diff options
Diffstat (limited to 'docs/specification.rst')
-rw-r--r-- | docs/specification.rst | 2306 |
1 files changed, 0 insertions, 2306 deletions
diff --git a/docs/specification.rst b/docs/specification.rst deleted file mode 100644 index 370e238e00..0000000000 --- a/docs/specification.rst +++ /dev/null @@ -1,2306 +0,0 @@ -Matrix Specification -==================== - -WARNING -======= - -.. WARNING:: - The Matrix specification is still very much evolving: the API is not yet frozen - and this document is in places incomplete, stale, and may contain security - issues. Needless to say, we have made every effort to highlight the problem - areas that we're aware of. - - We're publishing it at this point because it's complete enough to be more than - useful and provide a canonical reference to how Matrix is evolving. Our end - goal is to mirror WHATWG's `Living Standard <http://wiki.whatwg.org/wiki/FAQ#What_does_.22Living_Standard.22_mean.3F>`_ - approach except right now Matrix is more in the process of being born than actually being - living! - -.. contents:: Table of Contents -.. sectnum:: - -Introduction -============ - -Matrix is a new set of open APIs for open-federated Instant Messaging and VoIP -functionality, designed to create and support a new global real-time -communication ecosystem on the internet. This specification is the ongoing -result of standardising the APIs used by the various components of the Matrix -ecosystem to communicate with one another. - -The principles that Matrix attempts to follow are: - -- Pragmatic Web-friendly APIs (i.e. JSON over REST) -- Keep It Simple & Stupid - - + provide a simple architecture with minimal third-party dependencies. - -- Fully open: - - + Fully open federation - anyone should be able to participate in the global - Matrix network - + Fully open standard - publicly documented standard with no IP or patent - licensing encumbrances - + Fully open source reference implementation - liberally-licensed example - implementations with no IP or patent licensing encumbrances - -- Empowering the end-user - - + The user should be able to choose the server and clients they use - + The user should be control how private their communication is - + The user should know precisely where their data is stored - -- Fully decentralised - no single points of control over conversations or the - network as a whole -- Learning from history to avoid repeating it - - + Trying to take the best aspects of XMPP, SIP, IRC, SMTP, IMAP and NNTP - whilst trying to avoid their failings - -The functionality that Matrix provides includes: - -- Creation and management of fully distributed chat rooms with no - single points of control or failure -- Eventually-consistent cryptographically secure synchronisation of room - state across a global open network of federated servers and services -- Sending and receiving extensible messages in a room with (optional) - end-to-end encryption -- Extensible user management (inviting, joining, leaving, kicking, banning) - mediated by a power-level based user privilege system. -- Extensible room state management (room naming, aliasing, topics, bans) -- Extensible user profile management (avatars, displaynames, etc) -- Managing user accounts (registration, login, logout) -- Use of 3rd Party IDs (3PIDs) such as email addresses, phone numbers, - Facebook accounts to authenticate, identify and discover users on Matrix. -- Trusted federation of Identity servers for: - - + Publishing user public keys for PKI - + Mapping of 3PIDs to Matrix IDs - -The end goal of Matrix is to be a ubiquitous messaging layer for synchronising -arbitrary data between sets of people, devices and services - be that for instant -messages, VoIP call setups, or any other objects that need to be reliably and -persistently pushed from A to B in an interoperable and federated manner. - - -Architecture -============ - -Clients transmit data to other clients through home servers (HSes). Clients do not communicate with each -other directly. - -:: - - How data flows between clients - ============================== - - { Matrix client A } { Matrix client B } - ^ | ^ | - | events | | events | - | V | V - +------------------+ +------------------+ - | |---------( HTTP )---------->| | - | Home Server | | Home Server | - | |<--------( HTTP )-----------| | - +------------------+ Federation +------------------+ - -A "Client" typically represents a human using a web application or mobile app. Clients use the -"Client-to-Server" (C-S) API to communicate with their home server, which stores their profile data and -their record of the conversations in which they participate. Each client is associated with a user account -(and may optionally support multiple user accounts). A user account is represented by a unique "User ID". This -ID is namespaced to the home server which allocated the account and looks like:: - - @localpart:domain - -The ``localpart`` of a user ID may be a user name, or an opaque ID identifying this user. They are -case-insensitive. - -.. TODO - - Need to specify precise grammar for Matrix IDs - -A "Home Server" is a server which provides C-S APIs and has the ability to federate with other HSes. -It is typically responsible for multiple clients. "Federation" is the term used to describe the -sharing of data between two or more home servers. - -Data in Matrix is encapsulated in an "event". An event is an action within the system. Typically each -action (e.g. sending a message) correlates with exactly one event. Each event has a ``type`` which is used -to differentiate different kinds of data. ``type`` values MUST be uniquely globally namespaced following -Java's `package naming conventions <http://docs.oracle.com/javase/specs/jls/se5.0/html/packages.html#7.7>`, -e.g. ``com.example.myapp.event``. The special top-level namespace ``m.`` is reserved for events defined -in the Matrix specification. Events are usually sent in the context of a "Room". - -Room structure --------------- - -A room is a conceptual place where users can send and receive events. Rooms -can be created, joined and left. Events are sent to a room, and all -participants in that room with sufficient access will receive the event. Rooms are uniquely -identified internally via a "Room ID", which look like:: - - !opaque_id:domain - -There is exactly one room ID for each room. Whilst the room ID does contain a -domain, it is simply for globally namespacing room IDs. The room does NOT reside on the -domain specified. Room IDs are not meant to be human readable. They ARE -case-sensitive. - -The following diagram shows an ``m.room.message`` event being sent in the room -``!qporfwt:matrix.org``:: - - { @alice:matrix.org } { @bob:domain.com } - | ^ - | | - Room ID: !qporfwt:matrix.org Room ID: !qporfwt:matrix.org - Event type: m.room.message Event type: m.room.message - Content: { JSON object } Content: { JSON object } - | | - V | - +------------------+ +------------------+ - | Home Server | | Home Server | - | matrix.org |<-------Federation------->| domain.com | - +------------------+ +------------------+ - | ................................. | - |______| Partially Shared State |_______| - | Room ID: !qporfwt:matrix.org | - | Servers: matrix.org, domain.com | - | Members: | - | - @alice:matrix.org | - | - @bob:domain.com | - |.................................| - -Federation maintains shared state between multiple home servers, such that when an event is -sent to a room, the home server knows where to forward the event on to, and how to process -the event. Home servers do not need to have completely shared state in order to participate -in a room. State is scoped to a single room, and federation ensures that all home servers -have the information they need, even if that means the home server has to request more -information from another home server before processing the event. - -Room Aliases ------------- - -Each room can also have multiple "Room Aliases", which looks like:: - - #room_alias:domain - - .. TODO - - Need to specify precise grammar for Room IDs - -A room alias "points" to a room ID and is the human-readable label by which rooms are -publicised and discovered. The room ID the alias is pointing to can be obtained -by visiting the domain specified. They are case-insensitive. Note that the mapping -from a room alias to a room ID is not fixed, and may change over time to point to a -different room ID. For this reason, Clients SHOULD resolve the room alias to a room ID -once and then use that ID on subsequent requests. - -:: - - GET - #matrix:domain.com !aaabaa:matrix.org - | ^ - | | - _______V____________________|____ - | domain.com | - | Mappings: | - | #matrix >> !aaabaa:matrix.org | - | #golf >> !wfeiofh:sport.com | - | #bike >> !4rguxf:matrix.org | - |________________________________| - -.. TODO kegan - - show the actual API rather than pseudo-API? - - -Identity --------- - -Users in Matrix are identified via their user ID. However, existing ID namespaces can also -be used in order to identify Matrix users. A Matrix "Identity" describes both the user ID -and any other existing IDs from third party namespaces *linked* to their account. - -Matrix users can *link* third-party IDs (3PIDs) such as email addresses, social -network accounts and phone numbers to their -user ID. Linking 3PIDs creates a mapping from a 3PID to a user ID. This mapping -can then be used by other Matrix users in order to discover other users, according -to a strict set of privacy permissions. - -In order to ensure that the mapping from 3PID to user ID is genuine, a globally federated -cluster of trusted "Identity Servers" (IS) are used to perform authentication of the 3PID. -Identity servers are also used to preserve the mapping indefinitely, by replicating the -mappings across multiple ISes. - -Usage of an IS is not required in order for a client application to be part of -the Matrix ecosystem. However, by not using an IS, discovery of users is greatly -impacted. - -API Standards -------------- - -The mandatory baseline for communication in Matrix is exchanging JSON objects over RESTful -HTTP APIs. HTTPS is mandated as the baseline for server-server (federation) communication. -HTTPS is recommended