diff options
author | Richard van der Hoff <1389908+richvdh@users.noreply.github.com> | 2022-01-13 14:35:52 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-01-13 14:35:52 +0000 |
commit | 20c6d85c6e8f721b8688b7f1361c7a7bab2449fd (patch) | |
tree | 2f931ca23048ce86f68fbbde9cef51dcf5048d08 /synapse/metrics/_gc.py | |
parent | Use auto_attribs/native type hints for attrs classes. (#11692) (diff) | |
download | synapse-20c6d85c6e8f721b8688b7f1361c7a7bab2449fd.tar.xz |
Simplify GC prometheus metrics (#11723)
Rather than hooking into the reactor loop, just add a timed task that runs every 100 ms to do the garbage collection. Part 1 of a quest to simplify the reactor monkey-patching.
Diffstat (limited to '')
-rw-r--r-- | synapse/metrics/_gc.py | 203 |
1 files changed, 203 insertions, 0 deletions
diff --git a/synapse/metrics/_gc.py b/synapse/metrics/_gc.py new file mode 100644 index 0000000000..2bc909efa0 --- /dev/null +++ b/synapse/metrics/_gc.py @@ -0,0 +1,203 @@ +# Copyright 2015-2022 The Matrix.org Foundation C.I.C. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import gc +import logging +import platform +import time +from typing import Iterable + +from prometheus_client.core import ( + REGISTRY, + CounterMetricFamily, + Gauge, + GaugeMetricFamily, + Histogram, + Metric, +) + +from twisted.internet import task + +"""Prometheus metrics for garbage collection""" + + +logger = logging.getLogger(__name__) + +# The minimum time in seconds between GCs for each generation, regardless of the current GC +# thresholds and counts. +MIN_TIME_BETWEEN_GCS = (1.0, 10.0, 30.0) + +running_on_pypy = platform.python_implementation() == "PyPy" + +# +# Python GC metrics +# + +gc_unreachable = Gauge("python_gc_unreachable_total", "Unreachable GC objects", ["gen"]) +gc_time = Histogram( + "python_gc_time", + "Time taken to GC (sec)", + ["gen"], + buckets=[ + 0.0025, + 0.005, + 0.01, + 0.025, + 0.05, + 0.10, + 0.25, + 0.50, + 1.00, + 2.50, + 5.00, + 7.50, + 15.00, + 30.00, + 45.00, + 60.00, + ], +) + + +class GCCounts: + def collect(self) -> Iterable[Metric]: + cm = GaugeMetricFamily("python_gc_counts", "GC object counts", labels=["gen"]) + for n, m in enumerate(gc.get_count()): + cm.add_metric([str(n)], m) + + yield cm + + +def install_gc_manager() -> None: + """Disable automatic GC, and replace it with a task that runs every 100ms + + This means that (a) we can limit how often GC runs; (b) we can get some metrics + about GC activity. + + It does nothing on PyPy. + """ + + if running_on_pypy: + return + + REGISTRY.register(GCCounts()) + + gc.disable() + + # The time (in seconds since the epoch) of the last time we did a GC for each generation. + _last_gc = [0.0, 0.0, 0.0] + + def _maybe_gc() -> None: + # Check if we need to do a manual GC (since its been disabled), and do + # one if necessary. Note we go in reverse order as e.g. a gen 1 GC may + # promote an object into gen 2, and we don't want to handle the same + # object multiple times. + threshold = gc.get_threshold() + counts = gc.get_count() + end = time.time() + for i in (2, 1, 0): + # We check if we need to do one based on a straightforward + # comparison between the threshold and count. We also do an extra + # check to make sure that we don't a GC too often. + if threshold[i] < counts[i] and MIN_TIME_BETWEEN_GCS[i] < end - _last_gc[i]: + if i == 0: + logger.debug("Collecting gc %d", i) + else: + logger.info("Collecting gc %d", i) + + start = time.time() + unreachable = gc.collect(i) + end = time.time() + + _last_gc[i] = end + + gc_time.labels(i).observe(end - start) + gc_unreachable.labels(i).set(unreachable) + + gc_task = task.LoopingCall(_maybe_gc) + gc_task.start(0.1) + + +# +# PyPy GC / memory metrics +# + + +class PyPyGCStats: + def collect(self) -> Iterable[Metric]: + + # @stats is a pretty-printer object with __str__() returning a nice table, + # plus some fields that contain data from that table. + # unfortunately, fields are pretty-printed themselves (i. e. '4.5MB'). + stats = gc.get_stats(memory_pressure=False) # type: ignore + # @s contains same fields as @stats, but as actual integers. + s = stats._s # type: ignore + + # also note that field naming is completely braindead + # and only vaguely correlates with the pretty-printed table. + # >>>> gc.get_stats(False) + # Total memory consumed: + # GC used: 8.7MB (peak: 39.0MB) # s.total_gc_memory, s.peak_memory + # in arenas: 3.0MB # s.total_arena_memory + # rawmalloced: 1.7MB # s.total_rawmalloced_memory + # nursery: 4.0MB # s.nursery_size + # raw assembler used: 31.0kB # s.jit_backend_used + # ----------------------------- + # Total: 8.8MB # stats.memory_used_sum + # + # Total memory allocated: + # GC allocated: 38.7MB (peak: 41.1MB) # s.total_allocated_memory, s.peak_allocated_memory + # in arenas: 30.9MB # s.peak_arena_memory + # rawmalloced: 4.1MB # s.peak_rawmalloced_memory + # nursery: 4.0MB # s.nursery_size + # raw assembler allocated: 1.0MB # s.jit_backend_allocated + # ----------------------------- + # Total: 39.7MB # stats.memory_allocated_sum + # + # Total time spent in GC: 0.073 # s.total_gc_time + + pypy_gc_time = CounterMetricFamily( + "pypy_gc_time_seconds_total", + "Total time spent in PyPy GC", + labels=[], + ) + pypy_gc_time.add_metric([], s.total_gc_time / 1000) + yield pypy_gc_time + + pypy_mem = GaugeMetricFamily( + "pypy_memory_bytes", + "Memory tracked by PyPy allocator", + labels=["state", "class", "kind"], + ) + # memory used by JIT assembler + pypy_mem.add_metric(["used", "", "jit"], s.jit_backend_used) + pypy_mem.add_metric(["allocated", "", "jit"], s.jit_backend_allocated) + # memory used by GCed objects + pypy_mem.add_metric(["used", "", "arenas"], s.total_arena_memory) + pypy_mem.add_metric(["allocated", "", "arenas"], s.peak_arena_memory) + pypy_mem.add_metric(["used", "", "rawmalloced"], s.total_rawmalloced_memory) + pypy_mem.add_metric(["allocated", "", "rawmalloced"], s.peak_rawmalloced_memory) + pypy_mem.add_metric(["used", "", "nursery"], s.nursery_size) + pypy_mem.add_metric(["allocated", "", "nursery"], s.nursery_size) + # totals + pypy_mem.add_metric(["used", "totals", "gc"], s.total_gc_memory) + pypy_mem.add_metric(["allocated", "totals", "gc"], s.total_allocated_memory) + pypy_mem.add_metric(["used", "totals", "gc_peak"], s.peak_memory) + pypy_mem.add_metric(["allocated", "totals", "gc_peak"], s.peak_allocated_memory) + yield pypy_mem + + +if running_on_pypy: + REGISTRY.register(PyPyGCStats()) |