summary refs log tree commit diff
path: root/synapse/storage/persist_events.py
diff options
context:
space:
mode:
Diffstat (limited to 'synapse/storage/persist_events.py')
-rw-r--r--synapse/storage/persist_events.py652
1 files changed, 652 insertions, 0 deletions
diff --git a/synapse/storage/persist_events.py b/synapse/storage/persist_events.py
new file mode 100644
index 0000000000..cf66225574
--- /dev/null
+++ b/synapse/storage/persist_events.py
@@ -0,0 +1,652 @@
+# -*- coding: utf-8 -*-
+# Copyright 2014-2016 OpenMarket Ltd
+# Copyright 2018-2019 New Vector Ltd
+# Copyright 2019 The Matrix.org Foundation C.I.C.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import logging
+from collections import deque, namedtuple
+
+from six import iteritems
+from six.moves import range
+
+from prometheus_client import Counter, Histogram
+
+from twisted.internet import defer
+
+from synapse.api.constants import EventTypes
+from synapse.logging.context import PreserveLoggingContext, make_deferred_yieldable
+from synapse.metrics.background_process_metrics import run_as_background_process
+from synapse.state import StateResolutionStore
+from synapse.storage.data_stores import DataStores
+from synapse.util.async_helpers import ObservableDeferred
+from synapse.util.metrics import Measure
+
+logger = logging.getLogger(__name__)
+
+# The number of times we are recalculating the current state
+state_delta_counter = Counter("synapse_storage_events_state_delta", "")
+
+# The number of times we are recalculating state when there is only a
+# single forward extremity
+state_delta_single_event_counter = Counter(
+    "synapse_storage_events_state_delta_single_event", ""
+)
+
+# The number of times we are reculating state when we could have resonably
+# calculated the delta when we calculated the state for an event we were
+# persisting.
+state_delta_reuse_delta_counter = Counter(
+    "synapse_storage_events_state_delta_reuse_delta", ""
+)
+
+# The number of forward extremities for each new event.
+forward_extremities_counter = Histogram(
+    "synapse_storage_events_forward_extremities_persisted",
+    "Number of forward extremities for each new event",
+    buckets=(1, 2, 3, 5, 7, 10, 15, 20, 50, 100, 200, 500, "+Inf"),
+)
+
+# The number of stale forward extremities for each new event. Stale extremities
+# are those that were in the previous set of extremities as well as the new.
+stale_forward_extremities_counter = Histogram(
+    "synapse_storage_events_stale_forward_extremities_persisted",
+    "Number of unchanged forward extremities for each new event",
+    buckets=(0, 1, 2, 3, 5, 7, 10, 15, 20, 50, 100, 200, 500, "+Inf"),
+)
+
+
+class _EventPeristenceQueue(object):
+    """Queues up events so that they can be persisted in bulk with only one
+    concurrent transaction per room.
+    """
+
+    _EventPersistQueueItem = namedtuple(
+        "_EventPersistQueueItem", ("events_and_contexts", "backfilled", "deferred")
+    )
+
+    def __init__(self):
+        self._event_persist_queues = {}
+        self._currently_persisting_rooms = set()
+
+    def add_to_queue(self, room_id, events_and_contexts, backfilled):
+        """Add events to the queue, with the given persist_event options.
+
+        NB: due to the normal usage pattern of this method, it does *not*
+        follow the synapse logcontext rules, and leaves the logcontext in
+        place whether or not the returned deferred is ready.
+
+        Args:
+            room_id (str):
+            events_and_contexts (list[(EventBase, EventContext)]):
+            backfilled (bool):
+
+        Returns:
+            defer.Deferred: a deferred which will resolve once the events are
+                persisted. Runs its callbacks *without* a logcontext.
+        """
+        queue = self._event_persist_queues.setdefault(room_id, deque())
+        if queue:
+            # if the last item in the queue has the same `backfilled` setting,
+            # we can just add these new events to that item.
+            end_item = queue[-1]
+            if end_item.backfilled == backfilled:
+                end_item.events_and_contexts.extend(events_and_contexts)
+                return end_item.deferred.observe()
+
+        deferred = ObservableDeferred(defer.Deferred(), consumeErrors=True)
+
+        queue.append(
+            self._EventPersistQueueItem(
+                events_and_contexts=events_and_contexts,
+                backfilled=backfilled,
+                deferred=deferred,
+            )
+        )
+
+        return deferred.observe()
+
+    def handle_queue(self, room_id, per_item_callback):
+        """Attempts to handle the queue for a room if not already being handled.