for client-server communication, although HTTP may be supported as a -fallback to support basic HTTP clients. More efficient optional transports for -client-server communication will in future be supported as optional extensions - e.g. a -packed binary encoding over stream-cipher encrypted TCP socket for -low-bandwidth/low-roundtrip mobile usage. - -.. TODO - We need to specify capability negotiation for extensible transports - -For the default HTTP transport, all API calls use a Content-Type of ``application/json``. -In addition, all strings MUST be encoded as UTF-8. - -Clients are authenticated using opaque ``access_token`` strings (see `Registration and -Login`_ for details), passed as a querystring parameter on all requests. - -.. TODO - Need to specify any HMAC or access_token lifetime/ratcheting tricks - -Any errors which occur on the Matrix API level -MUST return a "standard error response". This is a JSON object which looks like:: - - { - "errcode": "<error code>", - "error": "<error message>" - } - -The ``error`` string will be a human-readable error message, usually a sentence -explaining what went wrong. The ``errcode`` string will be a unique string which can be -used to handle an error message e.g. ``M_FORBIDDEN``. These error codes should have their -namespace first in ALL CAPS, followed by a single _. For example, if there was a custom -namespace ``com.mydomain.here``, and a ``FORBIDDEN`` code, the error code should look -like ``COM.MYDOMAIN.HERE_FORBIDDEN``. There may be additional keys depending on -the error, but the keys ``error`` and ``errcode`` MUST always be present. - -Some standard error codes are below: - -:``M_FORBIDDEN``: - Forbidden access, e.g. joining a room without permission, failed login. - -:``M_UNKNOWN_TOKEN``: - The access token specified was not recognised. - -:``M_BAD_JSON``: - Request contained valid JSON, but it was malformed in some way, e.g. missing - required keys, invalid values for keys. - -:``M_NOT_JSON``: - Request did not contain valid JSON. - -:``M_NOT_FOUND``: - No resource was found for this request. - -:``M_LIMIT_EXCEEDED``: - Too many requests have been sent in a short period of time. Wait a while then - try again. - -Some requests have unique error codes: - -:``M_USER_IN_USE``: - Encountered when trying to register a user ID which has been taken. - -:``M_ROOM_IN_USE``: - Encountered when trying to create a room which has been taken. - -:``M_BAD_PAGINATION``: - Encountered when specifying bad pagination query parameters. - -:``M_LOGIN_EMAIL_URL_NOT_YET``: - Encountered when polling for an email link which has not been clicked yet. - -The C-S API typically uses ``HTTP POST`` to submit requests. This means these requests are -not idempotent. The C-S API also allows ``HTTP PUT`` to make requests idempotent. In order -to use a ``PUT``, paths should be suffixed with ``/{txnId}``. ``{txnId}`` is a -unique client-generated transaction ID which identifies the request, and is scoped to a given -Client (identified by that client's ``access_token``). Crucially, it **only** serves to -identify new requests from retransmits. After the request has finished, the ``{txnId}`` -value should be changed (how is not specified; a monotonically increasing integer is -recommended). It is preferable to use ``HTTP PUT`` to make sure requests to send messages -do not get sent more than once should clients need to retransmit requests. - -Valid requests look like:: - - POST /some/path/here?access_token=secret - { - "key": "This is a post." - } - - PUT /some/path/here/11?access_token=secret - { - "key": "This is a put with a txnId of 11." - } - -In contrast, these are invalid requests:: - - POST /some/path/here/11?access_token=secret - { - "key": "This is a post, but it has a txnId." - } - - PUT /some/path/here?access_token=secret - { - "key": "This is a put but it is missing a txnId." - } - -Receiving live updates on a client ----------------------------------- - -Clients can receive new events by long-polling the home server. This will hold open the -HTTP connection for a short period of time waiting for new events, returning early if an -event occurs. This is called the `Event Stream`_. All events which are visible to the -client will appear in the event stream. When the request -returns, an ``end`` token is included in the response. This token can be used in the next -request to continue where the client left off. - -.. TODO - How do we filter the event stream? - Do we ever return multiple events in a single request? Don't we get lots of request - setup RTT latency if we only do one event per request? Do we ever support streaming - requests? Why not websockets? - -When the client first logs in, they will need to initially synchronise with their home -server. This is achieved via the |initialSync|_ API. This API also returns an ``end`` -token which can be used with the event stream. - -Rooms -===== - -Creation --------- -.. TODO kegan - - TODO: Key for invite these users? - -To create a room, a client has to use the |createRoom|_ API. There are various options -which can be set when creating a room: - -``visibility`` - Type: - String - Optional: - Yes - Value: - Either ``public`` or ``private``. - Description: - A ``public`` visibility indicates that the room will be shown in the public room list. A - ``private`` visibility will hide the room from the public room list. Rooms default to - ``public`` visibility if this key is not included. - -``room_alias_name`` - Type: - String - Optional: - Yes - Value: - The room alias localpart. - Description: - If this is included, a room alias will be created and mapped to the newly created room. - The alias will belong on the same home server which created the room, e.g. - ``!qadnasoi:domain.com >>> #room_alias_name:domain.com`` - -``name`` - Type: - String - Optional: - Yes - Value: - The ``name`` value for the ``m.room.name`` state event. - Description: - If this is included, an ``m.room.name`` event will be sent into the room to indicate the - name of the room. See `Room Events`_ for more information on ``m.room.name``. - -``topic`` - Type: - String - Optional: - Yes - Value: - The ``topic`` value for the ``m.room.topic`` state event. - Description: - If this is included, an ``m.room.topic`` event will be sent into the room to indicate the - topic for the room. See `Room Events`_ for more information on ``m.room.topic``. - -``invite`` - Type: - List - Optional: - Yes - Value: - A list of user ids to invite. - Description: - This will tell the server to invite everyone in the list to the newly created room. - -Example:: - - { - "visibility": "public", - "room_alias_name": "the pub", - "name": "The Grand Duke Pub", - "topic": "All about happy hour" - } - -The home server will create a ``m.room.create`` event when the room is -created, which serves as the root of the PDU graph for this room. This -event also has a ``creator`` key which contains the user ID of the room -creator. It will also generate several other events in order to manage -permissions in this room. This includes: - - - ``m.room.power_levels`` : Sets the power levels of users. - - ``m.room.join_rules`` : Whether the room is "invite-only" or not. - - ``m.room.add_state_level``: The power level required in order to - add new state to the room (as opposed to updating exisiting state) - - ``m.room.send_event_level`` : The power level required in order to - send a message in this room. - - ``m.room.ops_level`` : The power level required in order to kick or - ban a user from the room. - -See `Room Events`_ for more information on these events. - -Modifying aliases ------------------ -.. NOTE:: - This section is a work in progress. - -.. TODO kegan - - path to edit aliases - - PUT /directory/room/<room alias> { room_id : foo } - - GET /directory/room/<room alias> { room_id : foo, servers: [a.com, b.com] } - - format when retrieving list of aliases. NOT complete list. - - format for adding/removing aliases. - -Permissions ------------ -.. NOTE:: - This section is a work in progress. - -.. TODO kegan - - TODO: What is a power level? How do they work? Defaults / required levels for X. How do they change - as people join and leave rooms? What do you do if you get a clash? Examples. - - TODO: List all actions which use power levels (sending msgs, inviting users, banning people, etc...) - - TODO: Room config - what is the event and what are the keys/values and explanations for them. - Link through to respective sections where necessary. How does this tie in with permissions, e.g. - give example of creating a read-only room. - -Permissions for rooms are done via the concept of power levels - to do any -action in a room a user must have a suitable power level. - -Power levels for users are defined in ``m.room.power_levels``, where both -a default and specific users' power levels can be set. By default all users -have a power level of 0, other than the room creator whose power level defaults to 100. -Power levels for users are tracked per-room even if the user is not present in -the room. - -State events may contain a ``required_power_level`` key, which indicates the -minimum power a user must have before they can update that state key. The only -exception to this is when a user leaves a room. - -To perform certain actions there are additional power level requirements -defined in the following state events: - -- ``m.room.send_event_level`` defines the minimum level for sending non-state - events. Defaults to 50. -- ``m.room.add_state_level`` defines the minimum level for adding new state, - rather than updating existing state. Defaults to 50. -- ``m.room.ops_level`` defines the minimum levels to ban and kick other users. - This defaults to a kick and ban levels of 50 each. - - -Joining rooms -------------- -.. TODO kegan - - TODO: What does the home server have to do to join a user to a room? - -Users need to join a room in order to send and receive events in that room. A user can join a -room by making a request to |/join/<room_alias_or_id>|_ with:: - - {} - -Alternatively, a user can make a request to |/rooms/<room_id>/join|_ with the same request content. -This is only provided for symmetry with the other membership APIs: ``/rooms/<room