1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
|
# -*- coding: utf-8 -*-
# Copyright 2014-2016 OpenMarket Ltd
# Copyright 2018 New Vector Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import heapq
import logging
from collections import defaultdict, namedtuple
from typing import (
Any,
Awaitable,
Callable,
DefaultDict,
Dict,
FrozenSet,
Iterable,
List,
Optional,
Sequence,
Set,
Tuple,
Union,
overload,
)
import attr
from frozendict import frozendict
from prometheus_client import Counter, Histogram
from typing_extensions import Literal
from synapse.api.constants import EventTypes
from synapse.api.room_versions import KNOWN_ROOM_VERSIONS, StateResolutionVersions
from synapse.events import EventBase
from synapse.events.snapshot import EventContext
from synapse.logging.context import ContextResourceUsage
from synapse.logging.utils import log_function
from synapse.state import v1, v2
from synapse.storage.databases.main.events_worker import EventRedactBehaviour
from synapse.storage.roommember import ProfileInfo
from synapse.types import Collection, StateMap
from synapse.util.async_helpers import Linearizer
from synapse.util.caches.expiringcache import ExpiringCache
from synapse.util.metrics import Measure, measure_func
logger = logging.getLogger(__name__)
metrics_logger = logging.getLogger("synapse.state.metrics")
# Metrics for number of state groups involved in a resolution.
state_groups_histogram = Histogram(
"synapse_state_number_state_groups_in_resolution",
"Number of state groups used when performing a state resolution",
buckets=(1, 2, 3, 5, 7, 10, 15, 20, 50, 100, 200, 500, "+Inf"),
)
KeyStateTuple = namedtuple("KeyStateTuple", ("context", "type", "state_key"))
EVICTION_TIMEOUT_SECONDS = 60 * 60
_NEXT_STATE_ID = 1
POWER_KEY = (EventTypes.PowerLevels, "")
def _gen_state_id():
global _NEXT_STATE_ID
s = "X%d" % (_NEXT_STATE_ID,)
_NEXT_STATE_ID += 1
return s
class _StateCacheEntry:
__slots__ = ["state", "state_group", "state_id", "prev_group", "delta_ids"]
def __init__(
self,
state: StateMap[str],
state_group: Optional[int],
prev_group: Optional[int] = None,
delta_ids: Optional[StateMap[str]] = None,
):
# A map from (type, state_key) to event_id.
self.state = frozendict(state)
# the ID of a state group if one and only one is involved.
# otherwise, None otherwise?
self.state_group = state_group
self.prev_group = prev_group
self.delta_ids = frozendict(delta_ids) if delta_ids is not None else None
# The `state_id` is a unique ID we generate that can be used as ID for
# this collection of state. Usually this would be the same as the
# state group, but on worker instances we can't generate a new state
# group each time we resolve state, so we generate a separate one that
# isn't persisted and is used solely for caches.
# `state_id` is either a state_group (and so an int) or a string. This
# ensures we don't accidentally persist a state_id as a stateg_group
if state_group:
self.state_id = state_group
else:
self.state_id = _gen_state_id()
def __len__(self):
return len(self.state)
class StateHandler:
"""Fetches bits of state from the stores, and does state resolution
where necessary
"""
def __init__(self, hs):
self.clock = hs.get_clock()
self.store = hs.get_datastore()
self.state_store = hs.get_storage().state
self.hs = hs
self._state_resolution_handler = hs.get_state_resolution_handler()
@overload
async def get_current_state(
self,
room_id: str,
event_type: Literal[None] = None,
state_key: str = "",
latest_event_ids: Optional[List[str]] = None,
) -> StateMap[EventBase]:
...
@overload
async def get_current_state(
self,
room_id: str,
event_type: str,
state_key: str = "",
latest_event_ids: Optional[List[str]] = None,
) -> Optional[EventBase]:
...
async def get_current_state(
self,
room_id: str,
event_type: Optional[str] = None,
state_key: str = "",
latest_event_ids: Optional[List[str]] = None,
) -> Union[Optional[EventBase], StateMap[EventBase]]:
"""Retrieves the current state for the room. This is done by
calling `get_latest_events_in_room` to get the leading edges of the
event graph and then resolving any of the state conflicts.
This is equivalent to getting the state of an event that were to send
next before receiving any new events.
Returns:
If `event_type` is specified, then the method returns only the one
event (or None) with that `event_type` and `state_key`.
Otherwise, a map from (type, state_key) to event.
