| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
| |
The idea here is that if an instance persists an event via the replication HTTP API it can return before we receive that event over replication, which can lead to races where code assumes that persisting an event immediately updates various caches (e.g. current state of the room).
Most of Synapse doesn't hit such races, so we don't do the waiting automagically, instead we do so where necessary to avoid unnecessary delays. We may decide to change our minds here if it turns out there are a lot of subtle races going on.
People probably want to look at this commit by commit.
|
|
|
|
|
| |
Before all streams were only written to from master, so only master needed to respond to `REPLICATE` commands.
Before all instances wrote to the cache invalidation stream, but didn't respond to `REPLICATE`. This was a bug, which could lead to missed rows from cache invalidation stream if an instance is restarted, however all the caches would be empty in that case so it wasn't a problem.
|
|
|
| |
For in memory streams when fetching updates on workers we need to query the source of the stream, which currently is hard coded to be master. This PR threads through the source instance we received via `POSITION` through to the update function in each stream, which can then be passed to the replication client for in memory streams.
|
|
|
|
|
| |
there doesn't seem to be much point in passing this limit all around, since
both sides agree it's meant to be 100.
|
|
This changes the replication protocol so that the server does not send down `RDATA` for rows that happened before the client connected. Instead, the server will send a `POSITION` and clients then query the database (or master out of band) to get up to date.
|