id>/invite`` and -``/rooms/<room id>/leave``. If a room alias was specified, it will be automatically resolved to -a room ID, which will then be joined. The room ID that was joined will be returned in response:: - - { - "room_id": "!roomid:domain" - } - -The membership state for the joining user can also be modified directly to be ``join`` -by sending the following request to -``/rooms/<room id>/state/m.room.member/<url encoded user id>``:: - - { - "membership": "join" - } - -See the `Room events`_ section for more information on ``m.room.member``. - -After the user has joined a room, they will receive subsequent events in that room. This room -will now appear as an entry in the |initialSync|_ API. - -Some rooms enforce that a user is *invited* to a room before they can join that room. Other -rooms will allow anyone to join the room even if they have not received an invite. - -Inviting users --------------- -.. TODO kegan - - Can invite users to a room if the room config key TODO is set to TODO. Must have required power level. - - Outline invite join dance. What is it? Why is it required? How does it work? - - What does the home server have to do? - - TODO: In what circumstances will direct member editing NOT be equivalent to ``/invite``? - -The purpose of inviting users to a room is to notify them that the room exists -so they can choose to become a member of that room. Some rooms require that all -users who join a room are previously invited to it (an "invite-only" room). -Whether a given room is an "invite-only" room is determined by the room config -key ``TODO``. It can have one of the following values: - - - TODO Room config invite only value explanation - - TODO Room config free-to-join value explanation - -Only users who have a membership state of ``join`` in a room can invite new -users to said room. The person being invited must not be in the ``join`` state -in the room. The fully-qualified user ID must be specified when inviting a user, -as the user may reside on a different home server. To invite a user, send the -following request to |/rooms/<room_id>/invite|_, which will manage the -entire invitation process:: - - { - "user_id": "<user id to invite>" - } - -Alternatively, the membership state for this user in this room can be modified -directly by sending the following request to -``/rooms/<room id>/state/m.room.member/<url encoded user id>``:: - - { - "membership": "invite" - } - -See the `Room events`_ section for more information on ``m.room.member``. - -Leaving rooms -------------- -.. TODO kegan - - TODO: Grace period before deletion? - - TODO: Under what conditions should a room NOT be purged? - - -A user can leave a room to stop receiving events for that room. A user must have -joined the room before they are eligible to leave the room. If the room is an -"invite-only" room, they will need to be re-invited before they can re-join the room. -To leave a room, a request should be made to |/rooms/<room_id>/leave|_ with:: - - {} - -Alternatively, the membership state for this user in this room can be modified -directly by sending the following request to -``/rooms/<room id>/state/m.room.member/<url encoded user id>``:: - - { - "membership": "leave" - } - -See the `Room events`_ section for more information on ``m.room.member``. - -Once a user has left a room, that room will no longer appear on the |initialSync|_ -API. Be aware that leaving a room is not equivalent to have never been -in that room. A user who has previously left a room still maintains some residual state in -that room. Their membership state will be marked as ``leave``. This contrasts with -a user who has *never been invited or joined to that room* who will not have any -membership state for that room. - -If all members in a room leave, that room becomes eligible for deletion. - -Banning users in a room ------------------------ -A user may decide to ban another user in a room. 'Banning' forces the target user -to leave the room and prevents them from re-joining the room. A banned user will -not be treated as a joined user, and so will not be able to send or receive events -in the room. In order to ban someone, the user performing the ban MUST have the -required power level. To ban a user, a request should be made to -|/rooms/<room_id>/ban|_ with:: - - { - "user_id": "<user id to ban" - "reason": "string: <reason for the ban>" - } - -Banning a user adjusts the banned member's membership state to ``ban`` and adjusts -the power level of this event to a level higher than the banned person. Like -with other membership changes, a user can directly adjust the target member's -state, by making a request to ``/rooms/<room id>/state/m.room.member/<user id>``:: - - { - "membership": "ban" - } - -Events in a room ----------------- -Room events can be split into two categories: - -:State Events: - These are events which replace events that came before it, depending on a set of unique keys. - These keys are the event ``type`` and a ``state_key``. Events with the same set of keys will - be overwritten. Typically, state events are used to store state, hence their name. - -:Non-state events: - These are events which cannot be overwritten after sending. The list of events continues - to grow as more events are sent. As this list grows, it becomes necessary to - provide a mechanism for navigating this list. Pagination APIs are used to view the list - of historical non-state events. Typically, non-state events are used to send messages. - -This specification outlines several events, all with the event type prefix ``m.``. However, -applications may wish to add their own type of event, and this can be achieved using the -REST API detailed in the following sections. If new events are added, the event ``type`` -key SHOULD follow the Java package naming convention, e.g. ``com.example.myapp.event``. -This ensures event types are suitably namespaced for each application and reduces the -risk of clashes. - -State events ------------- -State events can be sent by ``PUT`` ing to |/rooms/<room_id>/state/<event_type>/<state_key>|_. -These events will be overwritten if ``<room id>``, ``<event type>`` and ``<state key>`` all match. -If the state event has no ``state_key``, it can be omitted from the path. These requests -**cannot use transaction IDs** like other ``PUT`` paths because they cannot be differentiated -from the ``state_key``. Furthermore, ``POST`` is unsupported on state paths. Valid requests -look like:: - - PUT /rooms/!roomid:domain/state/m.example.event - { "key" : "without a state key" } - - PUT /rooms/!roomid:domain/state/m.another.example.event/foo - { "key" : "with 'foo' as the state key" } - -In contrast, these requests are invalid:: - - POST /rooms/!roomid:domain/state/m.example.event/ - { "key" : "cannot use POST here" } - - PUT /rooms/!roomid:domain/state/m.another.example.event/foo/11 - { "key" : "txnIds are not supported" } - -Care should be taken to avoid setting the wrong ``state key``:: - - PUT /rooms/!roomid:domain/state/m.another.example.event/11 - { "key" : "with '11' as the state key, but was probably intended to be a txnId" } - -The ``state_key`` is often used to store state about individual users, by using the user ID as the -``state_key`` value. For example:: - - PUT /rooms/!roomid:domain/state/m.favorite.animal.event/%40my_user%3Adomain.com - { "animal" : "cat", "reason": "fluffy" } - -In some cases, there may be no need for a ``state_key``, so it can be omitted:: - - PUT /rooms/!roomid:domain/state/m.room.bgd.color - { "color": "red", "hex": "#ff0000" } - -See `Room Events`_ for the ``m.`` event specification. - -Non-state events ----------------- -Non-state events can be sent by sending a request to |/rooms/<room_id>/send/<event_type>|_. -These requests *can* use transaction IDs and ``PUT``/``POST`` methods. Non-state events -allow access to historical events and pagination, making it best suited for sending messages. -For example:: - - POST /rooms/!roomid:domain/send/m.custom.example.message - { "text": "Hello world!" } - - PUT /rooms/!roomid:domain/send/m.custom.example.message/11 - { "text": "Goodbye world!" } - -See `Room Events`_ for the ``m.`` event specification. - -Syncing rooms -------------- -.. NOTE:: - This section is a work in progress. - -When a client logs in, they may have a list of rooms which they have already joined. These rooms -may also have a list of events associated with them. The purpose of 'syncing' is to present the -current room and event information in a convenient, compact manner. The events returned are not -limited to room events; presence events will also be returned. There are two APIs provided: - - - |initialSync|_ : A global sync which will present room and event information for all rooms - the user has joined. - - - |/rooms/<room_id>/initialSync|_ : A sync scoped to a single room. Presents room and event - information for this room only. - -.. TODO kegan - - TODO: JSON response format for both types - - TODO: when would you use global? when would you use scoped? - -Getting events for a room -------------------------- -There are several APIs provided to ``GET`` events for a room: - -``/rooms/<room id>/state/<event type>/<state key>`` - Description: - Get the state event identified. - Response format: - A JSON object representing the state event **content**. - Example: - ``/rooms/!room:domain.com/state/m.room.name`` returns ``{ "name": "Room name" }`` - -|/rooms/<room_id>/state|_ - Description: - Get all state events for a room. - Response format: - ``[ { state event }, { state event }, ... ]`` - Example: - TODO - - -|/rooms/<room_id>/members|_ - Description: - Get all ``m.room.member`` state events. - Response format: - ``{ "start": "<token>", "end": "<token>", "chunk": [ { m.room.member event }, ... ] }`` - Example: - TODO - -|/rooms/<room_id>/messages|_ - Description: - Get all ``m.room.message`` and ``m.room.member`` events. This API supports pagination - using ``from`` and ``to`` query parameters, coupled with the ``start`` and ``end`` - tokens from an |initialSync|_ API. - Response format: - ``{ "start": "<token>", "end": "<token>" }`` - Example: - TODO - -|/rooms/<room_id>/initialSync|_ - Description: - Get all relevant events for a room. This includes state events, paginated non-state - events and presence events. - Response format: - `` { TODO } `` - Example: - TODO - - -Room Events -=========== -.. NOTE:: - This section is a work in progress. - -.. TODO dave? - - voip events? - -This specification outlines several standard event types, all of which are -prefixed with ``m.