+
+        The given callback will be invoked with for each item in the queue,
+        of type _EventPersistQueueItem. The per_item_callback will continuously
+        be called with new items, unless the queue becomnes empty. The return
+        value of the function will be given to the deferreds waiting on the item,
+        exceptions will be passed to the deferreds as well.
+
+        This function should therefore be called whenever anything is added
+        to the queue.
+
+        If another callback is currently handling the queue then it will not be
+        invoked.
+        """
+
+        if room_id in self._currently_persisting_rooms:
+            return
+
+        self._currently_persisting_rooms.add(room_id)
+
+        @defer.inlineCallbacks
+        def handle_queue_loop():
+            try:
+                queue = self._get_drainining_queue(room_id)
+                for item in queue:
+                    try:
+                        ret = yield per_item_callback(item)
+                    except Exception:
+                        with PreserveLoggingContext():
+                            item.deferred.errback()
+                    else:
+                        with PreserveLoggingContext():
+                            item.deferred.callback(ret)
+            finally:
+                queue = self._event_persist_queues.pop(room_id, None)
+                if queue:
+                    self._event_persist_queues[room_id] = queue
+                self._currently_persisting_rooms.discard(room_id)
+
+        # set handle_queue_loop off in the background
+        run_as_background_process("persist_events", handle_queue_loop)
+
+    def _get_drainining_queue(self, room_id):
+        queue = self._event_persist_queues.setdefault(room_id, deque())
+
+        try:
+            while True:
+                yield queue.popleft()
+        except IndexError:
+            # Queue has been drained.
+            pass
+
+
+class EventsPersistenceStorage(object):
+    """High level interface for handling persisting newly received events.
+
+    Takes care of batching up events by room, and calculating the necessary
+    current state and forward extremity changes.
+    """
+
+    def __init__(self, hs, stores: DataStores):
+        # We ultimately want to split out the state store from the main store,
+        # so we use separate variables here even though they point to the same
+        # store for now.
+        self.main_store = stores.main
+        self.state_store = stores.main
+
+        self._clock = hs.get_clock()
+        self.is_mine_id = hs.is_mine_id
+        self._event_persist_queue = _EventPeristenceQueue()
+        self._state_resolution_handler = hs.get_state_resolution_handler()
+
+    @defer.inlineCallbacks
+    def persist_events(self, events_and_contexts, backfilled=False):
+        """
+        Write events to the database
+        Args:
+            events_and_contexts: list of tuples of (event, context)
+            backfilled (bool): Whether the results are retrieved from federation
+                via backfill or not. Used to determine if they're "new" events
+                which might update the current state etc.
+
+        Returns:
+            Deferred[int]: the stream ordering of the latest persisted event
+        """
+        partitioned = {}
+        for event, ctx in events_and_contexts:
+            partitioned.setdefault(event.room_id, []).append((event, ctx))
+
+        deferreds = []
+        for room_id, evs_ctxs in iteritems(partitioned):
+            d = self._event_persist_queue.add_to_queue(
+                room_id, evs_ctxs, backfilled=backfilled
+            )
+            deferreds.append(d)
+
+        for room_id in partitioned:
+            self._maybe_start_persisting(room_id)
+
+        yield make_deferred_yieldable(
+            defer.gatherResults(deferreds, consumeErrors=True)
+        )
+
+        max_persisted_id = yield self.main_store.get_current_events_token()
+
+        return max_persisted_id
+
+    @defer.inlineCallbacks
+    def persist_event(self, event, context, backfilled=False):
+        """
+
+        Args:
+            event (EventBase):
+            context (EventContext):
+            backfilled (bool):
+
+        Returns:
+            Deferred: resolves to (int, int): the stream ordering of ``event``,
+            and the stream ordering of the latest persisted event
+        """
+        deferred = self._event_persist_queue.add_to_queue(
+            event.room_id, [(event, context)], backfilled=backfilled
+        )
+
+        self._maybe_start_persisting(event.room_id)
+
+        yield make_deferred_yieldable(deferred)
+
+        max_persisted_id = yield self.main_store.get_current_events_token()
+        return (event.internal_metadata.stream_ordering, max_persisted_id)
+
+    def _maybe_start_persisting(self, room_id):
+        @defer.inlineCallbacks
+        def persisting_queue(item):
+            with Measure(self._clock, "persist_events"):
+                yield self._persist_events(
+                    item.events_and_contexts, backfilled=item.backfilled
+                )
+
+        self._event_persist_queue.handle_queue(room_id, persisting_queue)
+
+    @defer.inlineCallbacks
+    def _persist_events(
+        self, events_and_contexts, backfilled=False, delete_existing=False
+    ):
+        """Calculates the change to current state and forward extremities, and
+        persists the given events and with those updates.