"""
if not latest_event_ids:
latest_event_ids = await self.store.get_latest_event_ids_in_room(room_id)
assert latest_event_ids is not None
logger.debug("calling resolve_state_groups from get_current_state")
ret = await self.resolve_state_groups_for_events(room_id, latest_event_ids)
state = ret.state
if event_type:
event_id = state.get((event_type, state_key))
event = None
if event_id:
event = await self.store.get_event(event_id, allow_none=True)
return event
state_map = await self.store.get_events(
list(state.values()), get_prev_content=False
)
return {
key: state_map[e_id] for key, e_id in state.items() if e_id in state_map
}
async def get_current_state_ids(
self, room_id: str, latest_event_ids: Optional[Iterable[str]] = None
) -> StateMap[str]:
"""Get the current state, or the state at a set of events, for a room
Args:
room_id:
latest_event_ids: if given, the forward extremities to resolve. If
None, we look them up from the database (via a cache).
Returns:
the state dict, mapping from (event_type, state_key) -> event_id
"""
if not latest_event_ids:
latest_event_ids = await self.store.get_latest_event_ids_in_room(room_id)
assert latest_event_ids is not None
logger.debug("calling resolve_state_groups from get_current_state_ids")
ret = await self.resolve_state_groups_for_events(room_id, latest_event_ids)
return ret.state
async def get_current_users_in_room(
self, room_id: str, latest_event_ids: Optional[List[str]] = None
) -> Dict[str, ProfileInfo]:
"""
Get the users who are currently in a room.
Args:
room_id: The ID of the room.
latest_event_ids: Precomputed list of latest event IDs. Will be computed if None.
Returns:
Dictionary of user IDs to their profileinfo.
"""
if not latest_event_ids:
latest_event_ids = await self.store.get_latest_event_ids_in_room(room_id)
assert latest_event_ids is not None
logger.debug("calling resolve_state_groups from get_current_users_in_room")
entry = await self.resolve_state_groups_for_events(room_id, latest_event_ids)
return await self.store.get_joined_users_from_state(room_id, entry)
async def get_current_hosts_in_room(self, room_id: str) -> Set[str]:
event_ids = await self.store.get_latest_event_ids_in_room(room_id)
return await self.get_hosts_in_room_at_events(room_id, event_ids)
async def get_hosts_in_room_at_events(
self, room_id: str, event_ids: List[str]
) -> Set[str]:
"""Get the hosts that were in a room at the given event ids
Args:
room_id:
event_ids:
Returns:
The hosts in the room at the given events
"""
entry = await self.resolve_state_groups_for_events(room_id, event_ids)
return await self.store.get_joined_hosts(room_id, entry)
async def compute_event_context(
self, event: EventBase, old_state: Optional[Iterable[EventBase]] = None
) -> EventContext:
"""Build an EventContext structure for the event.
This works out what the current state should be for the event, and
generates a new state group if necessary.
Args:
event:
old_state: The state at the event if it can't be
calculated from existing events. This is normally only specified
when receiving an event from federation where we don't have the
prev events for, e.g. when backfilling.
Returns:
The event context.
"""
if event.internal_metadata.is_outlier():
# If this is an outlier, then we know it shouldn't have any current
# state. Certainly store.get_current_state won't return any, and
# persisting the event won't store the state group.
# FIXME: why do we populate current_state_ids? I thought the point was
# that we weren't supposed to have any state for outliers?
if old_state:
prev_state_ids = {(s.type, s.state_key): s.event_id for s in old_state}
if event.is_state():
current_state_ids = dict(prev_state_ids)
key = (event.type, event.state_key)
current_state_ids[key] = event.event_id
else:
current_state_ids = prev_state_ids
else:
current_state_ids = {}
prev_state_ids = {}
# We don't store state for outliers, so we don't generate a state
# group for it.
context = EventContext.with_state(
state_group=None,
state_group_before_event=None,
current_state_ids=current_state_ids,
prev_state_ids=prev_state_ids,
)
return context
#
# first of all, figure out the state before the event
#
if old_state:
# if we're given the state before the event, then we use that
state_ids_before_event = {
(s.type, s.state_key): s.event_id for s in old_state
} # type: StateMap[str]
state_group_before_event = None
state_group_before_event_prev_group = None
deltas_to_state_group_before_event = None
entry = None
else:
# otherwise, we'll need to resolve the state across the prev_events.
logger.debug("calling resolve_state_groups from compute_event_context")
entry = await self.resolve_state_groups_for_events(
event.room_id, event.prev_event_ids()
)
state_ids_before_event = entry.state
state_group_before_event = entry.state_group
state_group_before_event_prev_group = entry.prev_group
deltas_to_state_group_before_event = entry.delta_ids
#
# make sure that we have a state group at that point. If it's not a state event,
# that will be the state group for the new event. If it *is* a state event,
# it might get rejected (in which case we'll need to persist it with the
# previous state group)
#
if not state_group_before_event:
state_group_before_event = await self.state_store.store_state_group(
event.event_id,
event.room_id,
prev_group=state_group_before_event_prev_group,
delta_ids=deltas_to_state_group_before_event,
current_state_ids=state_ids_before_event,
)