`` - -``m.room.name`` - Summary: - Set the human-readable name for the room. - Type: - State event - JSON format: - ``{ "name" : "string" }`` - Example: - ``{ "name" : "My Room" }`` - Description: - A room has an opaque room ID which is not human-friendly to read. A room alias is - human-friendly, but not all rooms have room aliases. The room name is a human-friendly - string designed to be displayed to the end-user. The room name is not *unique*, as - multiple rooms can have the same room name set. The room name can also be set when - creating a room using |createRoom|_ with the ``name`` key. - -``m.room.topic`` - Summary: - Set a topic for the room. - Type: - State event - JSON format: - ``{ "topic" : "string" }`` - Example: - ``{ "topic" : "Welcome to the real world." }`` - Description: - A topic is a short message detailing what is currently being discussed in the room. - It can also be used as a way to display extra information about the room, which may - not be suitable for the room name. The room topic can also be set when creating a - room using |createRoom|_ with the ``topic`` key. - -``m.room.member`` - Summary: - The current membership state of a user in the room. - Type: - State event - JSON format: - ``{ "membership" : "enum[ invite|join|leave|ban ]" }`` - Example: - ``{ "membership" : "join" }`` - Description: - Adjusts the membership state for a user in a room. It is preferable to use the - membership APIs (``/rooms/<room id>/invite`` etc) when performing membership actions - rather than adjusting the state directly as there are a restricted set of valid - transformations. For example, user A cannot force user B to join a room, and trying - to force this state change directly will fail. See the `Rooms`_ section for how to - use the membership APIs. - -``m.room.create`` - Summary: - The first event in the room. - Type: - State event - JSON format: - ``{ "creator": "string"}`` - Example: - ``{ "creator": "@user:example.com" }`` - Description: - This is the first event in a room and cannot be changed. It acts as the - root of all other events. - -``m.room.join_rules`` - Summary: - Descripes how/if people are allowed to join. - Type: - State event - JSON format: - ``{ "join_rule": "enum [ public|knock|invite|private ]" }`` - Example: - ``{ "join_rule": "public" }`` - Description: - TODO : Use docs/models/rooms.rst - -``m.room.power_levels`` - Summary: - Defines the power levels of users in the room. - Type: - State event - JSON format: - ``{ "<user_id>": <int>, ..., "default": <int>}`` - Example: - ``{ "@user:example.com": 5, "@user2:example.com": 10, "default": 0 }`` - Description: - If a user is in the list, then they have the associated power level. - Otherwise they have the default level. If not ``default`` key is supplied, - it is assumed to be 0. - -``m.room.add_state_level`` - Summary: - Defines the minimum power level a user needs to add state. - Type: - State event - JSON format: - ``{ "level": <int> }`` - Example: - ``{ "level": 5 }`` - Description: - To add a new piece of state to the room a user must have the given power - level. This does not apply to updating current state, which is goverened - by the ``required_power_level`` event key. - -``m.room.send_event_level`` - Summary: - Defines the minimum power level a user needs to send an event. - Type: - State event - JSON format: - ``{ "level": <int> }`` - Example: - ``{ "level": 0 }`` - Description: - To send a new event into the room a user must have at least this power - level. This allows ops to make the room read only by increasing this level, - or muting individual users by lowering their power level below this - threshold. - -``m.room.ops_levels`` - Summary: - Defines the minimum power levels that a user must have before they can - kick and/or ban other users. - Type: - State event - JSON format: - ``{ "ban_level": <int>, "kick_level": <int> }`` - Example: - ``{ "ban_level": 5, "kick_level": 5 }`` - Description: - This defines who can ban and/or kick people in the room. Most of the time - ``ban_level`` will be greater than or equal to ``kick_level`` since - banning is more severe than kicking. - -``m.room.aliases`` - Summary: - These state events are used to inform the room about what room aliases it has. - Type: - State event - JSON format: - ``{ "aliases": ["string", ...] }`` - Example: - ``{ "aliases": ["#foo:example.com"] }`` - Description: - A server `may` inform the room that it has added or removed an alias for - the room. This is purely for informational purposes and may become stale. - Clients `should` check that the room alias is still valid before using it. - The ``state_key`` of the event is the homeserver which owns the room - alias. - -``m.room.message`` - Summary: - A message. - Type: - Non-state event - JSON format: - ``{ "msgtype": "string" }`` - Example: - ``{ "msgtype": "m.text", "body": "Testing" }`` - Description: - This event is used when sending messages in a room. Messages are not limited to be text. - The ``msgtype`` key outlines the type of message, e.g. text, audio, image, video, etc. - Whilst not required, the ``body`` key SHOULD be used with every kind of ``msgtype`` as - a fallback mechanism when a client cannot render the message. For more information on - the types of messages which can be sent, see `m.room.message msgtypes`_. - -``m.room.message.feedback`` - Summary: - A receipt for a message. - Type: - Non-state event - JSON format: - ``{ "type": "enum [ delivered|read ]", "target_event_id": "string" }`` - Example: - ``{ "type": "delivered", "target_event_id": "e3b2icys" }`` - Description: - Feedback events are events sent to acknowledge a message in some way. There are two - supported acknowledgements: ``delivered`` (sent when the event has been received) and - ``read`` (sent when the event has been observed by the end-user). The ``target_event_id`` - should reference the ``m.room.message`` event being acknowledged. - -m.room.message msgtypes ------------------------ -Each ``m.room.message`` MUST have a ``msgtype`` key which identifies the type of -message being sent. Each type has their own required and optional keys, as outlined -below: - -``m.text`` - Required keys: - - ``body`` : "string" - The body of the message. - Optional keys: - None. - Example: - ``{ "msgtype": "m.text", "body": "I am a fish" }`` - -``m.emote`` - Required keys: - - ``body`` : "string" - The emote action to perform. - Optional keys: - None. - Example: - ``{ "msgtype": "m.emote", "body": "tries to come up with a witty explanation" }`` - -``m.image`` - Required keys: - - ``url`` : "string" - The URL to the image. - Optional keys: - - ``info`` : "string" - info : JSON object (ImageInfo) - The image info for image - referred to in ``url``. - - ``thumbnail_url`` : "string" - The URL to the thumbnail. - - ``thumbnail_info`` : JSON object (ImageInfo) - The image info for the image - referred to in ``thumbnail_url``. - - ``body`` : "string" - The alt text of the image, or some kind of content - description for accessibility e.g. "image attachment". - - ImageInfo: - Information about an image:: - - { - "size" : integer (size of image in bytes), - "w" : integer (width of image in pixels), - "h" : integer (height of image in pixels), - "mimetype" : "string (e.g. image/jpeg)", - } - -``m.audio`` - Required keys: - - ``url`` : "string" - The URL to the audio. - Optional keys: - - ``info`` : JSON object (AudioInfo) - The audio info for the audio referred to in - ``url``. - - ``body`` : "string" - A description of the audio e.g. "Bee Gees - - Stayin' Alive", or some kind of content description for accessibility e.g. - "audio attachment". - AudioInfo: - Information about a piece of audio:: - - { - "mimetype" : "string (e.g. audio/aac)", - "size" : integer (size of audio in bytes), - "duration" : integer (duration of audio in milliseconds), - } - -``m.video`` - Required keys: - - ``url`` : "string" - The URL to the video. - Optional keys: - - ``info`` : JSON object (VideoInfo) - The video info for the video referred to in - ``url``. - - ``body`` : "string" - A description of the video e.g. "Gangnam style", - or some kind of content description for accessibility e.g. "video attachment". - - VideoInfo: - Information about a video:: - - { - "mimetype" : "string (e.g. video/mp4)", - "size" : integer (size of video in bytes), - "duration" : integer (duration of video in milliseconds), - "w" : integer (width of video in pixels), - "h" : integer (height of video in pixels), - "thumbnail_url" : "string (URL to image)", - "thumbanil_info" : JSON object (ImageInfo) - } - -``m.location`` - Required keys: - - ``geo_uri`` : "string" - The geo URI representing the location. - Optional keys: - - ``thumbnail_url`` : "string" - The URL to a thumnail of the location being - represented. - - ``thumbnail_info`` : JSON object (ImageInfo) - The image info for the image - referred to in ``thumbnail_url``. - - ``body`` : "string" - A description of the location e.g. "Big Ben, - London, UK", or some kind of content description for accessibility e.g. - "location attachment". - -The following keys can be attached to any ``m.room.message``: - - Optional keys: - - ``sender_ts`` : integer - A timestamp (ms resolution) representing the - wall-clock time when the message was sent from the client. - -Presence -======== -.. NOTE:: - This section is a work in progress. - -Each user has the concept of presence information. This encodes the -"availability" of that user, suitable for display on other user's clients. This -is transmitted as an ``m.presence`` event and is one of the few events which -are sent *outside the context of a room*. The basic piece of presence information -is represented by the ``presence`` key, which is an enum of one of the following: - - - ``online`` : The default state when the user is connected to an event stream. - - ``unavailable`` : The