str, EventBase],
    state_res_store: StateResolutionStore,
) -> int:
    """Return the power level of the sender of the given event according to
    their auth events.

    Args:
        room_id
        event_id
        event_map
        state_res_store

    Returns:
        The power level.
    """
    event = await _get_event(room_id, event_id, event_map, state_res_store)

    pl = None
    for aid in event.auth_event_ids():
        aev = await _get_event(
            room_id, aid, event_map, state_res_store, allow_none=True
        )
        if aev and (aev.type, aev.state_key) == (EventTypes.PowerLevels, ""):
            pl = aev
            break

    if pl is None:
        # Couldn't find power level. Check if they're the creator of the room
        for aid in event.auth_event_ids():
            aev = await _get_event(
                room_id, aid, event_map, state_res_store, allow_none=True
            )
            if aev and (aev.type, aev.state_key) == (EventTypes.Create, ""):
                if aev.content.get("creator") == event.sender:
                    return 100
                break
        return 0

    level = pl.content.get("users", {}).get(event.sender)
    if level is None:
        level = pl.content.get("users_default", 0)

    if level is None:
        return 0
    else:
        return int(level)


async def _get_auth_chain_difference(
    room_id: str,
    state_sets: Sequence[StateMap[str]],
    unpersisted_events: Dict[str, EventBase],
    state_res_store: StateResolutionStore,
) -> Set[str]:
    """Compare the auth chains of each state set and return the set of events
    that only appear in some, but not all of the auth chains.

    Args:
        state_sets: The input state sets we are trying to resolve across.
        unpersisted_events: A map from event ID to EventBase containing all unpersisted
            events involved in this resolution.
        state_res_store:

    Returns:
        The auth difference of the given state sets, as a set of event IDs.
    """

    # The `StateResolutionStore.get_auth_chain_difference` function assumes that
    # all events passed to it (and their auth chains) have been persisted
    # previously. We need to manually handle any other events that are yet to be
    # persisted.
    #
    # We do this in three steps:
    #   1. Compute the set of unpersisted events belonging to the auth difference.
    #   2. Replacing any unpersisted events in the state_sets with their auth events,
    #      recursively, until the state_sets contain only persisted events.
    #      Then we call `store.get_auth_chain_difference` as normal, which computes
    #      the set of persisted events belonging to the auth difference.
    #   3. Adding the results of 1 and 2 together.

    # Map from event ID in `unpersisted_events` to their auth event IDs, and their auth
    # event IDs if they appear in the `unpersisted_events`. This is the intersection of
    # the event's auth chain with the events in `unpersisted_events` *plus* their
    # auth event IDs.
    events_to_auth_chain: Dict[str, Set[str]] = {}
    for event in unpersisted_events.values():
        chain = {event.event_id}
        events_to_auth_chain[event.event_id] = chain

        to_search = [event]
        while to_search:
            for auth_id in to_search.pop().auth_event_ids():
                chain.add(auth_id)
                auth_event = unpersisted_events.get(auth_id)
                if auth_event:
                    to_search.append(auth_event)

    # We now 1) calculate the auth chain difference for the unpersisted events
    # and 2) work out the state sets to pass to the store.
    #
    # Note: If there are no `unpersisted_events` (which is the common case), we can do a
    # much simpler calculation.
    if unpersisted_events:
        # The list of state sets to pass to the store, where each state set is a set
        # of the event ids making up the state. This is similar to `state_sets`,
        # except that (a) we only have event ids, not the complete
        # ((type, state_key)->event_id) mappings; and (b) we have stripped out
        # unpersisted events and replaced them with the persisted events in
        # their auth chain.
        state_sets_ids: List[Set[str]] = []

        # For each state set, the unpersisted event IDs reachable (by their auth
        # chain) from the events in that set.
        unpersisted_set_ids: List[Set[str]] = []

        for state_set in state_sets:
            set_ids: Set[str] = set()
            state_sets_ids.append(set_ids)

            unpersisted_ids: Set[str] = set()
            unpersisted_set_ids.append(unpersisted_ids)

            for event_id in state_set.values():
                event_chain = events_to_auth_chain.get(event_id)
                if event_chain is not None:
                    # We have an unpersisted event. We add all the auth
                    # events that it references which are also unpersisted.
                    set_ids.update(
                        e for e in event_chain if e not in unpersisted_events
                    )

                    # We also add the full chain of unpersisted event IDs
                    # referenced by this state set, so that we can work out the
                    # auth chain difference of the unpersisted events.
                    unpersisted_ids.update(
                        e for e in event_chain if e in unpersisted_events
                    )
                else:
                    set_ids.add(event_id)