+
+        Args:
+            events_and_contexts (list[(EventBase, EventContext)]):
+            backfilled (bool):
+            delete_existing (bool):
+
+        Returns:
+            Deferred: resolves when the events have been persisted
+        """
+        if not events_and_contexts:
+            return
+
+        chunks = [
+            events_and_contexts[x : x + 100]
+            for x in range(0, len(events_and_contexts), 100)
+        ]
+
+        for chunk in chunks:
+            # We can't easily parallelize these since different chunks
+            # might contain the same event. :(
+
+            # NB: Assumes that we are only persisting events for one room
+            # at a time.
+
+            # map room_id->list[event_ids] giving the new forward
+            # extremities in each room
+            new_forward_extremeties = {}
+
+            # map room_id->(type,state_key)->event_id tracking the full
+            # state in each room after adding these events.
+            # This is simply used to prefill the get_current_state_ids
+            # cache
+            current_state_for_room = {}
+
+            # map room_id->(to_delete, to_insert) where to_delete is a list
+            # of type/state keys to remove from current state, and to_insert
+            # is a map (type,key)->event_id giving the state delta in each
+            # room
+            state_delta_for_room = {}
+
+            if not backfilled:
+                with Measure(self._clock, "_calculate_state_and_extrem"):
+                    # Work out the new "current state" for each room.
+                    # We do this by working out what the new extremities are and then
+                    # calculating the state from that.
+                    events_by_room = {}
+                    for event, context in chunk:
+                        events_by_room.setdefault(event.room_id, []).append(
+                            (event, context)
+                        )
+
+                    for room_id, ev_ctx_rm in iteritems(events_by_room):
+                        latest_event_ids = yield self.main_store.get_latest_event_ids_in_room(
+                            room_id
+                        )
+                        new_latest_event_ids = yield self._calculate_new_extremities(
+                            room_id, ev_ctx_rm, latest_event_ids
+                        )
+
+                        latest_event_ids = set(latest_event_ids)
+                        if new_latest_event_ids == latest_event_ids:
+                            # No change in extremities, so no change in state
+                            continue
+
+                        # there should always be at least one forward extremity.
+                        # (except during the initial persistence of the send_join
+                        # results, in which case there will be no existing
+                        # extremities, so we'll `continue` above and skip this bit.)
+                        assert new_latest_event_ids, "No forward extremities left!"
+
+                        new_forward_extremeties[room_id] = new_latest_event_ids
+
+                        len_1 = (
+                            len(latest_event_ids) == 1
+                            and len(new_latest_event_ids) == 1
+                        )
+                        if len_1:
+                            all_single_prev_not_state = all(
+                                len(event.prev_event_ids()) == 1
+                                and not event.is_state()
+                                for event, ctx in ev_ctx_rm
+                            )
+                            # Don't bother calculating state if they're just
+                            # a long chain of single ancestor non-state events.
+                            if all_single_prev_not_state:
+                                continue
+
+                        state_delta_counter.inc()
+                        if len(new_latest_event_ids) == 1:
+                            state_delta_single_event_counter.inc()
+
+                            # This is a fairly handwavey check to see if we could
+                            # have guessed what the delta would have been when
+                            # processing one of these events.
+                            # What we're interested in is if the latest extremities
+                            # were the same when we created the event as they are
+                            # now. When this server creates a new event (as opposed
+                            # to receiving it over federation) it will use the
+                            # forward extremities as the prev_events, so we can
+                            # guess this by looking at the prev_events and checking
+                            # if they match the current forward extremities.
+                            for ev, _ in ev_ctx_rm:
+                                prev_event_ids = set(ev.prev_event_ids())
+                                if latest_event_ids == prev_event_ids:
+                                    state_delta_reuse_delta_counter.inc()
+                                    break
+
+                        logger.info("Calculating state delta for room %s", room_id)
+                        with Measure(
+                            self._clock, "persist_events.get_new_state_after_events"
+                        ):
+                            res = yield self._get_new_state_after_events(
+                                room_id,
+                                ev_ctx_rm,
+                                latest_event_ids,
+                                new_latest_event_ids,
+                            )
+                            current_state, delta_ids = res
+
+                        # If either are not None then there has been a change,
+                        # and we need to work out the delta (or use that
+                        # given)
+                        if delta_ids is not None:
+                            # If there is a delta we know that we've
+                            # only added or replaced state, never
+                            # removed keys entirely.
