diff options
Diffstat (limited to 'synapse/metrics')
-rw-r--r-- | synapse/metrics/metric.py | 53 |
1 files changed, 40 insertions, 13 deletions
diff --git a/synapse/metrics/metric.py b/synapse/metrics/metric.py index c5f0bcbc15..f480aae614 100644 --- a/synapse/metrics/metric.py +++ b/synapse/metrics/metric.py @@ -17,24 +17,33 @@ from itertools import chain -# TODO(paul): I can't believe Python doesn't have one of these -def map_concat(func, items): - # flatten a list-of-lists - return list(chain.from_iterable(map(func, items))) +def flatten(items): + """Flatten a list of lists + + Args: + items: iterable[iterable[X]] + + Returns: + list[X]: flattened list + """ + return list(chain.from_iterable(items)) class BaseMetric(object): """Base class for metrics which report a single value per label set """ - def __init__(self, name, labels=[]): + def __init__(self, name, labels=[], alternative_names=[]): """ Args: name (str): principal name for this metric labels (list(str)): names of the labels which will be reported for this metric + alternative_names (iterable(str)): list of alternative names for + this metric. This can be useful to provide a migration path + when renaming metrics. """ - self.name = name + self._names = [name] + list(alternative_names) self.labels = labels # OK not to clone as we never write it def dimension(self): @@ -55,6 +64,22 @@ class BaseMetric(object): for k, v in zip(self.labels, values)]) ) + def _render_for_labels(self, label_values, value): + """Render this metric for a single set of labels + + Args: + label_values (list[str]): values for each of the labels + value: value of the metric at with these labels + + Returns: + iterable[str]: rendered metric + """ + rendered_labels = self._render_key(label_values) + return ( + "%s%s %.12g" % (name, rendered_labels, value) + for name in self._names + ) + def render(self): """Render this metric @@ -110,11 +135,11 @@ class CounterMetric(BaseMetric): def inc(self, *values): self.inc_by(1, *values) - def render_item(self, k): - return ["%s%s %.12g" % (self.name, self._render_key(k), self.counts[k])] - def render(self): - return map_concat(self.render_item, sorted(self.counts.keys())) + return flatten( + self._render_for_labels(k, self.counts[k]) + for k in sorted(self.counts.keys()) + ) class CallbackMetric(BaseMetric): @@ -131,10 +156,12 @@ class CallbackMetric(BaseMetric): value = self.callback() if self.is_scalar(): - return ["%s %.12g" % (self.name, value)] + return list(self._render_for_labels([], value)) - return ["%s%s %.12g" % (self.name, self._render_key(k), value[k]) - for k in sorted(value.keys())] + return flatten( + self._render_for_labels(k, value[k]) + for k in sorted(value.keys()) + ) class DistributionMetric(object): |