# Assign the new state group to the cached state entry.
#
# Note that this can race in that we could generate multiple state
# groups for the same state entry, but that is just inefficient
# rather than dangerous.
if entry and entry.state_group is None:
entry.state_group = state_group_before_event
#
# now if it's not a state event, we're done
#
if not event.is_state():
return EventContext.with_state(
state_group_before_event=state_group_before_event,
state_group=state_group_before_event,
current_state_ids=state_ids_before_event,
prev_state_ids=state_ids_before_event,
prev_group=state_group_before_event_prev_group,
delta_ids=deltas_to_state_group_before_event,
)
#
# otherwise, we'll need to create a new state group for after the event
#
key = (event.type, event.state_key)
if key in state_ids_before_event:
replaces = state_ids_before_event[key]
if replaces != event.event_id:
event.unsigned["replaces_state"] = replaces
state_ids_after_event = dict(state_ids_before_event)
state_ids_after_event[key] = event.event_id
delta_ids = {key: event.event_id}
state_group_after_event = await self.state_store.store_state_group(
event.event_id,
event.room_id,
prev_group=state_group_before_event,
delta_ids=delta_ids,
current_state_ids=state_ids_after_event,
)
return EventContext.with_state(
state_group=state_group_after_event,
state_group_before_event=state_group_before_event,
current_state_ids=state_ids_after_event,
prev_state_ids=state_ids_before_event,
prev_group=state_group_before_event,
delta_ids=delta_ids,
)
@measure_func()
async def resolve_state_groups_for_events(
self, room_id: str, event_ids: Iterable[str]
) -> _StateCacheEntry:
"""Given a list of event_ids this method fetches the state at each
event, resolves conflicts between them and returns them.
Args:
room_id
event_ids
Returns:
The resolved state
"""
logger.debug("resolve_state_groups event_ids %s", event_ids)
# map from state group id to the state in that state group (where
# 'state' is a map from state key to event id)
# dict[int, dict[(str, str), str]]
state_groups_ids = await self.state_store.get_state_groups_ids(
room_id, event_ids
)
if len(state_groups_ids) == 0:
return _StateCacheEntry(state={}, state_group=None)
elif len(state_groups_ids) == 1:
name, state_list = list(state_groups_ids.items()).pop()
prev_group, delta_ids = await self.state_store.get_state_group_delta(name)
return _StateCacheEntry(
state=state_list,
state_group=name,
prev_group=prev_group,
delta_ids=delta_ids,
)
room_version = await self.store.get_room_version_id(room_id)
result = await self._state_resolution_handler.resolve_state_groups(
room_id,
room_version,
state_groups_ids,
None,
state_res_store=StateResolutionStore(self.store),
)
return result
async def resolve_events(
self,
room_version: str,
state_sets: Collection[Iterable[EventBase]],
event: EventBase,
) -> StateMap[EventBase]:
logger.info(
"Resolving state for %s with %d groups", event.room_id, len(state_sets)
)
state_set_ids = [
{(ev.type, ev.state_key): ev.event_id for ev in st} for st in state_sets
]
state_map = {ev.event_id: ev for st in state_sets for ev in st}
new_state = await self._state_resolution_handler.resolve_events_with_store(
event.room_id,
room_version,
state_set_ids,
event_map=state_map,
state_res_store=StateResolutionStore(self.store),
)
return {key: state_map[ev_id] for key, ev_id in new_state.items()}
@attr.s(slots=True)
class _StateResMetrics:
"""Keeps track of some usage metrics about state res."""