user is not reachable at this time. - - ``offline`` : The user is not connected to an event stream. - - ``free_for_chat`` : The user is generally willing to receive messages - moreso than default. - - ``hidden`` : TODO. Behaves as offline, but allows the user to see the client - state anyway and generally interact with client features. - -This basic ``presence`` field applies to the user as a whole, regardless of how many -client devices they have connected. The home server should synchronise this -status choice among multiple devices to ensure the user gets a consistent -experience. - -In addition, the server maintains a timestamp of the last time it saw an active -action from the user; either sending a message to a room, or changing presence -state from a lower to a higher level of availability (thus: changing state from -``unavailable`` to ``online`` will count as an action for being active, whereas -in the other direction will not). This timestamp is presented via a key called -``last_active_ago``, which gives the relative number of miliseconds since the -message is generated/emitted, that the user was last seen active. - -Idle Time ---------- -As well as the basic ``presence`` field, the presence information can also show -a sense of an "idle timer". This should be maintained individually by the -user's clients, and the home server can take the highest reported time as that -to report. When a user is offline, the home server can still report when the -user was last seen online. - -Transmission ------------- -.. NOTE:: - This section is a work in progress. - -.. TODO: - - Transmitted as an EDU. - - Presence lists determine who to send to. - -Presence List -------------- -Each user's home server stores a "presence list" for that user. This stores a -list of other user IDs the user has chosen to add to it. To be added to this -list, the user being added must receive permission from the list owner. Once -granted, both user's HS(es) store this information. Since such subscriptions -are likely to be bidirectional, HSes may wish to automatically accept requests -when a reverse subscription already exists. - -Presence and Permissions ------------------------- -For a viewing user to be allowed to see the presence information of a target -user, either: - - - The target user has allowed the viewing user to add them to their presence - list, or - - The two users share at least one room in common - -In the latter case, this allows for clients to display some minimal sense of -presence information in a user list for a room. - -Typing notifications -==================== -.. NOTE:: - This section is a work in progress. - -.. TODO Leo - - what is the event type. Are they bundled with other event types? If so, which. - - what are the valid keys / values. What do they represent. Any gotchas? - - Timeouts. How do they work, who sets them and how do they expire. Does one - have priority over another? Give examples. - -Voice over IP -============= -Matrix can also be used to set up VoIP calls. This is part of the core specification, -although is still in a very early stage. Voice (and video) over Matrix is based on -the WebRTC standards. - -Call events are sent to a room, like any other event. This means that clients -must only send call events to rooms with exactly two participants as currently -the WebRTC standard is based around two-party communication. - -Events ------- -``m.call.invite`` -This event is sent by the caller when they wish to establish a call. - - Required keys: - - ``call_id`` : "string" - A unique identifier for the call - - ``offer`` : "offer object" - The session description - - ``version`` : "integer" - The version of the VoIP specification this - message adheres to. This specification is - version 0. - - ``lifetime`` : "integer" - The time in milliseconds that the invite is - valid for. Once the invite age exceeds this - value, clients should discard it. They - should also no longer show the call as - awaiting an answer in the UI. - - Optional keys: - None. - Example: - ``{ "version" : 0, "call_id": "12345", "offer": { "type" : "offer", "sdp" : "v=0\r\no=- 6584580628695956864 2 IN IP4 127.0.0.1[...]" } }`` - -``Offer Object`` - Required keys: - - ``type`` : "string" - The type of session description, in this case 'offer' - - ``sdp`` : "string" - The SDP text of the session description - -``m.call.candidates`` -This event is sent by callers after sending an invite and by the callee after answering. -Its purpose is to give the other party additional ICE candidates to try using to -communicate. - - Required keys: - - ``call_id`` : "string" - The ID of the call this event relates to - - ``version`` : "integer" - The version of the VoIP specification this messages - adheres to. his specification is version 0. - - ``candidates`` : "array of candidate objects" - Array of object describing the candidates. - -``Candidate Object`` - - Required Keys: - - ``sdpMid`` : "string" - The SDP media type this candidate is intended for. - - ``sdpMLineIndex`` : "integer" - The index of the SDP 'm' line this - candidate is intended for - - ``candidate`` : "string" - The SDP 'a' line of the candidate - -``m.call.answer`` - - Required keys: - - ``call_id`` : "string" - The ID of the call this event relates to - - ``version`` : "integer" - The version of the VoIP specification this messages - - ``answer`` : "answer object" - Object giving the SDK answer - -``Answer Object`` - - Required keys: - - ``type`` : "string" - The type of session description. 'answer' in this case. - - ``sdp`` : "string" - The SDP text of the session description - -``m.call.hangup`` -Sent by either party to signal their termination of the call. This can be sent either once -the call has has been established or before to abort the call. - - Required keys: - - ``call_id`` : "string" - The ID of the call this event relates to - - ``version`` : "integer" - The version of the VoIP specification this messages - -Message Exchange ----------------- -A call is set up with messages exchanged as follows: - -:: - - Caller Callee - m.call.invite -----------> - m.call.candidate --------> - [more candidates events] - User answers call - <------ m.call.answer - [...] - <------ m.call.hangup - -Or a rejected call: - -:: - - Caller Callee - m.call.invite -----------> - m.call.candidate --------> - [more candidates events] - User rejects call - <------- m.call.hangup - -Calls are negotiated according to the WebRTC specification. - - -Glare ------ -This specification aims to address the problem of two users calling each other -at roughly the same time and their invites crossing on the wire. It is a far -better experience for the users if their calls are connected if it is clear -that their intention is to set up a call with one another. - -In Matrix, calls are to rooms rather than users (even if those rooms may only -contain one other user) so we consider calls which are to the same room. - -The rules for dealing with such a situation are as follows: - - - If an invite to a room is received whilst the client is preparing to send an - invite to the same room, the client should cancel its outgoing call and - instead automatically accept the incoming call on behalf of the user. - - If an invite to a room is received after the client has sent an invite to the - same room and is waiting for a response, the client should perform a - lexicographical comparison of the call IDs of the two calls and use the - lesser of the two calls, aborting the greater. If the incoming call is the - lesser, the client should accept this call on behalf of the user. - -The call setup should appear seamless to the user as if they had simply placed -a call and the other party had accepted. Thusly, any media stream that had been -setup for use on a call should be transferred and used for the call that -replaces it. - -Profiles -======== -.. NOTE:: - This section is a work in progress. - -.. TODO - - Metadata extensibility - - Changing profile info generates m.presence events ("presencelike") - - keys on m.presence are optional, except presence which is required - - m.room.member is populated with the current displayname at that point in time. - - That is added by the HS, not you. - - Display name changes also generates m.room.member with displayname key f.e. room - the user is in. - -Internally within Matrix users are referred to by their user ID, which is typically -a compact unique identifier. Profiles grant users the ability to see human-readable -names for other users that are in some way meaningful to them. Additionally, -profiles can publish additional information, such as the user's age or location. - -A Profile consists of a display name, an avatar picture, and a set of other -metadata fields that the user may wish to publish (email address, phone -numbers, website URLs, etc...). This specification puts no requirements on the -display name other than it being a valid unicode string. - - - -Registration and login -====================== - -Clients must register with a home server in order to use Matrix. After -registering, the client will be given an access token which must be used in ALL -requests to that home server as a query parameter 'access_token'. - -If the client has already registered, they need to be able to login to their -account. The home server may provide many different ways of logging in, such -as user/password auth, login via a social network (OAuth2), login by confirming -a token sent to their email address, etc. This specification does not define how -home servers should authorise their users who want to login to their existing -accounts, but instead defines the standard interface which implementations -should follow so that ANY client can login to ANY home server. Clients login -using the |login|_ API. Clients register using the |register|_ API. Registration -follows the same procedure as login, but the path requests are sent to are -different. - -The registration/login process breaks down into the following: - 1. Determine the requirements for logging in. - 2. Submit the login stage credentials. - 3. Get credentials or be told the next stage in the login process and repeat - step 2. - -As each home server may have