summary refs log tree commit diff
path: root/synapse/metrics/_gc.py
blob: d16481a0f66bdba9838ba64911b8c3d0cf3088ca (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#
# This file is licensed under the Affero General Public License (AGPL) version 3.
#
# Copyright 2015-2022 The Matrix.org Foundation C.I.C.
# Copyright (C) 2023 New Vector, Ltd
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# See the GNU Affero General Public License for more details:
# <https://www.gnu.org/licenses/agpl-3.0.html>.
#
# Originally licensed under the Apache License, Version 2.0:
# <http://www.apache.org/licenses/LICENSE-2.0>.
#
# [This file includes modifications made by New Vector Limited]
#
#


import gc
import logging
import platform
import time
from typing import Iterable

from prometheus_client.core import (
    REGISTRY,
    CounterMetricFamily,
    Gauge,
    GaugeMetricFamily,
    Histogram,
    Metric,
)

from twisted.internet import task

from synapse.metrics._types import Collector

"""Prometheus metrics for garbage collection"""


logger = logging.getLogger(__name__)

# The minimum time in seconds between GCs for each generation, regardless of the current GC
# thresholds and counts.
MIN_TIME_BETWEEN_GCS = (1.0, 10.0, 30.0)

running_on_pypy = platform.python_implementation() == "PyPy"

#
# Python GC metrics
#

gc_unreachable = Gauge("python_gc_unreachable_total", "Unreachable GC objects", ["gen"])
gc_time = Histogram(
    "python_gc_time",
    "Time taken to GC (sec)",
    ["gen"],
    buckets=[
        0.0025,
        0.005,
        0.01,
        0.025,
        0.05,
        0.10,
        0.25,
        0.50,
        1.00,
        2.50,
        5.00,
        7.50,
        15.00,
        30.00,
        45.00,
        60.00,
    ],
)


class GCCounts(Collector):
    def collect(self) -> Iterable[Metric]:
        cm = GaugeMetricFamily("python_gc_counts", "GC object counts", labels=["gen"])
        for n, m in enumerate(gc.get_count()):
            cm.add_metric([str(n)], m)

        yield cm


def install_gc_manager() -> None:
    """Disable automatic GC, and replace it with a task that runs every 100ms

    This means that (a) we can limit how often GC runs; (b) we can get some metrics
    about GC activity.

    It does nothing on PyPy.
    """

    if running_on_pypy:
        return

    REGISTRY.register(GCCounts())

    gc.disable()

    # The time (in seconds since the epoch) of the last time we did a GC for each generation.
    _last_gc = [0.0, 0.0, 0.0]

    def _maybe_gc() -> None:
        # Check if we need to do a manual GC (since its been disabled), and do
        # one if necessary. Note we go in reverse order as e.g. a gen 1 GC may
        # promote an object into gen 2, and we don't want to handle the same
        # object multiple times.
        threshold = gc.get_threshold()
        counts = gc.get_count()
        end = time.time()
        for i in (2, 1, 0):
            # We check if we need to do one based on a straightforward
            # comparison between the threshold and count. We also do an extra
            # check to make sure that we don't a GC too often.
            if threshold[i] < counts[i] and MIN_TIME_BETWEEN_GCS[i] < end - _last_gc[i]:
                if i == 0:
                    logger.debug("Collecting gc %d", i)
                else:
                    logger.info("Collecting gc %d", i)

                start = time.time()
                unreachable = gc.collect(i)
                end = time.time()

                _last_gc[i] = end

                gc_time.labels(i).observe(end - start)
                gc_unreachable.labels(i).set(unreachable)

    gc_task = task.LoopingCall(_maybe_gc)
    gc_task.start(0.1)


#
# PyPy GC / memory metrics
#


class PyPyGCStats(Collector):
    def collect(self) -> Iterable[Metric]:
        # @stats is a pretty-printer object with __str__() returning a nice table,
        # plus some fields that contain data from that table.
        # unfortunately, fields are pretty-printed themselves (i. e. '4.5MB').
        stats = gc.get_stats(memory_pressure=False)  # type: ignore
        # @s contains same fields as @stats, but as actual integers.
        s = stats._s  # type: ignore

        # also note that field naming is completely braindead
        # and only vaguely correlates with the pretty-printed table.
        # >>>> gc.get_stats(False)
        # Total memory consumed:
        #     GC used:            8.7MB (peak: 39.0MB)        # s.total_gc_memory, s.peak_memory
        #        in arenas:            3.0MB                  # s.total_arena_memory
        #        rawmalloced:          1.7MB                  # s.total_rawmalloced_memory
        #        nursery:              4.0MB                  # s.nursery_size
        #     raw assembler used: 31.0kB                      # s.jit_backend_used
        #     -----------------------------
        #     Total:              8.8MB                       # stats.memory_used_sum
        #
        #     Total memory allocated:
        #     GC allocated:            38.7MB (peak: 41.1MB)  # s.total_allocated_memory, s.peak_allocated_memory
        #        in arenas:            30.9MB                 # s.peak_arena_memory
        #        rawmalloced:          4.1MB                  # s.peak_rawmalloced_memory
        #        nursery:              4.0MB                  # s.nursery_size
        #     raw assembler allocated: 1.0MB                  # s.jit_backend_allocated
        #     -----------------------------
        #     Total:                   39.7MB                 # stats.memory_allocated_sum
        #
        #     Total time spent in GC:  0.073                  # s.total_gc_time

        pypy_gc_time = CounterMetricFamily(
            "pypy_gc_time_seconds_total",
            "Total time spent in PyPy GC",
            labels=[],
        )
        pypy_gc_time.add_metric([], s.total_gc_time / 1000)
        yield pypy_gc_time

        pypy_mem = GaugeMetricFamily(
            "pypy_memory_bytes",
            "Memory tracked by PyPy allocator",
            labels=["state", "class", "kind"],
        )
        # memory used by JIT assembler
        pypy_mem.add_metric(["used", "", "jit"], s.jit_backend_used)
        pypy_mem.add_metric(["allocated", "", "jit"], s.jit_backend_allocated)
        # memory used by GCed objects
        pypy_mem.add_metric(["used", "", "arenas"], s.total_arena_memory)
        pypy_mem.add_metric(["allocated", "", "arenas"], s.peak_arena_memory)
        pypy_mem.add_metric(["used", "", "rawmalloced"], s.total_rawmalloced_memory)
        pypy_mem.add_metric(["allocated", "", "rawmalloced"], s.peak_rawmalloced_memory)
        pypy_mem.add_metric(["used", "", "nursery"], s.nursery_size)
        pypy_mem.add_metric(["allocated", "", "nursery"], s.nursery_size)
        # totals
        pypy_mem.add_metric(["used", "totals", "gc"], s.total_gc_memory)
        pypy_mem.add_metric(["allocated", "totals", "gc"], s.total_allocated_memory)
        pypy_mem.add_metric(["used", "totals", "gc_peak"], s.peak_memory)
        pypy_mem.add_metric(["allocated", "totals", "gc_peak"], s.peak_allocated_memory)
        yield pypy_mem


if running_on_pypy:
    REGISTRY.register(PyPyGCStats())