+                            state_delta_for_room[room_id] = ([], delta_ids)
+                        elif current_state is not None:
+                            with Measure(
+                                self._clock, "persist_events.calculate_state_delta"
+                            ):
+                                delta = yield self._calculate_state_delta(
+                                    room_id, current_state
+                                )
+                            state_delta_for_room[room_id] = delta
+
+                        # If we have the current_state then lets prefill
+                        # the cache with it.
+                        if current_state is not None:
+                            current_state_for_room[room_id] = current_state
+
+            yield self.main_store._persist_events_and_state_updates(
+                chunk,
+                current_state_for_room=current_state_for_room,
+                state_delta_for_room=state_delta_for_room,
+                new_forward_extremeties=new_forward_extremeties,
+                backfilled=backfilled,
+                delete_existing=delete_existing,
+            )
+
+    @defer.inlineCallbacks
+    def _calculate_new_extremities(self, room_id, event_contexts, latest_event_ids):
+        """Calculates the new forward extremities for a room given events to
+        persist.
+
+        Assumes that we are only persisting events for one room at a time.
+        """
+
+        # we're only interested in new events which aren't outliers and which aren't
+        # being rejected.
+        new_events = [
+            event
+            for event, ctx in event_contexts
+            if not event.internal_metadata.is_outlier()
+            and not ctx.rejected
+            and not event.internal_metadata.is_soft_failed()
+        ]
+
+        latest_event_ids = set(latest_event_ids)
+
+        # start with the existing forward extremities
+        result = set(latest_event_ids)
+
+        # add all the new events to the list
+        result.update(event.event_id for event in new_events)
+
+        # Now remove all events which are prev_events of any of the new events
+        result.difference_update(
+            e_id for event in new_events for e_id in event.prev_event_ids()
+        )
+
+        # Remove any events which are prev_events of any existing events.
+        existing_prevs = yield self.main_store._get_events_which_are_prevs(result)
+        result.difference_update(existing_prevs)
+
+        # Finally handle the case where the new events have soft-failed prev
+        # events. If they do we need to remove them and their prev events,
+        # otherwise we end up with dangling extremities.
+        existing_prevs = yield self.main_store._get_prevs_before_rejected(
+            e_id for event in new_events for e_id in event.prev_event_ids()
+        )
+        result.difference_update(existing_prevs)
+
+        # We only update metrics for events that change forward extremities
+        # (e.g. we ignore backfill/outliers/etc)
+        if result != latest_event_ids:
+            forward_extremities_counter.observe(len(result))
+            stale = latest_event_ids & result
+            stale_forward_extremities_counter.observe(len(stale))
+
+        return result
+
+    @defer.inlineCallbacks
+    def _get_new_state_after_events(
+        self, room_id, events_context, old_latest_event_ids, new_latest_event_ids
+    ):
+        """Calculate the current state dict after adding some new events to
+        a room
+
+        Args:
+            room_id (str):
+                room to which the events are being added. Used for logging etc
+
+            events_context (list[(EventBase, EventContext)]):
+                events and contexts which are being added to the room
+
+            old_latest_event_ids (iterable[str]):
+                the old forward extremities for the room.
+
+            new_latest_event_ids (iterable[str]):
+                the new forward extremities for the room.
+
+        Returns:
+            Deferred[tuple[dict[(str,str), str]|None, dict[(str,str), str]|None]]:
+            Returns a tuple of two state maps, the first being the full new current
+            state and the second being the delta to the existing current state.
+            If both are None then there has been no change.
+
+            If there has been a change then we only return the delta if its
+            already been calculated. Conversely if we do know the delta then
+            the new current state is only returned if we've already calculated
+            it.
+        """
+        # map from state_group to ((type, key) -> event_id) state map
+        state_groups_map = {}
+
+        # Map from (prev state group, new state group) -> delta state dict
+        state_group_deltas = {}
+
+        for ev, ctx in events_context:
+            if ctx.state_group is None:
+                # This should only happen for outlier events.
+                if not ev.internal_metadata.is_outlier():
+                    raise Exception(
+                        "Context for new event %s has no state "
+                        "group" % (ev.event_id,)
+                    )
+                continue
+
+            if ctx.state_group in state_groups_map:
+                continue
+
+            # We're only interested in pulling out state that has already
+            # been cached in the context. We'll pull stuff out of the DB later
+            # if necessary.