different ways of logging in, the client needs to know how -they should login. All distinct login stages MUST have a corresponding ``type``. -A ``type`` is a namespaced string which details the mechanism for logging in. - -A client may be able to login via multiple valid login flows, and should choose a single -flow when logging in. A flow is a series of login stages. The home server MUST respond -with all the valid login flows when requested:: - - The client can login via 3 paths: 1a and 1b, 2a and 2b, or 3. The client should - select one of these paths. - - { - "flows": [ - { - "type": "<login type1a>", - "stages": [ "<login type 1a>", "<login type 1b>" ] - }, - { - "type": "<login type2a>", - "stages": [ "<login type 2a>", "<login type 2b>" ] - }, - { - "type": "<login type3>" - } - ] - } - -After the login is completed, the client's fully-qualified user ID and a new access -token MUST be returned:: - - { - "user_id": "@user:matrix.org", - "access_token": "abcdef0123456789" - } - -The ``user_id`` key is particularly useful if the home server wishes to support -localpart entry of usernames (e.g. "user" rather than "@user:matrix.org"), as the -client may not be able to determine its ``user_id`` in this case. - -If a login has multiple requests, the home server may wish to create a session. If -a home server responds with a 'session' key to a request, clients MUST submit it in -subsequent requests until the login is completed:: - - { - "session": "<session id>" - } - -This specification defines the following login types: - - ``m.login.password`` - - ``m.login.oauth2`` - - ``m.login.email.code`` - - ``m.login.email.url`` - - ``m.login.email.identity`` - -Password-based --------------- -:Type: - ``m.login.password`` -:Description: - Login is supported via a username and password. - -To respond to this type, reply with:: - - { - "type": "m.login.password", - "user": "<user_id or user localpart>", - "password": "<password>" - } - -The home server MUST respond with either new credentials, the next stage of the login -process, or a standard error response. - -OAuth2-based ------------- -:Type: - ``m.login.oauth2`` -:Description: - Login is supported via OAuth2 URLs. This login consists of multiple requests. - -To respond to this type, reply with:: - - { - "type": "m.login.oauth2", - "user": "<user_id or user localpart>" - } - -The server MUST respond with:: - - { - "uri": <Authorization Request URI OR service selection URI> - } - -The home server acts as a 'confidential' client for the purposes of OAuth2. -If the uri is a ``sevice selection URI``, it MUST point to a webpage which prompts the -user to choose which service to authorize with. On selection of a service, this -MUST link through to an ``Authorization Request URI``. If there is only 1 service which the -home server accepts when logging in, this indirection can be skipped and the -"uri" key can be the ``Authorization Request URI``. - -The client then visits the ``Authorization Request URI``, which then shows the OAuth2 -Allow/Deny prompt. Hitting 'Allow' returns the ``redirect URI`` with the auth code. -Home servers can choose any path for the ``redirect URI``. The client should visit -the ``redirect URI``, which will then finish the OAuth2 login process, granting the -home server an access token for the chosen service. When the home server gets -this access token, it verifies that the cilent has authorised with the 3rd party, and -can now complete the login. The OAuth2 ``redirect URI`` (with auth code) MUST respond -with either new credentials, the next stage of the login process, or a standard error -response. - -For example, if a home server accepts OAuth2 from Google, it would return the -Authorization Request URI for Google:: - - { - "uri": "https://accounts.google.com/o/oauth2/auth?response_type=code& - client_id=CLIENT_ID&redirect_uri=REDIRECT_URI&scope=photos" - } - -The client then visits this URI and authorizes the home server. The client then -visits the REDIRECT_URI with the auth code= query parameter which returns:: - - { - "user_id": "@user:matrix.org", - "access_token": "0123456789abcdef" - } - -Email-based (code) ------------------- -:Type: - ``m.login.email.code`` -:Description: - Login is supported by typing in a code which is sent in an email. This login - consists of multiple requests. - -To respond to this type, reply with:: - - { - "type": "m.login.email.code", - "user": "<user_id or user localpart>", - "email": "<email address>" - } - -After validating the email address, the home server MUST send an email containing -an authentication code and return:: - - { - "type": "m.login.email.code", - "session": "<session id>" - } - -The second request in this login stage involves sending this authentication code:: - - { - "type": "m.login.email.code", - "session": "<session id>", - "code": "<code in email sent>" - } - -The home server MUST respond to this with either new credentials, the next stage of -the login process, or a standard error response. - -Email-based (url) ------------------ -:Type: - ``m.login.email.url`` -:Description: - Login is supported by clicking on a URL in an email. This login consists of - multiple requests. - -To respond to this type, reply with:: - - { - "type": "m.login.email.url", - "user": "<user_id or user localpart>", - "email": "<email address>" - } - -After validating the email address, the home server MUST send an email containing -an authentication URL and return:: - - { - "type": "m.login.email.url", - "session": "<session id>" - } - -The email contains a URL which must be clicked. After it has been clicked, the -client should perform another request:: - - { - "type": "m.login.email.url", - "session": "<session id>" - } - -The home server MUST respond to this with either new credentials, the next stage of -the login process, or a standard error response. - -A common client implementation will be to periodically poll until the link is clicked. -If the link has not been visited yet, a standard error response with an errcode of -``M_LOGIN_EMAIL_URL_NOT_YET`` should be returned. - - -Email-based (identity server) ------------------------------ -:Type: - ``m.login.email.identity`` -:Description: - Login is supported by authorising an email address with an identity server. - -Prior to submitting this, the client should authenticate with an identity server. -After authenticating, the session information should be submitted to the home server. - -To respond to this type, reply with:: - - { - "type": "m.login.email.identity", - "threepidCreds": [ - { - "sid": "<identity server session id>", - "clientSecret": "<identity server client secret>", - "idServer": "<url of identity server authed with, e.g. 'matrix.org:8090'>" - } - ] - } - - - -N-Factor Authentication ------------------------ -Multiple login stages can be combined to create N-factor authentication during login. - -This can be achieved by responding with the ``next`` login type on completion of a -previous login stage:: - - { - "next": "<next login type>" - } - -If a home server implements N-factor authentication, it MUST respond with all -``stages`` when initially queried for their login requirements:: - - { - "type": "<1st login type>", - "stages": [ <1st login type>, <2nd login type>, ... , <Nth login type> ] - } - -This can be represented conceptually as:: - - _______________________ - | Login Stage 1 | - | type: "<login type1>" | - | ___________________ | - | |_Request_1_________| | <-- Returns "session" key which is used throughout. - | ___________________ | - | |_Request_2_________| | <-- Returns a "next" value of "login type2" - |_______________________| - | - | - _________V_____________ - | Login Stage 2 | - | type: "<login type2>" | - | ___________________ | - | |_Request_1_________| | - | ___________________ | - | |_Request_2_________| | - | ___________________ | - | |_Request_3_________| | <-- Returns a "next" value of "login type3" - |_______________________| - | - | - _________V_____________ - | Login Stage 3 | - | type: "<login type3>" | - | ___________________ | - | |_Request_1_________| | <-- Returns user credentials - |_______________________| - -Fallback --------- -Clients cannot be expected to be able to know how to process every single -login type. If a client determines it does not know how to handle a given -login type, it should request a login fallback page:: - - GET matrix/client/api/v1/login/fallback - -This MUST return an HTML page which can perform the entire login process. - -Identity -======== -.. NOTE:: - This section is a work in progress. - -.. TODO Dave - - 3PIDs and identity server, functions - -Federation -========== - -Federation is the term used to describe how to communicate between Matrix home -servers. Federation is a mechanism by which two home servers can exchange -Matrix event messages, both as a real-time push of current events, and as a -historic fetching mechanism to synchronise past history for clients to view. It -uses HTTPS connections between each pair of servers involved as the underlying -transport. Messages are exchanged between servers in real-time by active pushing -from each server's HTTP client into the server of the other. Queries to fetch -historic data for the purpose of back-filling scrollback buffers and the like -can also be performed. Currently routing of messages between homeservers is full -mesh (like email) - however, fan-out refinements to this design are currently -under consideration. - -There are three main kinds of communication that occur between home servers: - -:Queries: - These are single request/response interactions between a given pair of - servers, initiated by one side sending an HTTPS GET request to obtain some - information, and responded by the other. They are not persisted and contain - no long-term significant history. They simply request a snapshot state at the - instant the query is made. - -:Ephemeral Data Units (EDUs): - These are notifications of events that are pushed from one home server to - another. They are not persisted and contain no long-term significant history, - nor does the receiving home server have to reply to them. - -:Persisted Data Units (PDUs): - These are notifications of events that are broadcast