summary refs log tree commit diff
path: root/synapse/replication/tcp/streams/events.py
blob: 50c4a5ba03a1f591cebdbe653d135b6086ada3e0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright 2017 Vector Creations Ltd
# Copyright 2019 New Vector Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import heapq
from typing import TYPE_CHECKING, Iterable, Optional, Tuple, Type, TypeVar, cast

import attr

from synapse.replication.tcp.streams._base import (
    Stream,
    StreamRow,
    StreamUpdateResult,
    Token,
)

if TYPE_CHECKING:
    from synapse.server import HomeServer

"""Handling of the 'events' replication stream

This stream contains rows of various types. Each row therefore contains a 'type'
identifier before the real data. For example::

    RDATA events batch ["state", ["!room:id", "m.type", "", "$event:id"]]
    RDATA events 12345 ["ev", ["$event:id", "!room:id", "m.type", null, null]]

An "ev" row is sent for each new event. The fields in the data part are:

 * The new event id
 * The room id for the event
 * The type of the new event
 * The state key of the event, for state events
 * The event id of an event which is redacted by this event.

A "state" row is sent whenever the "current state" in a room changes. The fields in the
data part are:

 * The room id for the state change
 * The event type of the state which has changed
 * The state_key of the state which has changed
 * The event id of the new state

"""


@attr.s(slots=True, frozen=True, auto_attribs=True)
class EventsStreamRow:
    """A parsed row from the events replication stream"""

    type: str  # the TypeId of one of the *EventsStreamRows
    data: "BaseEventsStreamRow"


T = TypeVar("T", bound="BaseEventsStreamRow")


class BaseEventsStreamRow:
    """Base class for rows to be sent in the events stream.

    Specifies how to identify, serialize and deserialize the different types.
    """

    # Unique string that ids the type. Must be overridden in sub classes.
    TypeId: str

    @classmethod
    def from_data(cls: Type[T], data: Iterable[Optional[str]]) -> T:
        """Parse the data from the replication stream into a row.

        By default we just call the constructor with the data list as arguments

        Args:
            data: The value of the data object from the replication stream
        """
        return cls(*data)


@attr.s(slots=True, frozen=True, auto_attribs=True)
class EventsStreamEventRow(BaseEventsStreamRow):
    TypeId = "ev"

    event_id: str
    room_id: str
    type: str
    state_key: Optional[str]
    redacts: Optional[str]
    relates_to: Optional[str]
    membership: Optional[str]
    rejected: bool


@attr.s(slots=True, frozen=True, auto_attribs=True)
class EventsStreamCurrentStateRow(BaseEventsStreamRow):
    TypeId = "state"

    room_id: str
    type: str
    state_key: str
    event_id: Optional[str]


_EventRows: Tuple[Type[BaseEventsStreamRow], ...] = (
    EventsStreamEventRow,
    EventsStreamCurrentStateRow,
)

TypeToRow = {Row.TypeId: Row for Row in _EventRows}


class EventsStream(Stream):
    """We received a new event, or an event went from being an outlier to not"""

    NAME = "events"

    def __init__(self, hs: "HomeServer"):
        self._store = hs.get_datastore()
        super().__init__(
            hs.get_instance_name(),
            self._store._stream_id_gen.get_current_token_for_writer,
            self._update_function,
        )

    async def _update_function(
        self,
        instance_name: str,
        from_token: Token,
        current_token: Token,
        target_row_count: int,
    ) -> StreamUpdateResult:

        # the events stream merges together three separate sources:
        #  * new events
        #  * current_state changes
        #  * events which were previously outliers, but have now been de-outliered.
        #
        # The merge operation is complicated by the fact that we only have a single
        # "stream token" which is supposed to indicate how far we have got through
        # all three streams. It's therefore no good to return rows 1-1000 from the
        # "new events" table if the state_deltas are limited to rows 1-100 by the
        # target_row_count.
        #
        # In other words: we must pick a new upper limit, and must return *all* rows
        # up to that point for each of the three sources.
        #
        # Start by trying to split the target_row_count up. We expect to have a
        # negligible number of ex-outliers, and a rough approximation based on recent
        # traffic on sw1v.org shows that there are approximately the same number of
        # event rows between a given pair of stream ids as there are state
        # updates, so let's split our target_row_count among those two types. The target
        # is only an approximation - it doesn't matter if we end up going a bit over it.

        target_row_count //= 2

        # now we fetch up to that many rows from the events table

        event_rows = await self._store.get_all_new_forward_event_rows(
            instance_name, from_token, current_token, target_row_count
        )

        # we rely on get_all_new_forward_event_rows strictly honouring the limit, so
        # that we know it is safe to just take upper_limit = event_rows[-1][0].
        assert (
            len(event_rows) <= target_row_count
        ), "get_all_new_forward_event_rows did not honour row limit"

        # if we hit the limit on event_updates, there's no point in going beyond the
        # last stream_id in the batch for the other sources.

        if len(event_rows) == target_row_count:
            limited = True
            upper_limit: int = event_rows[-1][0]
        else:
            limited = False
            upper_limit = current_token

        # next up is the state delta table.
        (
            state_rows,
            upper_limit,
            state_rows_limited,
        ) = await self._store.get_all_updated_current_state_deltas(
            instance_name, from_token, upper_limit, target_row_count
        )

        limited = limited or state_rows_limited

        # finally, fetch the ex-outliers rows. We assume there are few enough of these
        # not to bother with the limit.

        ex_outliers_rows = await self._store.get_ex_outlier_stream_rows(
            instance_name, from_token, upper_limit
        )

        # we now need to turn the raw database rows returned into tuples suitable
        # for the replication protocol (basically, we add an identifier to
        # distinguish the row type). At the same time, we can limit the event_rows
        # to the max stream_id from state_rows.

        event_updates: Iterable[Tuple[int, Tuple]] = (
            (stream_id, (EventsStreamEventRow.TypeId, rest))
            for (stream_id, *rest) in event_rows
            if stream_id <= upper_limit
        )

        state_updates: Iterable[Tuple[int, Tuple]] = (
            (stream_id, (EventsStreamCurrentStateRow.TypeId, rest))
            for (stream_id, *rest) in state_rows
        )

        ex_outliers_updates: Iterable[Tuple[int, Tuple]] = (
            (stream_id, (EventsStreamEventRow.TypeId, rest))
            for (stream_id, *rest) in ex_outliers_rows
        )

        # we need to return a sorted list, so merge them together.
        updates = list(heapq.merge(event_updates, state_updates, ex_outliers_updates))
        return updates, upper_limit, limited

    @classmethod
    def parse_row(cls, row: StreamRow) -> "EventsStreamRow":
        (typ, data) = cast(Tuple[str, Iterable[Optional[str]]], row)
        event_stream_row_data = TypeToRow[typ].from_data(data)
        return EventsStreamRow(typ, event_stream_row_data)