        # The auth chain difference of the unpersisted events of the state sets
        # is calculated by taking the difference between the union and
        # intersections.
        union = unpersisted_set_ids[0].union(*unpersisted_set_ids[1:])
        intersection = unpersisted_set_ids[0].intersection(*unpersisted_set_ids[1:])

        auth_difference_unpersisted_part: StrCollection = union - intersection
    else:
        auth_difference_unpersisted_part = ()
        state_sets_ids = [set(state_set.values()) for state_set in state_sets]

    difference = await state_res_store.get_auth_chain_difference(
        room_id, state_sets_ids
    )
    difference.update(auth_difference_unpersisted_part)

    return difference


def _seperate(
    state_sets: Iterable[StateMap[str]],
) -> Tuple[StateMap[str], StateMap[Set[str]]]:
    """Return the unconflicted and conflicted state. This is different than in
    the original algorithm, as this defines a key to be conflicted if one of
    the state sets doesn't have that key.

    Args:
        state_sets

    Returns:
        A tuple of unconflicted and conflicted state. The conflicted state dict
        is a map from type/state_key to set of event IDs
    """
    unconflicted_state = {}
    conflicted_state = {}

    for key in set(itertools.chain.from_iterable(state_sets)):
        event_ids = {state_set.get(key) for state_set in state_sets}
        if len(event_ids) == 1:
            unconflicted_state[key] = event_ids.pop()
        else:
            event_ids.discard(None)
            conflicted_state[key] = event_ids

    # mypy doesn't understand that discarding None above means that conflicted
    # state is StateMap[Set[str]], not StateMap[Set[Optional[Str]]].
    return unconflicted_state, conflicted_state  # type: ignore[return-value]


def _is_power_event(event: EventBase) -> bool:
    """Return whether or not the event is a "power event", as defined by the
    v2 state resolution algorithm

    Args:
        event

    Returns:
        True if the event is a power event.
    """
    if (event.type, event.state_key) in (
        (EventTypes.PowerLevels, ""),
        (EventTypes.JoinRules, ""),
        (EventTypes.Create, ""),
    ):
        return True

    if event.type == EventTypes.Member:
        if event.membership in ("leave", "ban"):
            return event.sender != event.state_key

    return False


async def _add_event_and_auth_chain_to_graph(
    graph: Dict[str, Set[str]],
    room_id: str,
    event_id: str,
    event_map: Dict[str, EventBase],
    state_res_store: StateResolutionStore,
    full_conflicted_set: Set[str],
) -> None:
    """Helper function for _reverse_topological_power_sort that add the event
    and its auth chain (that is in the auth diff) to the graph

    Args:
        graph: A map from event ID to the events auth event IDs
        room_id: the room we are working in
        event_id: Event to add to the graph
        event_map
        state_res_store
        full_conflicted_set: Set of event IDs that are in the full conflicted set.
    """

    state = [event_id]
    while state:
        eid = state.pop()
        graph.setdefault(eid, set())

        event = await _get_event(room_id, eid, event_map, state_res_store)
        for aid in event.auth_event_ids():
            if aid in full_conflicted_set:
                if aid not in graph:
                    state.append(aid)

                graph.setdefault(eid, set()).add(aid)


async def _reverse_topological_power_sort(
    clock: Clock,
    room_id: str,
    event_ids: Iterable[str],
    event_map: Dict[str, EventBase],
    state_res_store: StateResolutionStore,
    full_conflicted_set: Set[str],
) -> List[str]:
    """Returns a list of the event_ids sorted by reverse topological ordering,
    and then by power level and origin_server_ts

    Args:
        clock
        room_id: the room we are working in
        event_ids: The events to sort
        event_map
        state_res_store
        full_conflicted_set: Set of event IDs that are in the full conflicted set.

    Returns:
        The sorted list
    """

    graph: Dict[str, Set[str]] = {}
    for idx, event_id in enumerate(event_ids, start=1):
        await _add_event_and_auth_chain_to_graph(
            graph, room_id, event_id, event_map, state_res_store, full_conflicted_set
        )

        # We await occasionally when we're working with large data sets to
        # ensure that we don't block the reactor loop for too long.
        if idx % _AWAIT_AFTER_ITERATIONS == 0:
            await clock.sleep(0)

    event_to_pl = {}
    for idx, event_id in enumerate(graph, start=1):
        pl = await _get_power_level_for_sender(
            room_id, event_id, event_map, state_res_store
        )
        event_to_pl[event_id] = pl