from one home server to - any others that are interested in the same "context" (namely, a Room ID). - They are persisted to long-term storage and form the record of history for - that context. - -EDUs and PDUs are further wrapped in an envelope called a Transaction, which is -transferred from the origin to the destination home server using an HTTP PUT request. - - -Transactions ------------- -.. WARNING:: - This section may be misleading or inaccurate. - -The transfer of EDUs and PDUs between home servers is performed by an exchange -of Transaction messages, which are encoded as JSON objects, passed over an -HTTP PUT request. A Transaction is meaningful only to the pair of home servers that -exchanged it; they are not globally-meaningful. - -Each transaction has: - - An opaque transaction ID. - - A timestamp (UNIX epoch time in milliseconds) generated by its origin server. - - An origin and destination server name. - - A list of "previous IDs". - - A list of PDUs and EDUs - the actual message payload that the Transaction carries. - -``origin`` - Type: - String - Description: - DNS name of homeserver making this transaction. - -``ts`` - Type: - Integer - Description: - Timestamp in milliseconds on originating homeserver when this transaction - started. - -``previous_ids`` - Type: - List of strings - Description: - List of transactions that were sent immediately prior to this transaction. - -``pdus`` - Type: - List of Objects. - Description: - List of updates contained in this transaction. - -:: - - { - "transaction_id":"916d630ea616342b42e98a3be0b74113", - "ts":1404835423000, - "origin":"red", - "destination":"blue", - "prev_ids":["e1da392e61898be4d2009b9fecce5325"], - "pdus":[...], - "edus":[...] - } - -The ``prev_ids`` field contains a list of previous transaction IDs that -the ``origin`` server has sent to this ``destination``. Its purpose is to act as a -sequence checking mechanism - the destination server can check whether it has -successfully received that Transaction, or ask for a retransmission if not. - -The ``pdus`` field of a transaction is a list, containing zero or more PDUs.[*] -Each PDU is itself a JSON object containing a number of keys, the exact details of -which will vary depending on the type of PDU. Similarly, the ``edus`` field is -another list containing the EDUs. This key may be entirely absent if there are -no EDUs to transfer. - -(* Normally the PDU list will be non-empty, but the server should cope with -receiving an "empty" transaction, as this is useful for informing peers of other -transaction IDs they should be aware of. This effectively acts as a push -mechanism to encourage peers to continue to replicate content.) - -PDUs and EDUs -------------- -.. WARNING:: - This section may be misleading or inaccurate. - -All PDUs have: - - An ID - - A context - - A declaration of their type - - A list of other PDU IDs that have been seen recently on that context (regardless of which origin - sent them) - -``context`` - Type: - String - Description: - Event context identifier - -``origin`` - Type: - String - Description: - DNS name of homeserver that created this PDU. - -``pdu_id`` - Type: - String - Description: - Unique identifier for PDU within the context for the originating homeserver - -``ts`` - Type: - Integer - Description: - Timestamp in milliseconds on originating homeserver when this PDU was created. - -``pdu_type`` - Type: - String - Description: - PDU event type. - -``prev_pdus`` - Type: - List of pairs of strings - Description: - The originating homeserver and PDU ids of the most recent PDUs the - homeserver was aware of for this context when it made this PDU. - -``depth`` - Type: - Integer - Description: - The maximum depth of the previous PDUs plus one. - - -.. TODO paul - [[TODO(paul): Update this structure so that 'pdu_id' is a two-element - [origin,ref] pair like the prev_pdus are]] - - -For state updates: - -``is_state`` - Type: - Boolean - Description: - True if this PDU is updating state. - -``state_key`` - Type: - String - Description: - Optional key identifying the updated state within the context. - -``power_level`` - Type: - Integer - Description: - The asserted power level of the user performing the update. - -``min_update`` - Type: - Integer - Description: - The required power level needed to replace this update. - -``prev_state_id`` - Type: - String - Description: - PDU event type. - -``prev_state_origin`` - Type: - String - Description: - The PDU id of the update this replaces. - -``user`` - Type: - String - Description: - The user updating the state. - -:: - - { - "pdu_id":"a4ecee13e2accdadf56c1025af232176", - "context":"#example.green", - "origin":"green", - "ts":1404838188000, - "pdu_type":"m.text", - "prev_pdus":[["blue","99d16afbc857975916f1d73e49e52b65"]], - "content":... - "is_state":false - } - -In contrast to Transactions, it is important to note that the ``prev_pdus`` -field of a PDU refers to PDUs that any origin server has sent, rather than -previous IDs that this ``origin`` has sent. This list may refer to other PDUs sent -by the same origin as the current one, or other origins. - -Because of the distributed nature of participants in a Matrix conversation, it -is impossible to establish a globally-consistent total ordering on the events. -However, by annotating each outbound PDU at its origin with IDs of other PDUs it -has received, a partial ordering can be constructed allowing causality -relationships to be preserved. A client can then display these messages to the -end-user in some order consistent with their content and ensure that no message -that is semantically in reply of an earlier one is ever displayed before it. - -PDUs fall into two main categories: those that deliver Events, and those that -synchronise State. For PDUs that relate to State synchronisation, additional -keys exist to support this: - -:: - - {..., - "is_state":true, - "state_key":TODO - "power_level":TODO - "prev_state_id":TODO - "prev_state_origin":TODO} - -.. TODO paul - [[TODO(paul): At this point we should probably have a long description of how - State management works, with descriptions of clobbering rules, power levels, etc - etc... But some of that detail is rather up-in-the-air, on the whiteboard, and - so on. This part needs refining. And writing in its own document as the details - relate to the server/system as a whole, not specifically to server-server - federation.]] - -EDUs, by comparison to PDUs, do not have an ID, a context, or a list of -"previous" IDs. The only mandatory fields for these are the type, origin and -destination home server names, and the actual nested content. - -:: - - {"edu_type":"m.presence", - "origin":"blue", - "destination":"orange", - "content":...} - - -Protocol URLs -============= -.. WARNING:: - This section may be misleading or inaccurate. - -All these URLs are namespaced within a prefix of:: - - /_matrix/federation/v1/... - -For active pushing of messages representing live activity "as it happens":: - - PUT .../send/:transaction_id/ - Body: JSON encoding of a single Transaction - Response: TODO - -The transaction_id path argument will override any ID given in the JSON body. -The destination name will be set to that of the receiving server itself. Each -embedded PDU in the transaction body will be processed. - - -To fetch a particular PDU:: - - GET .../pdu/:origin/:pdu_id/ - Response: JSON encoding of a single Transaction containing one PDU - -Retrieves a given PDU from the server. The response will contain a single new -Transaction, inside which will be the requested PDU. - - -To fetch all the state of a given context:: - - GET .../state/:context/ - Response: JSON encoding of a single Transaction containing multiple PDUs - -Retrieves a snapshot of the entire current state of the given context. The -response will contain a single Transaction, inside which will be a list of -PDUs that encode the state. - -To backfill events on a given context:: - - GET .../backfill/:context/ - Query args: v, limit - Response: JSON encoding of a single Transaction containing multiple PDUs - -Retrieves a sliding-window history of previous PDUs that occurred on the -given context. Starting from the PDU ID(s) given in the "v" argument, the -PDUs that preceeded it are retrieved, up to a total number given by the -"limit" argument. These are then returned in a new Transaction containing all -of the PDUs. - - -To stream events all the events:: - - GET .../pull/ - Query args: origin, v - Response: JSON encoding of a single Transaction consisting of multiple PDUs - -Retrieves all of the transactions later than any version given by the "v" -arguments. - - -To make a query:: - - GET .../query/:query_type - Query args: as specified by the individual query types - Response: JSON encoding of a response object - -Performs a single query request on the receiving home server. The Query Type -part of the path specifies the kind of query being made, and its query -arguments have a meaning specific to that kind of query. The response is a -JSON-encoded object whose meaning also depends on the kind of query. - -Backfilling ------------ -.. NOTE:: - This section is a work in progress. - -.. TODO - - What it is, when is it used, how is it done - -SRV Records ------------ -.. NOTE:: - This section is a work in progress. - -.. TODO - - Why it is needed - -Security -======== - -.. NOTE:: - This section is a work in progress. - -Threat Model ------------- - -Denial of Service -~~~~~~~~~~~~~~~~~ - -The attacker could attempt to prevent delivery of messages to or from the -victim in order to: - -* Disrupt service or marketing campaign of a commercial competitor. -* Censor a discussion or censor a participant in a discussion. -* Perform general vandalism. - -Threat: Resource Exhaustion -+++++++++++++++++++++++++++ - -An attacker could cause the victims server to exhaust a particular resource -(e.g. open TCP connections, CPU, memory, disk storage) - -Threat: Unrecoverable Consistency Violations -++++++++++++++++++++++++++++++++++++++++++++ - -An attacker could send messages which created an unrecoverable "split-brain" -state in the cluster such that the victim's servers could no longer dervive a -consistent view of the