diff --git a/crypto/src/math/ec/ECAlgorithms.cs b/crypto/src/math/ec/ECAlgorithms.cs
index 3c911b173..a1349a9e0 100644
--- a/crypto/src/math/ec/ECAlgorithms.cs
+++ b/crypto/src/math/ec/ECAlgorithms.cs
@@ -117,6 +117,11 @@ namespace Org.BouncyCastle.Math.EC
public static void MontgomeryTrick(ECFieldElement[] zs, int off, int len)
{
+ MontgomeryTrick(zs, off, len, null);
+ }
+
+ public static void MontgomeryTrick(ECFieldElement[] zs, int off, int len, ECFieldElement scale)
+ {
/*
* Uses the "Montgomery Trick" to invert many field elements, with only a single actual
* field inversion. See e.g. the paper:
@@ -133,7 +138,14 @@ namespace Org.BouncyCastle.Math.EC
c[i] = c[i - 1].Multiply(zs[off + i]);
}
- ECFieldElement u = c[--i].Invert();
+ --i;
+
+ if (scale != null)
+ {
+ c[i] = c[i].Multiply(scale);
+ }
+
+ ECFieldElement u = c[i].Invert();
while (i > 0)
{
diff --git a/crypto/src/math/ec/ECCurve.cs b/crypto/src/math/ec/ECCurve.cs
index eaa3e0c3d..339d37f7c 100644
--- a/crypto/src/math/ec/ECCurve.cs
+++ b/crypto/src/math/ec/ECCurve.cs
@@ -221,26 +221,56 @@ namespace Org.BouncyCastle.Math.EC
*/
public virtual void NormalizeAll(ECPoint[] points)
{
- CheckPoints(points);
+ NormalizeAll(points, 0, points.Length, null);
+ }
+
+ /**
+ * Normalization ensures that any projective coordinate is 1, and therefore that the x, y
+ * coordinates reflect those of the equivalent point in an affine coordinate system. Where more
+ * than one point is to be normalized, this method will generally be more efficient than
+ * normalizing each point separately. An (optional) z-scaling factor can be applied; effectively
+ * each z coordinate is scaled by this value prior to normalization (but only one
+ * actual multiplication is needed).
+ *
+ * @param points
+ * An array of points that will be updated in place with their normalized versions,
+ * where necessary
+ * @param off
+ * The start of the range of points to normalize
+ * @param len
+ * The length of the range of points to normalize
+ * @param iso
+ * The (optional) z-scaling factor - can be null
+ */
+ public virtual void NormalizeAll(ECPoint[] points, int off, int len, ECFieldElement iso)
+ {
+ CheckPoints(points, off, len);
- if (this.CoordinateSystem == ECCurve.COORD_AFFINE)
+ switch (this.CoordinateSystem)
{
- return;
+ case ECCurve.COORD_AFFINE:
+ case ECCurve.COORD_LAMBDA_AFFINE:
+ {
+ if (iso != null)
+ throw new ArgumentException("not valid for affine coordinates", "iso");
+
+ return;
+ }
}
/*
* Figure out which of the points actually need to be normalized
*/
- ECFieldElement[] zs = new ECFieldElement[points.Length];
- int[] indices = new int[points.Length];
+ ECFieldElement[] zs = new ECFieldElement[len];
+ int[] indices = new int[len];
int count = 0;
- for (int i = 0; i < points.Length; ++i)
+ for (int i = 0; i < len; ++i)
{
- ECPoint p = points[i];
- if (null != p && !p.IsNormalized())
+ ECPoint p = points[off + i];
+ if (null != p && (iso != null || !p.IsNormalized()))
{
zs[count] = p.GetZCoord(0);
- indices[count++] = i;
+ indices[count++] = off + i;
}
}
@@ -249,7 +279,7 @@ namespace Org.BouncyCastle.Math.EC
return;
}
- ECAlgorithms.MontgomeryTrick(zs, 0, count);
+ ECAlgorithms.MontgomeryTrick(zs, 0, count, iso);
for (int j = 0; j < count; ++j)
{
@@ -298,12 +328,19 @@ namespace Org.BouncyCastle.Math.EC
protected virtual void CheckPoints(ECPoint[] points)
{
+ CheckPoints(points, 0, points.Length);
+ }
+
+ protected virtual void CheckPoints(ECPoint[] points, int off, int len)
+ {
if (points == null)
throw new ArgumentNullException("points");
+ if (off < 0 || len < 0 || (off > (points.Length - len)))
+ throw new ArgumentException("invalid range specified", "points");
- for (int i = 0; i < points.Length; ++i)
+ for (int i = 0; i < len; ++i)
{
- ECPoint point = points[i];
