diff options
Diffstat (limited to 'tests/util/test_itertools.py')
-rw-r--r-- | tests/util/test_itertools.py | 41 |
1 files changed, 40 insertions, 1 deletions
diff --git a/tests/util/test_itertools.py b/tests/util/test_itertools.py index 0ab0a91483..1184cea5a3 100644 --- a/tests/util/test_itertools.py +++ b/tests/util/test_itertools.py @@ -12,7 +12,9 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. -from synapse.util.iterutils import chunk_seq +from typing import Dict, List + +from synapse.util.iterutils import chunk_seq, sorted_topologically from tests.unittest import TestCase @@ -45,3 +47,40 @@ class ChunkSeqTests(TestCase): self.assertEqual( list(parts), [], ) + + +class SortTopologically(TestCase): + def test_empty(self): + "Test that an empty graph works correctly" + + graph = {} # type: Dict[int, List[int]] + self.assertEqual(list(sorted_topologically([], graph)), []) + + def test_disconnected(self): + "Test that a graph with no edges work" + + graph = {1: [], 2: []} # type: Dict[int, List[int]] + + # For disconnected nodes the output is simply sorted. + self.assertEqual(list(sorted_topologically([1, 2], graph)), [1, 2]) + + def test_linear(self): + "Test that a simple `4 -> 3 -> 2 -> 1` graph works" + + graph = {1: [], 2: [1], 3: [2], 4: [3]} # type: Dict[int, List[int]] + + self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4]) + + def test_subset(self): + "Test that only sorting a subset of the graph works" + graph = {1: [], 2: [1], 3: [2], 4: [3]} # type: Dict[int, List[int]] + + self.assertEqual(list(sorted_topologically([4, 3], graph)), [3, 4]) + + def test_fork(self): + "Test that a forked graph works" + graph = {1: [], 2: [1], 3: [1], 4: [2, 3]} # type: Dict[int, List[int]] + + # Valid orderings are `[1, 3, 2, 4]` or `[1, 2, 3, 4]`, but we should + # always get the same one. + self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4]) |