1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
About
=====
Matrix is an ambitious new ecosystem for open federated Instant Messaging and VoIP[1].
Matrix specifies a set of pragmatic RESTful HTTP JSON APIs as an open standard, providing:
- Creating and managing fully distributed chat rooms with no
single points of control or failure
- Eventually-consistent cryptographically secure synchronisation of room
state across a global open network of federated servers and services
- Sending and receiving extensible messages in a room with (optional)
end-to-end encryption[2]
- Inviting, joining, leaving, kicking, banning room members
- Managing user accounts (registration, login, logout)
- Using 3rd Party IDs (3PIDs) such as email addresses, phone numbers,
Facebook accounts to authenticate, identify and discover users on Matrix.
- Placing 1:1 VoIP and Video calls (in development)
These APIs are intended to be implemented on a wide range of servers, services
and clients which then form the Matrix ecosystem, and allow developers to build
messaging and VoIP functionality on top of the open Matrix community rather than
using closed or proprietary solutions. The hope is for Matrix to act as the
building blocks for a new generation of fully open and interoperable messaging
and VoIP apps for the internet.
Synapse is a reference "homeserver" implementation of Matrix from the core
development team at matrix.org, written in Python/Twisted for clarity and
simplicity. It is intended to showcase the concept of Matrix and let folks see
the spec in the context of a codebase and let you run your own homeserver and
generally help bootstrap the ecosystem.
In Matrix, every user runs one or more Matrix clients, which connect through to
a Matrix homeserver which stores all their personal chat history and user
account information - much as a mail client connects through to an IMAP/SMTP
server. Just like email, you can either run your own Matrix homeserver and
control and own your own communications and history or use one hosted by someone
else (e.g. matrix.org) - there is no single point of control or mandatory
service provider in Matrix, unlike WhatsApp, Facebook, Hangouts, etc.
Synapse ships with two basic demo Matrix clients: webclient (a basic group chat web client demo implemented in AngularJS) and cmdclient (a basic Python commandline utility which lets you easily see what the JSON APIs are up to).
We'd like to invite you to take a look at the Matrix spec, try to run a homeserver, and join the existing Matrix chatrooms already out there, experiment with the APIs and the demo clients, and let us know your thoughts at https://github.com/matrix-org/synapse/issues or at matrix@matrix.org.
Thanks for trying Matrix!
[1] VoIP currently in development
[2] End-to-end encryption is currently in development
Directory Structure
===================
::
.
├── cmdclient Basic CLI python Matrix client
├── demo Scripts for running standalone Matrix demos
├── docs All doc, including the draft Matrix API spec
│ ├── client-server The client-server Matrix API spec
│ ├── model Domain-specific elements of the Matrix API spec
│ ├── server-server The server-server model of the Matrix API spec
│ └── sphinx The internal API doc of the Synapse homeserver
├── experiments Early experiments of using Synapse's internal APIs
├── graph Visualisation of Matrix's distributed message store
├── synapse The reference Matrix homeserver implementation
│ ├── api Common building blocks for the APIs
│ │ ├── events Definition of state representation Events
│ │ └── streams Definition of streamable Event objects
│ ├── app The __main__ entry point for the homeserver
│ ├── crypto The PKI client/server used for secure federation
│ │ └── resource PKI helper objects (e.g. keys)
│ ├── federation Server-server state replication logic
│ ├── handlers The main business logic of the homeserver
│ ├── http Wrappers around Twisted's HTTP server & client
│ ├── rest Servlet-style RESTful API
│ ├── storage Persistence subsystem (currently only sqlite3)
│ │ └── schema sqlite persistence schema
│ └── util Synapse-specific utilities
├── tests Unit tests for the Synapse homeserver
└── webclient Basic AngularJS Matrix web client
Installation
============
First, the dependencies need to be installed. Start by installing
'python2.7-dev' and the various tools of the compiler toolchain.
N.B. that python 2.x where x >= 7 is required.
Installing prerequisites on ubuntu::
$ sudo apt-get install build-essential python2.7-dev libffi-dev
Installing prerequisites on Mac OS X::
$ xcode-select --install
The homeserver has a number of external dependencies, that are easiest
to install by making setup.py do so, in --user mode::
$ python setup.py develop --user
This will run a process of downloading and installing into your
user's .local/lib directory all of the required dependencies that are
missing.
Once this is done, you may wish to run the homeserver's unit tests, to
check that everything is installed as it should be::
$ python setup.py test
This should end with a 'PASSED' result::
Ran 143 tests in 0.601s
PASSED (successes=143)
Running The Synapse Homeserver
==============================
In order for other homeservers to send messages to your server, it will need to
be publicly visible on the internet, and they will need to know its host name.
You have two choices here, which will influence the form of your matrix user
IDs:
1) Use the machine's own hostname as available on public DNS in the form of its
A or AAAA records. This is easier to set up initially, perhaps for testing,
but lacks the flexibility of SRV.
2) Set up a SRV record for your domain name. This requires you create a SRV
record in DNS, but gives the flexibility to run the server on your own
choice of TCP port, on a machine that might not be the same name as the
domain name.
For the first form, simply pass the required hostname (of the machine) as the
--host parameter::
$ python synapse/app/homeserver.py --host machine.my.domain.name
For the second form, first create your SRV record and publish it in DNS. This
needs to be named _matrix._tcp.YOURDOMAIN, and point at at least one hostname
and port where the server is running. (At the current time synapse does not
support clustering multiple servers into a single logical homeserver). The DNS
record would then look something like::
_matrix._tcp IN SRV 10 0 8448 machine.my.domain.name.
At this point, you should then run the homeserver with the hostname of this
SRV record, as that is the name other machines will expect it to have::
$ python synapse/app/homeserver.py --host my.domain.name --port 8448
You may additionally want to pass one or more "-v" options, in order to
increase the verbosity of logging output; at least for initial testing.
For the initial alpha release, the homeserver is not speaking TLS for
either client-server or server-server traffic for ease of debugging. We have
also not spent any time yet getting the homeserver to run behind loadbalancers.
Running The Demo Web Client
===========================
At the present time, the web client is not directly served by the homeserver's
HTTP server. To serve this in a form the web browser can reach, arrange for the
'webclient' sub-directory to be made available by any sort of HTTP server that
can serve static files. For example, python's SimpleHTTPServer will suffice::
$ cd webclient
$ python -m SimpleHTTPServer
You can now point your browser at http://localhost:8000/ to find the client.
If this is the first time you have used the client from that browser (it uses
HTML5 local storage to remember its config), you will need to log in to your
account. If you don't yet have an account, because you've just started the
homeserver for the first time, then you'll need to register one.
Registering A New Account
-------------------------
Your new user name will be formed partly from the hostname your server is
running as, and partly from a localpart you specify when you create the
account. Your name will take the form of::
@localpart:my.domain.here
(pronounced "at localpart on my dot domain dot here")
Specify your desired localpart in the topmost box of the "Register for an
account" form, and click the "Register" button. Hostnames can contain ports if
required due to lack of SRV records (e.g. @matthew:localhost:8080 on an internal
synapse sandbox running on localhost)
Logging In To An Existing Account
---------------------------------
[[TODO(paul): It seems the current web client still requests an access_token -
I suspect this part will need updating before we can point people at how to
perform e.g. user+password or 3PID authenticated login]]
Building Documentation
======================
Before building documentation install spinx and sphinxcontrib-napoleon::
$ pip install sphinx
$ pip install sphinxcontrib-napoleon
Building documentation::
$ python setup.py build_sphinx
|