# System and User CPU time, in seconds
cpu_time = attr.ib(type=float, default=0.0)
# time spent on database transactions (excluding scheduling time). This roughly
# corresponds to the amount of work done on the db server, excluding event fetches.
db_time = attr.ib(type=float, default=0.0)
# number of events fetched from the db.
db_events = attr.ib(type=int, default=0)
_biggest_room_by_cpu_counter = Counter(
"synapse_state_res_cpu_for_biggest_room_seconds",
"CPU time spent performing state resolution for the single most expensive "
"room for state resolution",
)
_biggest_room_by_db_counter = Counter(
"synapse_state_res_db_for_biggest_room_seconds",
"Database time spent performing state resolution for the single most "
"expensive room for state resolution",
)
class StateResolutionHandler:
"""Responsible for doing state conflict resolution.
Note that the storage layer depends on this handler, so all functions must
be storage-independent.
"""
def __init__(self, hs):
self.clock = hs.get_clock()
self.resolve_linearizer = Linearizer(name="state_resolve_lock")
# dict of set of event_ids -> _StateCacheEntry.
self._state_cache = ExpiringCache(
cache_name="state_cache",
clock=self.clock,
max_len=100000,
expiry_ms=EVICTION_TIMEOUT_SECONDS * 1000,
iterable=True,
reset_expiry_on_get=True,
) # type: ExpiringCache[FrozenSet[int], _StateCacheEntry]
#
# stuff for tracking time spent on state-res by room
#
# tracks the amount of work done on state res per room
self._state_res_metrics = defaultdict(
_StateResMetrics
) # type: DefaultDict[str, _StateResMetrics]
self.clock.looping_call(self._report_metrics, 120 * 1000)
@log_function
async def resolve_state_groups(
self,
room_id: str,
room_version: str,
state_groups_ids: Dict[int, StateMap[str]],
event_map: Optional[Dict[str, EventBase]],
state_res_store: "StateResolutionStore",
) -> _StateCacheEntry:
"""Resolves conflicts between a set of state groups
Always generates a new state group (unless we hit the cache), so should
not be called for a single state group
Args:
room_id: room we are resolving for (used for logging and sanity checks)
room_version: version of the room
state_groups_ids:
A map from state group id to the state in that state group
(where 'state' is a map from state key to event id)
event_map:
a dict from event_id to event, for any events that we happen to
have in flight (eg, those currently being persisted). This will be
used as a starting point for finding the state we need; any missing
events will be requested via state_res_store.
If None, all events will be fetched via state_res_store.
state_res_store
Returns:
The resolved state
"""
group_names = frozenset(state_groups_ids.keys())
with (await self.resolve_linearizer.queue(group_names)):
cache = self._state_cache.get(group_names, None)
if cache:
return cache
logger.info(
"Resolving state for %s with groups %s",
room_id,
list(group_names),
)
state_groups_histogram.observe(len(state_groups_ids))
new_state = await self.resolve_events_with_store(
room_id,
room_version,
list(state_groups_ids.values()),
event_map=event_map,
state_res_store=state_res_store,
)
# if the new state matches any of the input state groups, we can
# use that state group again. Otherwise we will generate a state_id
# which will be used as a cache key for future resolutions, but
# not get persisted.
with Measure(self.clock, "state.create_group_ids"):
cache = _make_state_cache_entry(new_state, state_groups_ids)
self._state_cache[group_names] = cache
return cache
async def resolve_events_with_store(
self,
room_id: str,
room_version: str,
state_sets: Sequence[StateMap[str]],
event_map: Optional[Dict[str, EventBase]],
state_res_store: "StateResolutionStore",
) -> StateMap[str]:
"""
Args:
room_id: the room we are working in
room_version: Version of the room
state_sets: List of dicts of (type, state_key) -> event_id,
which are the different state groups to resolve.
event_map:
a dict from event_id to event, for any events that we happen to
have in flight (eg, those currently being persisted). This will be
used as a starting point for finding the state we need; any missing
events will be requested via state_map_factory.
If None, all events will be fetched via state_res_store.
state_res_store: a place to fetch events from
Returns:
a map from (type, state_key) to event_id.
"""
try:
with Measure(self.clock, "state._resolve_events") as m:
v = KNOWN_ROOM_VERSIONS[room_version]
if v.state_res == StateResolutionVersions.V1:
return await v1.resolve_events_with_store(
room_id, state_sets, event_map, state_res_store.get_events
)
else:
return await v2.resolve_events_with_store(
self.clock,
room_id,
room_version,
state_sets,
event_map,
state_res_store,
)
finally:
self._record_state_res_metrics(room_id, m.get_resource_usage())
def _record_state_res_metrics(self, room_id: str, rusage: ContextResourceUsage):
room_metrics = self._state_res_metrics[room_id]
room_metrics.cpu_time += rusage.ru_utime + rusage.ru_stime
room_metrics.db_time += rusage.db_txn_duration_sec
room_metrics.db_events += rusage.evt_db_fetch_count
def _report_metrics(self):
if not self._state_res_metrics:
