diff --git a/changelog.d/10017.misc b/changelog.d/10017.misc
new file mode 100644
index 0000000000..4777b7fb57
--- /dev/null
+++ b/changelog.d/10017.misc
@@ -0,0 +1 @@
+Add a batching queue implementation.
diff --git a/synapse/util/batching_queue.py b/synapse/util/batching_queue.py
new file mode 100644
index 0000000000..44bbb7b1a8
--- /dev/null
+++ b/synapse/util/batching_queue.py
@@ -0,0 +1,153 @@
+# Copyright 2021 The Matrix.org Foundation C.I.C.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import logging
+from typing import (
+ Awaitable,
+ Callable,
+ Dict,
+ Generic,
+ Hashable,
+ List,
+ Set,
+ Tuple,
+ TypeVar,
+)
+
+from twisted.internet import defer
+
+from synapse.logging.context import PreserveLoggingContext, make_deferred_yieldable
+from synapse.metrics import LaterGauge
+from synapse.metrics.background_process_metrics import run_as_background_process
+from synapse.util import Clock
+
+logger = logging.getLogger(__name__)
+
+
+V = TypeVar("V")
+R = TypeVar("R")
+
+
+class BatchingQueue(Generic[V, R]):
+ """A queue that batches up work, calling the provided processing function
+ with all pending work (for a given key).
+
+ The provided processing function will only be called once at a time for each
+ key. It will be called the next reactor tick after `add_to_queue` has been
+ called, and will keep being called until the queue has been drained (for the
+ given key).
+
+ Note that the return value of `add_to_queue` will be the return value of the
+ processing function that processed the given item. This means that the
+ returned value will likely include data for other items that were in the
+ batch.
+ """
+
+ def __init__(
+ self,
+ name: str,
+ clock: Clock,
+ process_batch_callback: Callable[[List[V]], Awaitable[R]],
+ ):
+ self._name = name
+ self._clock = clock
+
+ # The set of keys currently being processed.
+ self._processing_keys = set() # type: Set[Hashable]
+
+ # The currently pending batch of values by key, with a Deferred to call
+ # with the result of the corresponding `_process_batch_callback` call.
+ self._next_values = {} # type: Dict[Hashable, List[Tuple[V, defer.Deferred]]]
+
+ # The function to call with batches of values.
+ self._process_batch_callback = process_batch_callback
+
+ LaterGauge(
+ "synapse_util_batching_queue_number_queued",
+ "The number of items waiting in the queue across all keys",
+ labels=("name",),
+ caller=lambda: sum(len(v) for v in self._next_values.values()),
+ )
+
+ LaterGauge(
+ "synapse_util_batching_queue_number_of_keys",
+ "The number of distinct keys that have items queued",
+ labels=("name",),
+ caller=lambda: len(self._next_values),
+ )
+
+ async def add_to_queue(self, value: V, key: Hashable = ()) -> R:
+ """Adds the value to the queue with the given key, returning the result
+ of the processing function for the batch that included the given value.
+
+ The optional `key` argument allows sharding the queue by some key. The
+ queues will then be processed in parallel, i.e. the process batch
+ function will be called in parallel with batched values from a single
+ key.
+ """
+
+ # First we create a defer and add it and the value to the list of
+ # pending items.
+ d = defer.Deferred()
+ self._next_values.setdefault(key, []).append((value, d))
+
+ # If we're not currently processing the key fire off a background
+ # process to start processing.
+ if key not in self._processing_keys:
+ run_as_background_process(self._name, self._process_queue, key)
+
+ return await make_deferred_yieldable(d)
+
+ async def _process_queue(self, key: Hashable) -> None:
+ """A background task to repeatedly pull things off the queue for the
+ given key and call the `self._process_batch_callback` with the values.
+ """
+
+ try:
+ if key in self._processing_keys:
+ return
+
+ self._processing_keys.add(key)
+
+ while True:
+ # We purposefully wait a reactor tick to allow us to batch
+ # together requests that we're about to receive. A common
+ # pattern is to call `add_to_queue` multiple times at once, and
+ # deferring to the next reactor tick allows us to batch all of
+ # those up.
+ await self._clock.sleep(0)
+
+ next_values = self._next_values.pop(key, [])
+ if not next_values:
+ # We've exhausted the queue.
+ break
+
+ try:
+ values = [value for value, _ in next_values]
+ results = await self._process_batch_callback(values)
+
+ for _, deferred in next_values:
+ with PreserveLoggingContext():
+ deferred.callback(results)
+
+ except Exception as e:
+ for _, deferred in next_values:
+ if deferred.called:
+ continue
+
+ with PreserveLoggingContext():
+ deferred.errback(e)
+
+ finally:
+ self._processing_keys.discard(key)
diff --git a/tests/util/test_batching_queue.py b/tests/util/test_batching_queue.py
new file mode 100644
index 0000000000..5def1e56c9
--- /dev/null
+++ b/tests/util/test_batching_queue.py
@@ -0,0 +1,169 @@
+# Copyright 2021 The Matrix.org Foundation C.I.C.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from twisted.internet import defer
+
+from synapse.logging.context import make_deferred_yieldable
+from synapse.util.batching_queue import BatchingQueue
+
+from tests.server import get_clock
+from tests.unittest import TestCase
+
+
+class BatchingQueueTestCase(TestCase):
+ def setUp(self):
+ self.clock, hs_clock = get_clock()
+
+ self._pending_calls = []
+ self.queue = BatchingQueue("test_queue", hs_clock, self._process_queue)
+
+ async def _process_queue(self, values):
+ d = defer.Deferred()
+ self._pending_calls.append((values, d))
+ return await make_deferred_yieldable(d)
+
+ def test_simple(self):
+ """Tests the basic case of calling `add_to_queue` once and having
+ `_process_queue` return.