+            current_state_ids = ctx.get_cached_current_state_ids()
+            if current_state_ids is not None:
+                state_groups_map[ctx.state_group] = current_state_ids
+
+            if ctx.prev_group:
+                state_group_deltas[(ctx.prev_group, ctx.state_group)] = ctx.delta_ids
+
+        # We need to map the event_ids to their state groups. First, let's
+        # check if the event is one we're persisting, in which case we can
+        # pull the state group from its context.
+        # Otherwise we need to pull the state group from the database.
+
+        # Set of events we need to fetch groups for. (We know none of the old
+        # extremities are going to be in events_context).
+        missing_event_ids = set(old_latest_event_ids)
+
+        event_id_to_state_group = {}
+        for event_id in new_latest_event_ids:
+            # First search in the list of new events we're adding.
+            for ev, ctx in events_context:
+                if event_id == ev.event_id and ctx.state_group is not None:
+                    event_id_to_state_group[event_id] = ctx.state_group
+                    break
+            else:
+                # If we couldn't find it, then we'll need to pull
+                # the state from the database
+                missing_event_ids.add(event_id)
+
+        if missing_event_ids:
+            # Now pull out the state groups for any missing events from DB
+            event_to_groups = yield self.state_store._get_state_group_for_events(
+                missing_event_ids
+            )
+            event_id_to_state_group.update(event_to_groups)
+
+        # State groups of old_latest_event_ids
+        old_state_groups = set(
+            event_id_to_state_group[evid] for evid in old_latest_event_ids
+        )
+
+        # State groups of new_latest_event_ids
+        new_state_groups = set(
+            event_id_to_state_group[evid] for evid in new_latest_event_ids
+        )
+
+        # If they old and new groups are the same then we don't need to do
+        # anything.
+        if old_state_groups == new_state_groups:
+            return None, None
+
+        if len(new_state_groups) == 1 and len(old_state_groups) == 1:
+            # If we're going from one state group to another, lets check if
+            # we have a delta for that transition. If we do then we can just
+            # return that.
+
+            new_state_group = next(iter(new_state_groups))
+            old_state_group = next(iter(old_state_groups))
+
+            delta_ids = state_group_deltas.get((old_state_group, new_state_group), None)
+            if delta_ids is not None:
+                # We have a delta from the existing to new current state,
+                # so lets just return that. If we happen to already have
+                # the current state in memory then lets also return that,
+                # but it doesn't matter if we don't.
+                new_state = state_groups_map.get(new_state_group)
+                return new_state, delta_ids
+
+        # Now that we have calculated new_state_groups we need to get
+        # their state IDs so we can resolve to a single state set.
+        missing_state = new_state_groups - set(state_groups_map)
+        if missing_state:
+            group_to_state = yield self.state_store._get_state_for_groups(missing_state)
+            state_groups_map.update(group_to_state)
+
+        if len(new_state_groups) == 1:
+            # If there is only one state group, then we know what the current
+            # state is.
+            return state_groups_map[new_state_groups.pop()], None
+
+        # Ok, we need to defer to the state handler to resolve our state sets.
+
+        state_groups = {sg: state_groups_map[sg] for sg in new_state_groups}
+
+        events_map = {ev.event_id: ev for ev, _ in events_context}
+
+        # We need to get the room version, which is in the create event.
+        # Normally that'd be in the database, but its also possible that we're
+        # currently trying to persist it.
+        room_version = None
+        for ev, _ in events_context:
+            if ev.type == EventTypes.Create and ev.state_key == "":
+                room_version = ev.content.get("room_version", "1")
+                break
+
+        if not room_version:
+            room_version = yield self.main_store.get_room_version(room_id)
+
+        logger.debug("calling resolve_state_groups from preserve_events")
+        res = yield self._state_resolution_handler.resolve_state_groups(
+            room_id,
+            room_version,
+            state_groups,
+            events_map,
+            state_res_store=StateResolutionStore(self.main_store),
+        )
+
+        return res.state, None
+
+    @defer.inlineCallbacks
+    def _calculate_state_delta(self, room_id, current_state):
+        """Calculate the new state deltas for a room.
+
+        Assumes that we are only persisting events for one room at a time.
+
+        Returns:
+            tuple[list, dict] (to_delete, to_insert): where to_delete are the
+            type/state_keys to remove from current_state_events and `to_insert`
+            are the updates to current_state_events.
+        """
+        existing_state = yield self.main_store.get_current_state_ids(room_id)
+
+        to_delete = [key for key in existing_state if key not in current_state]
+
+        to_insert = {
+            key: ev_id
+            for key, ev_id in iteritems(current_state)
+            if ev_id != existing_state.get(key)
+        }
+
+        return to_delete, to_insert