        # We await occasionally when we're working with large data sets to
        # ensure that we don't block the reactor loop for too long.
        if idx % _AWAIT_AFTER_ITERATIONS == 0:
            await clock.sleep(0)

    def _get_power_order(event_id: str) -> Tuple[int, int, str]:
        ev = event_map[event_id]
        pl = event_to_pl[event_id]

        return -pl, ev.origin_server_ts, event_id

    # Note: graph is modified during the sort
    it = lexicographical_topological_sort(graph, key=_get_power_order)
    sorted_events = list(it)

    return sorted_events


async def _iterative_auth_checks(
    clock: Clock,
    room_id: str,
    room_version: RoomVersion,
    event_ids: List[str],
    base_state: StateMap[str],
    event_map: Dict[str, EventBase],
    state_res_store: StateResolutionStore,
) -> MutableStateMap[str]:
    """Sequentially apply auth checks to each event in given list, updating the
    state as it goes along.

    Args:
        clock
        room_id
        room_version
        event_ids: Ordered list of events to apply auth checks to
        base_state: The set of state to start with
        event_map
        state_res_store

    Returns:
        Returns the final updated state
    """
    resolved_state = dict(base_state)

    for idx, event_id in enumerate(event_ids, start=1):
        event = event_map[event_id]

        auth_events = {}
        for aid in event.auth_event_ids():
            ev = await _get_event(
                room_id, aid, event_map, state_res_store, allow_none=True
            )

            if not ev:
                logger.warning(
                    "auth_event id %s for event %s is missing", aid, event_id
                )
            else:
                if ev.rejected_reason is None:
                    auth_events[(ev.type, ev.state_key)] = ev

        for key in event_auth.auth_types_for_event(room_version, event):
            if key in resolved_state:
                ev_id = resolved_state[key]
                ev = await _get_event(room_id, ev_id, event_map, state_res_store)

                if ev.rejected_reason is None:
                    auth_events[key] = event_map[ev_id]

        if event.rejected_reason is not None:
            # Do not admit previously rejected events into state.
            # TODO: This isn't spec compliant. Events that were previously rejected due
            #       to failing auth checks at their state, but pass auth checks during
            #       state resolution should be accepted. Synapse does not handle the
            #       change of rejection status well, so we preserve the previous
            #       rejection status for now.
            #
            #       Note that events rejected for non-state reasons, such as having the
            #       wrong auth events, should remain rejected.
            #
            #       https://spec.matrix.org/v1.2/rooms/v9/#rejected-events
            #       https://github.com/matrix-org/synapse/issues/13797
            continue

        try:
            event_auth.check_state_dependent_auth_rules(
                event,
                auth_events.values(),
            )

            resolved_state[(event.type, event.state_key)] = event_id
        except AuthError:
            pass

        # We await occasionally when we're working with large data sets to
        # ensure that we don't block the reactor loop for too long.
        if idx % _AWAIT_AFTER_ITERATIONS == 0:
            await clock.sleep(0)

    return resolved_state


async def _mainline_sort(
    clock: Clock,
    room_id: str,
    event_ids: List[str],
    resolved_power_event_id: Optional[str],
    event_map: Dict[str, EventBase],
    state_res_store: StateResolutionStore,
) -> List[str]:
    """Returns a sorted list of event_ids sorted by mainline ordering based on
    the given event resolved_power_event_id

    Args:
        clock
        room_id: room we're working in
        event_ids: Events to sort
        resolved_power_event_id: The final resolved power level event ID
        event_map
        state_res_store

    Returns:
        The sorted list
    """
    if not event_ids:
        # It's possible for there to be no event IDs here to sort, so we can
        # skip calculating the mainline in that case.
        return []

    mainline = []
    pl = resolved_power_event_id
    idx = 0
    while pl:
        mainline.append(pl)
        pl_ev = await _get_event(room_id, pl, event_map, state_res_store)
        auth_events = pl_ev.auth_event_ids()
        pl = None
        for aid in auth_events:
            ev = await _get_event(
                room_id, aid, event_map, state_res_store, allow_none=True
            )
            if ev and (ev.type, ev.state_key) == (EventTypes.PowerLevels, ""):
                pl = aid
                break

        # We await occasionally when we're working with large data sets to
        # ensure that we don't block the reactor loop for too long.
        if idx != 0 and idx % _AWAIT_AFTER_ITERATIONS == 0:
            await clock.sleep(0)

        idx += 1

    mainline_map = {ev_id: i + 1 for i, ev_id in enumerate(reversed(mainline))}

    event_ids = list(event_ids)

    order_map = {}
    for idx, ev_id in enumerate(event_ids, start=1):
        depth = await _get_mainline_depth_for_event(
            clock, event_map[ev_id], mainline_map, event_map, state_res_store
        )
        order_map[ev_id] = (depth, event_map[ev_id].origin_server_ts, ev_id)

