diff options
Diffstat (limited to 'synapse/metrics')
-rw-r--r-- | synapse/metrics/__init__.py | 7 | ||||
-rw-r--r-- | synapse/metrics/metric.py | 101 |
2 files changed, 90 insertions, 18 deletions
diff --git a/synapse/metrics/__init__.py b/synapse/metrics/__init__.py index 2265e6e8d6..e0cfb7d08f 100644 --- a/synapse/metrics/__init__.py +++ b/synapse/metrics/__init__.py @@ -146,10 +146,15 @@ def runUntilCurrentTimer(func): num_pending += 1 num_pending += len(reactor.threadCallQueue) - start = time.time() * 1000 ret = func(*args, **kwargs) end = time.time() * 1000 + + # record the amount of wallclock time spent running pending calls. + # This is a proxy for the actual amount of time between reactor polls, + # since about 25% of time is actually spent running things triggered by + # I/O events, but that is harder to capture without rewriting half the + # reactor. tick_time.inc_by(end - start) pending_calls_metric.inc_by(num_pending) diff --git a/synapse/metrics/metric.py b/synapse/metrics/metric.py index e87b2b80a7..1e783e5ff4 100644 --- a/synapse/metrics/metric.py +++ b/synapse/metrics/metric.py @@ -15,18 +15,38 @@ from itertools import chain +import logging +logger = logging.getLogger(__name__) -# TODO(paul): I can't believe Python doesn't have one of these -def map_concat(func, items): - # flatten a list-of-lists - return list(chain.from_iterable(map(func, items))) + +def flatten(items): + """Flatten a list of lists + + Args: + items: iterable[iterable[X]] + + Returns: + list[X]: flattened list + """ + return list(chain.from_iterable(items)) class BaseMetric(object): + """Base class for metrics which report a single value per label set + """ - def __init__(self, name, labels=[]): - self.name = name + def __init__(self, name, labels=[], alternative_names=[]): + """ + Args: + name (str): principal name for this metric + labels (list(str)): names of the labels which will be reported + for this metric + alternative_names (iterable(str)): list of alternative names for + this metric. This can be useful to provide a migration path + when renaming metrics. + """ + self._names = [name] + list(alternative_names) self.labels = labels # OK not to clone as we never write it def dimension(self): @@ -36,7 +56,7 @@ class BaseMetric(object): return not len(self.labels) def _render_labelvalue(self, value): - # TODO: some kind of value escape + # TODO: escape backslashes, quotes and newlines return '"%s"' % (value) def _render_key(self, values): @@ -47,19 +67,60 @@ class BaseMetric(object): for k, v in zip(self.labels, values)]) ) + def _render_for_labels(self, label_values, value): + """Render this metric for a single set of labels + + Args: + label_values (list[str]): values for each of the labels + value: value of the metric at with these labels + + Returns: + iterable[str]: rendered metric + """ + rendered_labels = self._render_key(label_values) + return ( + "%s%s %.12g" % (name, rendered_labels, value) + for name in self._names + ) + + def render(self): + """Render this metric + + Each metric is rendered as: + + name{label1="val1",label2="val2"} value + + https://prometheus.io/docs/instrumenting/exposition_formats/#text-format-details + + Returns: + iterable[str]: rendered metrics + """ + raise NotImplementedError() + class CounterMetric(BaseMetric): """The simplest kind of metric; one that stores a monotonically-increasing - integer that counts events.""" + value that counts events or running totals. + + Example use cases for Counters: + - Number of requests processed + - Number of items that were inserted into a queue + - Total amount of data that a system has processed + Counters can only go up (and be reset when the process restarts). + """ def __init__(self, *args, **kwargs): super(CounterMetric, self).__init__(*args, **kwargs) + # dict[list[str]]: value for each set of label values. the keys are the + # label values, in the same order as the labels in self.labels. + # + # (if the metric is a scalar, the (single) key is the empty list). self.counts = {} # Scalar metrics are never empty if self.is_scalar(): - self.counts[()] = 0 + self.counts[()] = 0. def inc_by(self, incr, *values): if len(values) != self.dimension(): @@ -77,11 +138,11 @@ class CounterMetric(BaseMetric): def inc(self, *values): self.inc_by(1, *values) - def render_item(self, k): - return ["%s%s %d" % (self.name, self._render_key(k), self.counts[k])] - def render(self): - return map_concat(self.render_item, sorted(self.counts.keys())) + return flatten( + self._render_for_labels(k, self.counts[k]) + for k in sorted(self.counts.keys()) + ) class CallbackMetric(BaseMetric): @@ -95,13 +156,19 @@ class CallbackMetric(BaseMetric): self.callback = callback def render(self): - value = self.callback() + try: + value = self.callback() + except Exception: + logger.exception("Failed to render %s", self.name) + return ["# FAILED to render " + self.name] if self.is_scalar(): - return ["%s %.12g" % (self.name, value)] + return list(self._render_for_labels([], value)) - return ["%s%s %.12g" % (self.name, self._render_key(k), value[k]) - for k in sorted(value.keys())] + return flatten( + self._render_for_labels(k, value[k]) + for k in sorted(value.keys()) + ) class DistributionMetric(object): |