summary refs log tree commit diff
path: root/synapse/metrics/__init__.py
diff options
context:
space:
mode:
Diffstat (limited to 'synapse/metrics/__init__.py')
-rw-r--r--synapse/metrics/__init__.py97
1 files changed, 88 insertions, 9 deletions
diff --git a/synapse/metrics/__init__.py b/synapse/metrics/__init__.py
index bec3b13397..9cf31f96b3 100644
--- a/synapse/metrics/__init__.py
+++ b/synapse/metrics/__init__.py
@@ -20,13 +20,18 @@ import os
 import platform
 import threading
 import time
-from typing import Dict, Union
+from typing import Callable, Dict, Iterable, Optional, Tuple, Union
 
 import six
 
 import attr
 from prometheus_client import Counter, Gauge, Histogram
-from prometheus_client.core import REGISTRY, GaugeMetricFamily, HistogramMetricFamily
+from prometheus_client.core import (
+    REGISTRY,
+    CounterMetricFamily,
+    GaugeMetricFamily,
+    HistogramMetricFamily,
+)
 
 from twisted.internet import reactor
 
@@ -59,10 +64,12 @@ class RegistryProxy(object):
 @attr.s(hash=True)
 class LaterGauge(object):
 
-    name = attr.ib()
-    desc = attr.ib()
-    labels = attr.ib(hash=False)
-    caller = attr.ib()
+    name = attr.ib(type=str)
+    desc = attr.ib(type=str)
+    labels = attr.ib(hash=False, type=Optional[Iterable[str]])
+    # callback: should either return a value (if there are no labels for this metric),
+    # or dict mapping from a label tuple to a value
+    caller = attr.ib(type=Callable[[], Union[Dict[Tuple[str, ...], float], float]])
 
     def collect(self):
 
@@ -125,7 +132,7 @@ class InFlightGauge(object):
         )
 
         # Counts number of in flight blocks for a given set of label values
-        self._registrations = {}
+        self._registrations = {}  # type: Dict
 
         # Protects access to _registrations
         self._lock = threading.Lock()
@@ -226,7 +233,7 @@ class BucketCollector(object):
         # Fetch the data -- this must be synchronous!
         data = self.data_collector()
 
-        buckets = {}
+        buckets = {}  # type: Dict[float, int]
 
         res = []
         for x in data.keys():
@@ -240,7 +247,7 @@ class BucketCollector(object):
         res.append(["+Inf", sum(data.values())])
 
         metric = HistogramMetricFamily(
-            self.name, "", buckets=res, sum_value=sum([x * y for x, y in data.items()])
+            self.name, "", buckets=res, sum_value=sum(x * y for x, y in data.items())
         )
         yield metric
 
@@ -336,6 +343,78 @@ class GCCounts(object):
 if not running_on_pypy:
     REGISTRY.register(GCCounts())
 
+
+#
+# PyPy GC / memory metrics
+#
+
+
+class PyPyGCStats(object):
+    def collect(self):
+
+        # @stats is a pretty-printer object with __str__() returning a nice table,
+        # plus some fields that contain data from that table.
+        # unfortunately, fields are pretty-printed themselves (i. e. '4.5MB').
+        stats = gc.get_stats(memory_pressure=False)  # type: ignore
+        # @s contains same fields as @stats, but as actual integers.
+        s = stats._s  # type: ignore
+
+        # also note that field naming is completely braindead
+        # and only vaguely correlates with the pretty-printed table.
+        # >>>> gc.get_stats(False)
+        # Total memory consumed:
+        #     GC used:            8.7MB (peak: 39.0MB)        # s.total_gc_memory, s.peak_memory
+        #        in arenas:            3.0MB                  # s.total_arena_memory
+        #        rawmalloced:          1.7MB                  # s.total_rawmalloced_memory
+        #        nursery:              4.0MB                  # s.nursery_size
+        #     raw assembler used: 31.0kB                      # s.jit_backend_used
+        #     -----------------------------
+        #     Total:              8.8MB                       # stats.memory_used_sum
+        #
+        #     Total memory allocated:
+        #     GC allocated:            38.7MB (peak: 41.1MB)  # s.total_allocated_memory, s.peak_allocated_memory
+        #        in arenas:            30.9MB                 # s.peak_arena_memory
+        #        rawmalloced:          4.1MB                  # s.peak_rawmalloced_memory
+        #        nursery:              4.0MB                  # s.nursery_size
+        #     raw assembler allocated: 1.0MB                  # s.jit_backend_allocated
+        #     -----------------------------
+        #     Total:                   39.7MB                 # stats.memory_allocated_sum
+        #
+        #     Total time spent in GC:  0.073                  # s.total_gc_time
+
+        pypy_gc_time = CounterMetricFamily(
+            "pypy_gc_time_seconds_total", "Total time spent in PyPy GC", labels=[],
+        )
+        pypy_gc_time.add_metric([], s.total_gc_time / 1000)
+        yield pypy_gc_time
+
+        pypy_mem = GaugeMetricFamily(
+            "pypy_memory_bytes",
+            "Memory tracked by PyPy allocator",
+            labels=["state", "class", "kind"],
+        )
+        # memory used by JIT assembler
+        pypy_mem.add_metric(["used", "", "jit"], s.jit_backend_used)
+        pypy_mem.add_metric(["allocated", "", "jit"], s.jit_backend_allocated)
+        # memory used by GCed objects
+        pypy_mem.add_metric(["used", "", "arenas"], s.total_arena_memory)
+        pypy_mem.add_metric(["allocated", "", "arenas"], s.peak_arena_memory)
+        pypy_mem.add_metric(["used", "", "rawmalloced"], s.total_rawmalloced_memory)
+        pypy_mem.add_metric(["allocated", "", "rawmalloced"], s.peak_rawmalloced_memory)
+        pypy_mem.add_metric(["used", "", "nursery"], s.nursery_size)
+        pypy_mem.add_metric(["allocated", "", "nursery"], s.nursery_size)
+        # totals
+        pypy_mem.add_metric(["used", "totals", "gc"], s.total_gc_memory)
+        pypy_mem.add_metric(["allocated", "totals", "gc"], s.total_allocated_memory)
+        pypy_mem.add_metric(["used", "totals", "gc_peak"], s.peak_memory)
+        pypy_mem.add_metric(["allocated", "totals", "gc_peak"], s.peak_allocated_memory)
+        yield pypy_mem
+
+
+if running_on_pypy:
+    REGISTRY.register(PyPyGCStats())
+
+
 #
 # Twisted reactor metrics
 #