diff --git a/changelog.d/16649.misc b/changelog.d/16649.misc
new file mode 100644
index 0000000000..cebd6aaee5
--- /dev/null
+++ b/changelog.d/16649.misc
@@ -0,0 +1 @@
+Speed up persisting large number of outliers.
diff --git a/synapse/handlers/federation_event.py b/synapse/handlers/federation_event.py
index ba6b94a8b7..f4c17894aa 100644
--- a/synapse/handlers/federation_event.py
+++ b/synapse/handlers/federation_event.py
@@ -88,7 +88,7 @@ from synapse.types import (
)
from synapse.types.state import StateFilter
from synapse.util.async_helpers import Linearizer, concurrently_execute
-from synapse.util.iterutils import batch_iter, partition
+from synapse.util.iterutils import batch_iter, partition, sorted_topologically_batched
from synapse.util.retryutils import NotRetryingDestination
from synapse.util.stringutils import shortstr
@@ -1669,14 +1669,13 @@ class FederationEventHandler:
# XXX: it might be possible to kick this process off in parallel with fetching
# the events.
- while event_map:
- # build a list of events whose auth events are not in the queue.
- roots = tuple(
- ev
- for ev in event_map.values()
- if not any(aid in event_map for aid in ev.auth_event_ids())
- )
+ # We need to persist an event's auth events before the event.
+ auth_graph = {
+ ev: [event_map[e_id] for e_id in ev.auth_event_ids() if e_id in event_map]
+ for ev in event_map.values()
+ }
+ for roots in sorted_topologically_batched(event_map.values(), auth_graph):
if not roots:
# if *none* of the remaining events are ready, that means
# we have a loop. This either means a bug in our logic, or that
@@ -1698,9 +1697,6 @@ class FederationEventHandler:
await self._auth_and_persist_outliers_inner(room_id, roots)
- for ev in roots:
- del event_map[ev.event_id]
-
async def _auth_and_persist_outliers_inner(
self, room_id: str, fetched_events: Collection[EventBase]
) -> None:
diff --git a/synapse/util/iterutils.py b/synapse/util/iterutils.py
index a0efb96d3b..f4c0194af0 100644
--- a/synapse/util/iterutils.py
+++ b/synapse/util/iterutils.py
@@ -135,3 +135,54 @@ def sorted_topologically(
degree_map[edge] -= 1
if degree_map[edge] == 0:
heapq.heappush(zero_degree, edge)
+
+
+def sorted_topologically_batched(
+ nodes: Iterable[T],
+ graph: Mapping[T, Collection[T]],
+) -> Generator[Collection[T], None, None]:
+ r"""Walk the graph topologically, returning batches of nodes where all nodes
+ that references it have been previously returned.
+
+ For example, given the following graph:
+
+ A
+ / \
+ B C
+ \ /
+ D
+
+ This function will return: `[[A], [B, C], [D]]`.
+
+ This function is useful for e.g. batch persisting events in an auth chain,
+ where we can only persist an event if all its auth events have already been
+ persisted.
+ """
+
+ degree_map = {node: 0 for node in nodes}
+ reverse_graph: Dict[T, Set[T]] = {}
+
+ for node, edges in graph.items():
+ if node not in degree_map:
+ continue
+
+ for edge in set(edges):
+ if edge in degree_map:
+ degree_map[node] += 1
+
+ reverse_graph.setdefault(edge, set()).add(node)
+ reverse_graph.setdefault(node, set())
+
+ zero_degree = [node for node, degree in degree_map.items() if degree == 0]
+
+ while zero_degree:
+ new_zero_degree = []
+ for node in zero_degree:
+ for edge in reverse_graph.get(node, []):
+ if edge in degree_map:
+ degree_map[edge] -= 1
+ if degree_map[edge] == 0:
+ new_zero_degree.append(edge)
+
+ yield zero_degree
+ zero_degree = new_zero_degree
diff --git a/tests/util/test_itertools.py b/tests/util/test_itertools.py
index 406c16cdcf..fabb05c7e4 100644
--- a/tests/util/test_itertools.py
+++ b/tests/util/test_itertools.py
@@ -13,7 +13,11 @@
# limitations under the License.
from typing import Dict, Iterable, List, Sequence
-from synapse.util.iterutils import chunk_seq, sorted_topologically
+from synapse.util.iterutils import (
+ chunk_seq,
+ sorted_topologically,
+ sorted_topologically_batched,
+)
from tests.unittest import TestCase
@@ -107,3 +111,73 @@ class SortTopologically(TestCase):
graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3, 2, 1]}
self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])
+
+
+class SortTopologicallyBatched(TestCase):
+ "Test cases for `sorted_topologically_batched`"
+
+ def test_empty(self) -> None:
+ "Test that an empty graph works correctly"
+
+ graph: Dict[int, List[int]] = {}
+ self.assertEqual(list(sorted_topologically_batched([], graph)), [])
+
+ def test_handle_empty_graph(self) -> None:
+ "Test that a graph where a node doesn't have an entry is treated as empty"
+
+ graph: Dict[int, List[int]] = {}
+
+ # For disconnected nodes the output is simply sorted.
+ self.assertEqual(list(sorted_topologically_batched([1, 2], graph)), [[1, 2]])
+
+ def test_disconnected(self) -> None:
+ "Test that a graph with no edges work"
+
+ graph: Dict[int, List[int]] = {1: [], 2: []}
+
+ # For disconnected nodes the output is simply sorted.
+ self.assertEqual(list(sorted_topologically_batched([1, 2], graph)), [[1, 2]])
+
+ def test_linear(self) -> None:
+ "Test that a simple `4 -> 3 -> 2 -> 1` graph works"
+
+ graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3]}
+
+ self.assertEqual(
+ list(sorted_topologically_batched([4, 3, 2, 1], graph)),
+ [[1], [2], [3], [4]],
+ )
+
+ def test_subset(self) -> None:
+ "Test that only sorting a subset of the graph works"
+ graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3]}
+
+ self.assertEqual(list(sorted_topologically_batched([4, 3], graph)), [[3], [4]])
+
+ def test_fork(self) -> None:
+ "Test that a forked graph works"
+ graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [1], 4: [2, 3]}
+
+ # Valid orderings are `[1, 3, 2, 4]` or `[1, 2, 3, 4]`, but we should
+ # always get the same one.
+ self.assertEqual(
+ list(sorted_topologically_batched([4, 3, 2, 1], graph)), [[1], [2, 3], [4]]
+ )
+
+ def test_duplicates(self) -> None:
+ "Test that a graph with duplicate edges work"
+ graph: Dict[int, List[int]] = {1: [], 2: [1, 1], 3: [2, 2], 4: [3]}
+
+ self.assertEqual(
+ list(sorted_topologically_batched([4, 3, 2, 1], graph)),
+ [[1], [2], [3], [4]],
+ )
+
+ def test_multiple_paths(self) -> None:
+ "Test that a graph with multiple paths between two nodes work"
+ graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3, 2, 1]}
+
+ self.assertEqual(
+ list(sorted_topologically_batched([4, 3, 2, 1], graph)),
+ [[1], [2], [3], [4]],
+ )
|