+ """
+
+ self.assertFalse(self._pending_calls)
+
+ queue_d = defer.ensureDeferred(self.queue.add_to_queue("foo"))
+
+ # The queue should wait a reactor tick before calling the processing
+ # function.
+ self.assertFalse(self._pending_calls)
+ self.assertFalse(queue_d.called)
+
+ # We should see a call to `_process_queue` after a reactor tick.
+ self.clock.pump([0])
+
+ self.assertEqual(len(self._pending_calls), 1)
+ self.assertEqual(self._pending_calls[0][0], ["foo"])
+ self.assertFalse(queue_d.called)
+
+ # Return value of the `_process_queue` should be propagated back.
+ self._pending_calls.pop()[1].callback("bar")
+
+ self.assertEqual(self.successResultOf(queue_d), "bar")
+
+ def test_batching(self):
+ """Test that multiple calls at the same time get batched up into one
+ call to `_process_queue`.
+ """
+
+ self.assertFalse(self._pending_calls)
+
+ queue_d1 = defer.ensureDeferred(self.queue.add_to_queue("foo1"))
+ queue_d2 = defer.ensureDeferred(self.queue.add_to_queue("foo2"))
+
+ self.clock.pump([0])
+
+ # We should see only *one* call to `_process_queue`
+ self.assertEqual(len(self._pending_calls), 1)
+ self.assertEqual(self._pending_calls[0][0], ["foo1", "foo2"])
+ self.assertFalse(queue_d1.called)
+ self.assertFalse(queue_d2.called)
+
+ # Return value of the `_process_queue` should be propagated back to both.
+ self._pending_calls.pop()[1].callback("bar")
+
+ self.assertEqual(self.successResultOf(queue_d1), "bar")
+ self.assertEqual(self.successResultOf(queue_d2), "bar")
+
+ def test_queuing(self):
+ """Test that we queue up requests while a `_process_queue` is being
+ called.
+ """
+
+ self.assertFalse(self._pending_calls)
+
+ queue_d1 = defer.ensureDeferred(self.queue.add_to_queue("foo1"))
+ self.clock.pump([0])
+
+ queue_d2 = defer.ensureDeferred(self.queue.add_to_queue("foo2"))
+
+ # We should see only *one* call to `_process_queue`
+ self.assertEqual(len(self._pending_calls), 1)
+ self.assertEqual(self._pending_calls[0][0], ["foo1"])
+ self.assertFalse(queue_d1.called)
+ self.assertFalse(queue_d2.called)
+
+ # Return value of the `_process_queue` should be propagated back to the
+ # first.
+ self._pending_calls.pop()[1].callback("bar1")
+
+ self.assertEqual(self.successResultOf(queue_d1), "bar1")
+ self.assertFalse(queue_d2.called)
+
+ # We should now see a second call to `_process_queue`
+ self.clock.pump([0])
+ self.assertEqual(len(self._pending_calls), 1)
+ self.assertEqual(self._pending_calls[0][0], ["foo2"])
+ self.assertFalse(queue_d2.called)
+
+ # Return value of the `_process_queue` should be propagated back to the
+ # second.
+ self._pending_calls.pop()[1].callback("bar2")
+
+ self.assertEqual(self.successResultOf(queue_d2), "bar2")
+
+ def test_different_keys(self):
+ """Test that calls to different keys get processed in parallel."""
+
+ self.assertFalse(self._pending_calls)
+
+ queue_d1 = defer.ensureDeferred(self.queue.add_to_queue("foo1", key=1))
+ self.clock.pump([0])
+ queue_d2 = defer.ensureDeferred(self.queue.add_to_queue("foo2", key=2))
+ self.clock.pump([0])
+
+ # We queue up another item with key=2 to check that we will keep taking
+ # things off the queue.
+ queue_d3 = defer.ensureDeferred(self.queue.add_to_queue("foo3", key=2))
+
+ # We should see two calls to `_process_queue`
+ self.assertEqual(len(self._pending_calls), 2)
+ self.assertEqual(self._pending_calls[0][0], ["foo1"])
+ self.assertEqual(self._pending_calls[1][0], ["foo2"])
+ self.assertFalse(queue_d1.called)
+ self.assertFalse(queue_d2.called)
+ self.assertFalse(queue_d3.called)
+
+ # Return value of the `_process_queue` should be propagated back to the
+ # first.
+ self._pending_calls.pop(0)[1].callback("bar1")
+
+ self.assertEqual(self.successResultOf(queue_d1), "bar1")
+ self.assertFalse(queue_d2.called)
+ self.assertFalse(queue_d3.called)
+
+ # Return value of the `_process_queue` should be propagated back to the
+ # second.
+ self._pending_calls.pop()[1].callback("bar2")
+
+ self.assertEqual(self.successResultOf(queue_d2), "bar2")
+ self.assertFalse(queue_d3.called)
+
+ # We should now see a call `_pending_calls` for `foo3`
+ self.clock.pump([0])
+ self.assertEqual(len(self._pending_calls), 1)
+ self.assertEqual(self._pending_calls[0][0], ["foo3"])
+ self.assertFalse(queue_d3.called)
+
+ # Return value of the `_process_queue` should be propagated back to the
+ # third deferred.
+ self._pending_calls.pop()[1].callback("bar4")
+
+ self.assertEqual(self.successResultOf(queue_d3), "bar4")
|