        # We await occasionally when we're working with large data sets to
        # ensure that we don't block the reactor loop for too long.
        if idx % _AWAIT_AFTER_ITERATIONS == 0:
            await clock.sleep(0)

    event_ids.sort(key=lambda ev_id: order_map[ev_id])

    return event_ids


async def _get_mainline_depth_for_event(
    clock: Clock,
    event: EventBase,
    mainline_map: Dict[str, int],
    event_map: Dict[str, EventBase],
    state_res_store: StateResolutionStore,
) -> int:
    """Get the mainline depths for the given event based on the mainline map

    Args:
        event
        mainline_map: Map from event_id to mainline depth for events in the mainline.
        event_map
        state_res_store

    Returns:
        The mainline depth
    """

    room_id = event.room_id
    tmp_event: Optional[EventBase] = event

    # We do an iterative search, replacing `event with the power level in its
    # auth events (if any)
    idx = 0
    while tmp_event:
        depth = mainline_map.get(tmp_event.event_id)
        if depth is not None:
            return depth

        auth_events = tmp_event.auth_event_ids()
        tmp_event = None

        for aid in auth_events:
            aev = await _get_event(
                room_id, aid, event_map, state_res_store, allow_none=True
            )
            if aev and (aev.type, aev.state_key) == (EventTypes.PowerLevels, ""):
                tmp_event = aev
                break

        idx += 1

        if idx % _AWAIT_AFTER_ITERATIONS == 0:
            await clock.sleep(0)

    # Didn't find a power level auth event, so we just return 0
    return 0


@overload
async def _get_event(
    room_id: str,
    event_id: str,
    event_map: Dict[str, EventBase],
    state_res_store: StateResolutionStore,
    allow_none: Literal[False] = False,
) -> EventBase:
    ...


@overload
async def _get_event(
    room_id: str,
    event_id: str,
    event_map: Dict[str, EventBase],
    state_res_store: StateResolutionStore,
    allow_none: Literal[True],
) -> Optional[EventBase]:
    ...


async def _get_event(
    room_id: str,
    event_id: str,
    event_map: Dict[str, EventBase],
    state_res_store: StateResolutionStore,
    allow_none: bool = False,
) -> Optional[EventBase]:
    """Helper function to look up event in event_map, falling back to looking
    it up in the store

    Args:
        room_id
        event_id
        event_map
        state_res_store
        allow_none: if the event is not found, return None rather than raising
            an exception

    Returns:
        The event, or none if the event does not exist (and allow_none is True).
    """
    if event_id not in event_map:
        events = await state_res_store.get_events([event_id], allow_rejected=True)
        event_map.update(events)
    event = event_map.get(event_id)

    if event is None:
        if allow_none:
            return None
        raise Exception("Unknown event %s" % (event_id,))

    if event.room_id != room_id:
        raise Exception(
            "In state res for room %s, event %s is in %s"
            % (room_id, event_id, event.room_id)
        )
    return event


def lexicographical_topological_sort(
    graph: Dict[str, Set[str]], key: Callable[[str], Any]
) -> Generator[str, None, None]:
    """Performs a lexicographic reverse topological sort on the graph.

    This returns a reverse topological sort (i.e. if node A references B then B
    appears before A in the sort), with ties broken lexicographically based on
    return value of the `key` function.

    NOTE: `graph` is modified during the sort.

    Args:
        graph: A representation of the graph where each node is a key in the
            dict and its value are the nodes edges.
        key: A function that takes a node and returns a value that is comparable
            and used to order nodes

    Yields:
        The next node in the topological sort
    """

    # Note, this is basically Kahn's algorithm except we look at nodes with no
    # outgoing edges, c.f.
    # https://en.wikipedia.org/wiki/Topological_sorting#Kahn's_algorithm
    outdegree_map = graph
    reverse_graph: Dict[str, Set[str]] = {}

    # Lists of nodes with zero out degree. Is actually a tuple of
    # `(key(node), node)` so that sorting does the right thing
    zero_outdegree = []

    for node, edges in graph.items():
        if len(edges) == 0:
            zero_outdegree.append((key(node), node))

        reverse_graph.setdefault(node, set())
        for edge in edges:
            reverse_graph.setdefault(edge, set()).add(node)

    # heapq is a built in implementation of a sorted queue.
    heapq.heapify(zero_outdegree)

    while zero_outdegree:
        _, node = heapq.heappop(zero_outdegree)

        for parent in reverse_graph[node]:
            out = outdegree_map[parent]
            out.discard(node)
            if len(out) == 0:
                heapq.heappush(zero_outdegree, (key(parent), parent))

        yield node