chatroom state. - -Threat: Bad History -+++++++++++++++++++ - -An attacker could convince the victim to accept invalid messages which the -victim would then include in their view of the chatroom history. Other servers -in the chatroom would reject the invalid messages and potentially reject the -victims messages as well since they depended on the invalid messages. - -.. TODO - Track trustworthiness of HS or users based on if they try to pretend they - haven't seen recent events, and fake a splitbrain... --M - -Threat: Block Network Traffic -+++++++++++++++++++++++++++++ - -An attacker could try to firewall traffic between the victim's server and some -or all of the other servers in the chatroom. - -Threat: High Volume of Messages -+++++++++++++++++++++++++++++++ - -An attacker could send large volumes of messages to a chatroom with the victim -making the chatroom unusable. - -Threat: Banning users without necessary authorisation -+++++++++++++++++++++++++++++++++++++++++++++++++++++ - -An attacker could attempt to ban a user from a chatroom with the necessary -authorisation. - -Spoofing -~~~~~~~~ - -An attacker could try to send a message claiming to be from the victim without -the victim having sent the message in order to: - -* Impersonate the victim while performing illict activity. -* Obtain privileges of the victim. - -Threat: Altering Message Contents -+++++++++++++++++++++++++++++++++ - -An attacker could try to alter the contents of an existing message from the -victim. - -Threat: Fake Message "origin" Field -+++++++++++++++++++++++++++++++++++ - -An attacker could try to send a new message purporting to be from the victim -with a phony "origin" field. - -Spamming -~~~~~~~~ - -The attacker could try to send a high volume of solicicted or unsolicted -messages to the victim in order to: - -* Find victims for scams. -* Market unwanted products. - -Threat: Unsoliticted Messages -+++++++++++++++++++++++++++++ - -An attacker could try to send messages to victims who do not wish to receive -them. - -Threat: Abusive Messages -++++++++++++++++++++++++ - -An attacker could send abusive or threatening messages to the victim - -Spying -~~~~~~ - -The attacker could try to access message contents or metadata for messages sent -by the victim or to the victim that were not intended to reach the attacker in -order to: - -* Gain sensitive personal or commercial information. -* Impersonate the victim using credentials contained in the messages. - (e.g. password reset messages) -* Discover who the victim was talking to and when. - -Threat: Disclosure during Transmission -++++++++++++++++++++++++++++++++++++++ - -An attacker could try to expose the message contents or metadata during -transmission between the servers. - -Threat: Disclosure to Servers Outside Chatroom -++++++++++++++++++++++++++++++++++++++++++++++ - -An attacker could try to convince servers within a chatroom to send messages to -a server it controls that was not authorised to be within the chatroom. - -Threat: Disclosure to Servers Within Chatroom -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -An attacker could take control of a server within a chatroom to expose message -contents or metadata for messages in that room. - -Rate limiting -------------- -Home servers SHOULD implement rate limiting to reduce the risk of being overloaded. If a -request is refused due to rate limiting, it should return a standard error response of -the form:: - - { - "errcode": "M_LIMIT_EXCEEDED", - "error": "string", - "retry_after_ms": integer (optional) - } - -The ``retry_after_ms`` key SHOULD be included to tell the client how long they have to wait -in milliseconds before they can try again. - -.. TODO - - Surely we should recommend an algorithm for the rate limiting, rather than letting every - homeserver come up with their own idea, causing totally unpredictable performance over - federated rooms? - - crypto (s-s auth) - - E2E - - Lawful intercept + Key Escrow - TODO Mark - -Policy Servers -============== -.. NOTE:: - This section is a work in progress. - -.. TODO - We should mention them in the Architecture section at least... - -Content repository -================== -.. NOTE:: - This section is a work in progress. - -.. TODO - - path to upload - - format for thumbnail paths, mention what it is protecting against. - - content size limit and associated M_ERROR. - -Address book repository -======================= -.. NOTE:: - This section is a work in progress. - -.. TODO - - format: POST(?) wodges of json, some possible processing, then return wodges of json on GET. - - processing may remove dupes, merge contacts, pepper with extra info (e.g. matrix-ability of - contacts), etc. - - Standard json format for contacts? Piggy back off vcards? - - -Glossary -======== -.. NOTE:: - This section is a work in progress. - -Backfilling: - The process of synchronising historic state from one home server to another, - to backfill the event storage so that scrollback can be presented to the - client(s). Not to be confused with pagination. - -Context: - A single human-level entity of interest (currently, a chat room) - -EDU (Ephemeral Data Unit): - A message that relates directly to a given pair of home servers that are - exchanging it. EDUs are short-lived messages that related only to one single - pair of servers; they are not persisted for a long time and are not forwarded - on to other servers. Because of this, they have no internal ID nor previous - EDUs reference chain. - -Event: - A record of activity that records a single thing that happened on to a context - (currently, a chat room). These are the "chat messages" that Synapse makes - available. - -PDU (Persistent Data Unit): - A message that relates to a single context, irrespective of the server that - is communicating it. PDUs either encode a single Event, or a single State - change. A PDU is referred to by its PDU ID; the pair of its origin server - and local reference from that server. - -PDU ID: - The pair of PDU Origin and PDU Reference, that together globally uniquely - refers to a specific PDU. - -PDU Origin: - The name of the origin server that generated a given PDU. This may not be the - server from which it has been received, due to the way they are copied around - from server to server. The origin always records the original server that - created it. - -PDU Reference: - A local ID used to refer to a specific PDU from a given origin server. These - references are opaque at the protocol level, but may optionally have some - structured meaning within a given origin server or implementation. - -Presence: - The concept of whether a user is currently online, how available they declare - they are, and so on. See also: doc/model/presence - -Profile: - A set of metadata about a user, such as a display name, provided for the - benefit of other users. See also: doc/model/profiles - -Room ID: - An opaque string (of as-yet undecided format) that identifies a particular - room and used in PDUs referring to it. - -Room Alias: - A human-readable string of the form #name:some.domain that users can use as a - pointer to identify a room; a Directory Server will map this to its Room ID - -State: - A set of metadata maintained about a Context, which is replicated among the - servers in addition to the history of Events. - -User ID: - A string of the form @localpart:domain.name that identifies a user for - wire-protocol purposes. The localpart is meaningless outside of a particular - home server. This takes a human-readable form that end-users can use directly - if they so wish, avoiding the 3PIDs. - -Transaction: - A message which relates to the communication between a given pair of servers. - A transaction contains possibly-empty lists of PDUs and EDUs. - -.. TODO - This glossary contradicts the terms used above - especially on State Events v. "State" - and Non-State Events v. "Events". We need better consistent names. - -.. Links through the external API docs are below -.. ============================================= - -.. |createRoom| replace:: ``/createRoom`` -.. _createRoom: /docs/api/client-server/#!/-rooms/create_room - -.. |initialSync| replace:: ``/initialSync`` -.. _initialSync: /docs/api/client-server/#!/-events/initial_sync - -.. |/rooms/<room_id>/initialSync| replace:: ``/rooms/<room_id>/initialSync`` -.. _/rooms/<room_id>/initialSync: /docs/api/client-server/#!/-rooms/get_room_sync_data - -.. |login| replace:: ``/login`` -.. _login: /docs/api/client-server/#!/-login - -.. |register| replace:: ``/register`` -.. _register: /docs/api/client-server/#!/-registration - -.. |/rooms/<room_id>/messages| replace:: ``/rooms/<room_id>/messages`` -.. _/rooms/<room_id>/messages: /docs/api/client-server/#!/-rooms/get_messages - -.. |/rooms/<room_id>/members| replace:: ``/rooms/<room_id>/members`` -.. _/rooms/<room_id>/members: /docs/api/client-server/#!/-rooms/get_members - -.. |/rooms/<room_id>/state| replace:: ``/rooms/<room_id>/state`` -.. _/rooms/<room_id>/state: /docs/api/client-server/#!/-rooms/get_state_events - -.. |/rooms/<room_id>/send/<event_type>| replace:: ``/rooms/<room_id>/send/<event_type>`` -.. _/rooms/<room_id>/send/<event_type>: /docs/api/client-server/#!/-rooms/send_non_state_event - -.. |/rooms/<room_id>/state/<event_type>/<state_key>| replace:: ``/rooms/<room_id>/state/<event_type>/<state_key>`` -.. _/rooms/<room_id>/state/<event_type>/<state_key>: /docs/api/client-server/#!/-rooms/send_state_event - -.. |/rooms/<room_id>/invite| replace:: ``/rooms/<room_id>/invite`` -.. _/rooms/<room_id>/invite: /docs/api/client-server/#!/-rooms/invite - -.. |/rooms/<room_id>/join| replace:: ``/rooms/<room_id>/join`` -.. _/rooms/<room_id>/join: /docs/api/client-server/#!/-rooms/join_room - -.. |/rooms/<room_id>/leave| replace:: ``/rooms/<room_id>/leave`` -.. _/rooms/<room_id>/leave: /docs/api/client-server/#!/-rooms/leave - -.. |/rooms/<room_id>/ban| replace:: ``/rooms/<room_id>/ban`` -.. _/rooms/<room_id>/ban: /docs/api/client-server/#!/-rooms/ban - -.. |/join/<room_alias_or_id>| replace:: ``/join/<room_alias_or_id>`` -.. _/join/<room_alias_or_id>: /docs/api/client-server/#!/-rooms/join - -.. _`Event Stream`: /docs/api/client-server/#!/-events/get_event_stream - |