# no state res has happened since the last iteration: don't bother logging.
return
self._report_biggest(
lambda i: i.cpu_time,
"CPU time",
_biggest_room_by_cpu_counter,
)
self._report_biggest(
lambda i: i.db_time,
"DB time",
_biggest_room_by_db_counter,
)
self._state_res_metrics.clear()
def _report_biggest(
self,
extract_key: Callable[[_StateResMetrics], Any],
metric_name: str,
prometheus_counter_metric: Counter,
) -> None:
"""Report metrics on the biggest rooms for state res
Args:
extract_key: a callable which, given a _StateResMetrics, extracts a single
metric to sort by.
metric_name: the name of the metric we have extracted, for the log line
prometheus_counter_metric: a prometheus metric recording the sum of the
the extracted metric
"""
n_to_log = 10
if not metrics_logger.isEnabledFor(logging.DEBUG):
# only need the most expensive if we don't have debug logging, which
# allows nlargest() to degrade to max()
n_to_log = 1
items = self._state_res_metrics.items()
# log the N biggest rooms
biggest = heapq.nlargest(
n_to_log, items, key=lambda i: extract_key(i[1])
) # type: List[Tuple[str, _StateResMetrics]]
metrics_logger.debug(
"%i biggest rooms for state-res by %s: %s",
len(biggest),
metric_name,
["%s (%gs)" % (r, extract_key(m)) for (r, m) in biggest],
)
# report info on the single biggest to prometheus
_, biggest_metrics = biggest[0]
prometheus_counter_metric.inc(extract_key(biggest_metrics))
def _make_state_cache_entry(
new_state: StateMap[str], state_groups_ids: Dict[int, StateMap[str]]
) -> _StateCacheEntry:
"""Given a resolved state, and a set of input state groups, pick one to base
a new state group on (if any), and return an appropriately-constructed
_StateCacheEntry.
Args:
new_state: resolved state map (mapping from (type, state_key) to event_id)
state_groups_ids:
map from state group id to the state in that state group (where
'state' is a map from state key to event id)
Returns:
The cache entry.
"""
# if the new state matches any of the input state groups, we can
# use that state group again. Otherwise we will generate a state_id
# which will be used as a cache key for future resolutions, but
# not get persisted.
# first look for exact matches
new_state_event_ids = set(new_state.values())
for sg, state in state_groups_ids.items():
if len(new_state_event_ids) != len(state):
continue
old_state_event_ids = set(state.values())
if new_state_event_ids == old_state_event_ids:
# got an exact match.
return _StateCacheEntry(state=new_state, state_group=sg)
# TODO: We want to create a state group for this set of events, to
# increase cache hits, but we need to make sure that it doesn't
# end up as a prev_group without being added to the database
# failing that, look for the closest match.
prev_group = None
delta_ids = None # type: Optional[StateMap[str]]
for old_group, old_state in state_groups_ids.items():
n_delta_ids = {k: v for k, v in new_state.items() if old_state.get(k) != v}
if not delta_ids or len(n_delta_ids) < len(delta_ids):
prev_group = old_group
delta_ids = n_delta_ids
return _StateCacheEntry(
state=new_state, state_group=None, prev_group=prev_group, delta_ids=delta_ids
)
@attr.s(slots=True)
class StateResolutionStore:
"""Interface that allows state resolution algorithms to access the database
in well defined way.
Args:
store (DataStore)
"""
store = attr.ib()
def get_events(
self, event_ids: Iterable[str], allow_rejected: bool = False
) -> Awaitable[Dict[str, EventBase]]:
"""Get events from the database
Args:
event_ids: The event_ids of the events to fetch
allow_rejected: If True return rejected events.
Returns:
An awaitable which resolves to a dict from event_id to event.
"""
return self.store.get_events(
event_ids,
redact_behaviour=EventRedactBehaviour.AS_IS,
get_prev_content=False,
allow_rejected=allow_rejected,
)
def get_auth_chain_difference(
self, room_id: str, state_sets: List[Set[str]]
) -> Awaitable[Set[str]]:
"""Given sets of state events figure out the auth chain difference (as
per state res v2 algorithm).
This equivalent to fetching the full auth chain for each set of state
and returning the events that don't appear in each and every auth
chain.
Returns:
An awaitable that resolves to a set of event IDs.
"""
return self.store.get_auth_chain_difference(room_id, state_sets)
|