+ ECPoint point = points[off + i];
if (null != point && this != point.Curve)
throw new ArgumentException("entries must be null or on this curve", "points");
}
diff --git a/crypto/src/math/ec/multiplier/WNafUtilities.cs b/crypto/src/math/ec/multiplier/WNafUtilities.cs
index 865b9073e..5491297d7 100644
--- a/crypto/src/math/ec/multiplier/WNafUtilities.cs
+++ b/crypto/src/math/ec/multiplier/WNafUtilities.cs
@@ -10,6 +10,7 @@ namespace Org.BouncyCastle.Math.EC.Multiplier
private static readonly byte[] EMPTY_BYTES = new byte[0];
private static readonly int[] EMPTY_INTS = new int[0];
+ private static readonly ECPoint[] EMPTY_POINTS = new ECPoint[0];
public static int[] GenerateCompactNaf(BigInteger k)
{
@@ -368,46 +369,100 @@ namespace Org.BouncyCastle.Math.EC.Multiplier
{
ECCurve c = p.Curve;
WNafPreCompInfo wnafPreCompInfo = GetWNafPreCompInfo(c.GetPreCompInfo(p, PRECOMP_NAME));
-
+
+ int iniPreCompLen = 0, reqPreCompLen = 1 << System.Math.Max(0, width - 2);
+
ECPoint[] preComp = wnafPreCompInfo.PreComp;
if (preComp == null)
{
- preComp = new ECPoint[]{ p };
+ preComp = EMPTY_POINTS;
+ }
+ else
+ {
+ iniPreCompLen = preComp.Length;
}
- int preCompLen = preComp.Length;
- int reqPreCompLen = 1 << System.Math.Max(0, width - 2);
-
- if (preCompLen < reqPreCompLen)
+ if (iniPreCompLen < reqPreCompLen)
{
preComp = ResizeTable(preComp, reqPreCompLen);
- if (reqPreCompLen == 2)
+
+ if (reqPreCompLen == 1)
{
- preComp[1] = preComp[0].ThreeTimes();
+ preComp[0] = p.Normalize();
}
else
{
- ECPoint twiceP = wnafPreCompInfo.Twice;
- if (twiceP == null)
+ int curPreCompLen = iniPreCompLen;
+ if (curPreCompLen == 0)
{
- twiceP = preComp[0].Twice();
- wnafPreCompInfo.Twice = twiceP;
+ preComp[0] = p;
+ curPreCompLen = 1;
}
- for (int i = preCompLen; i < reqPreCompLen; i++)
+ ECFieldElement iso = null;
+
+ if (reqPreCompLen == 2)
{
- /*
- * Compute the new ECPoints for the precomputation array. The values 1, 3, 5, ...,
- * 2^(width-1)-1 times p are computed
- */
- preComp[i] = twiceP.Add(preComp[i - 1]);
+ preComp[1] = p.ThreeTimes();
+ }
+ else
+ {
+ ECPoint twiceP = wnafPreCompInfo.Twice, last = preComp[curPreCompLen - 1];
+ if (twiceP == null)
+ {
+ twiceP = preComp[0].Twice();
+ wnafPreCompInfo.Twice = twiceP;
+
+ /*
+ * For Fp curves with Jacobian projective coordinates, use a (quasi-)isomorphism
+ * where 'twiceP' is "affine", so that the subsequent additions are cheaper. This
+ * also requires scaling the initial point's X, Y coordinates, and reversing the
+ * isomorphism as part of the subsequent normalization.
+ *
+ * NOTE: The correctness of this optimization depends on:
+ * 1) additions do not use the curve's A, B coefficients.
+ * 2) no special cases (i.e. Q +/- Q) when calculating 1P, 3P, 5P, ...
+ */
+ if (ECAlgorithms.IsFpCurve(c) && c.FieldSize >= 64)
+ {
+ switch (c.CoordinateSystem)
+ {
+ case ECCurve.COORD_JACOBIAN:
+ case ECCurve.COORD_JACOBIAN_CHUDNOVSKY:
+ case ECCurve.COORD_JACOBIAN_MODIFIED:
+ {
+ iso = twiceP.GetZCoord(0);
+ twiceP = c.CreatePoint(twiceP.XCoord.ToBigInteger(),
+ twiceP.YCoord.ToBigInteger());
+
+ ECFieldElement iso2 = iso.Square(), iso3 = iso2.Multiply(iso);
+ last = last.ScaleX(iso2).ScaleY(iso3);
+
+ if (iniPreCompLen == 0)
+ {
+ preComp[0] = last;
+ }
+ break;
+ }
+ }
+ }
+ }
+
+ while (curPreCompLen < reqPreCompLen)
+ {
+ /*
+ * Compute the new ECPoints for the precomputation array. The values 1, 3,
+ * 5, ..., 2^(width-1)-1 times p are computed
+ */
+ preComp[curPreCompLen++] = last = last.Add(twiceP);
+ }
}
- }
- /*
- * Having oft-used operands in affine form makes operations faster.
- */
- c.NormalizeAll(preComp);
+ /*
+ * Having oft-used operands in affine form makes operations faster.
+ */
+ c.NormalizeAll(preComp, iniPreCompLen, reqPreCompLen - iniPreCompLen, iso);
+ }
}
wnafPreCompInfo.PreComp = preComp;
|