summary refs log tree commit diff
path: root/crypto/src/math/raw/Interleave.cs
blob: 9ff85c572267567a1038859ed02b6c4d720a1bff (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
using System;
#if NETCOREAPP3_0_OR_GREATER
using System.Runtime.Intrinsics.X86;
#endif

namespace Org.BouncyCastle.Math.Raw
{
    internal abstract class Interleave
    {
        private const ulong M32 = 0x55555555UL;
        private const ulong M64 = 0x5555555555555555UL;
        private const ulong M64R = 0xAAAAAAAAAAAAAAAAUL;

        internal static uint Expand8to16(uint x)
        {
            x &= 0xFFU;
            x = (x | (x << 4)) & 0x0F0FU;
            x = (x | (x << 2)) & 0x3333U;
            x = (x | (x << 1)) & 0x5555U;
            return x;
        }

        internal static uint Expand16to32(uint x)
        {
            x &= 0xFFFFU;
            x = (x | (x << 8)) & 0x00FF00FFU;
            x = (x | (x << 4)) & 0x0F0F0F0FU;
            x = (x | (x << 2)) & 0x33333333U;
            x = (x | (x << 1)) & 0x55555555U;
            return x;
        }

        internal static ulong Expand32to64(uint x)
        {
#if NETCOREAPP3_0_OR_GREATER
            if (Bmi2.IsSupported)
            {
                return (ulong)Bmi2.ParallelBitDeposit(x >> 16, 0x55555555U) << 32
                    |         Bmi2.ParallelBitDeposit(x      , 0x55555555U);
            }
#endif

            // "shuffle" low half to even bits and high half to odd bits
            x = Bits.BitPermuteStep(x, 0x0000FF00U, 8);
            x = Bits.BitPermuteStep(x, 0x00F000F0U, 4);
            x = Bits.BitPermuteStep(x, 0x0C0C0C0CU, 2);
            x = Bits.BitPermuteStep(x, 0x22222222U, 1);

            return ((x >> 1) & M32) << 32 | (x & M32);
        }

        internal static void Expand64To128(ulong x, ulong[] z, int zOff)
        {
#if NETCOREAPP3_0_OR_GREATER
            if (Bmi2.X64.IsSupported)
            {
                z[zOff    ] = Bmi2.X64.ParallelBitDeposit(x      , 0x5555555555555555UL);
                z[zOff + 1] = Bmi2.X64.ParallelBitDeposit(x >> 32, 0x5555555555555555UL);
                return;
            }
#endif

            // "shuffle" low half to even bits and high half to odd bits
            x = Bits.BitPermuteStep(x, 0x00000000FFFF0000UL, 16);
            x = Bits.BitPermuteStep(x, 0x0000FF000000FF00UL, 8);
            x = Bits.BitPermuteStep(x, 0x00F000F000F000F0UL, 4);
            x = Bits.BitPermuteStep(x, 0x0C0C0C0C0C0C0C0CUL, 2);
            x = Bits.BitPermuteStep(x, 0x2222222222222222UL, 1);

            z[zOff    ] = (x     ) & M64;
            z[zOff + 1] = (x >> 1) & M64;
        }

        internal static void Expand64To128(ulong[] zs, int zsOff, int zsLen)
        {
            int i = zsLen, zsPos = zsOff + zsLen << 1;
            while (--i >= 0)
            {
                zsPos -= 2;
                Expand64To128(zs[zsOff + i], zs, zsPos);
            }
        }

        internal static void Expand64To128(ulong[] xs, int xsOff, int xsLen, ulong[] zs, int zsOff)
        {
            for (int i = 0; i < xsLen; ++i)
            {
                Expand64To128(xs[xsOff + i], zs, zsOff);
                zsOff += 2;
            }
        }

        internal static ulong Expand64To128Rev(ulong x, out ulong low)
        {
#if NETCOREAPP3_0_OR_GREATER
            if (Bmi2.X64.IsSupported)
            {
                low  = Bmi2.X64.ParallelBitDeposit(x >> 32, 0xAAAAAAAAAAAAAAAAUL);
                return Bmi2.X64.ParallelBitDeposit(x      , 0xAAAAAAAAAAAAAAAAUL);
            }
#endif

            // "shuffle" low half to even bits and high half to odd bits
            x = Bits.BitPermuteStep(x, 0x00000000FFFF0000UL, 16);
            x = Bits.BitPermuteStep(x, 0x0000FF000000FF00UL, 8);
            x = Bits.BitPermuteStep(x, 0x00F000F000F000F0UL, 4);
            x = Bits.BitPermuteStep(x, 0x0C0C0C0C0C0C0C0CUL, 2);
            x = Bits.BitPermuteStep(x, 0x2222222222222222UL, 1);

            low  = (x     ) & M64R;
            return (x << 1) & M64R;
        }

        internal static uint Shuffle(uint x)
        {
            // "shuffle" low half to even bits and high half to odd bits
            x = Bits.BitPermuteStep(x, 0x0000FF00U, 8);
            x = Bits.BitPermuteStep(x, 0x00F000F0U, 4);
            x = Bits.BitPermuteStep(x, 0x0C0C0C0CU, 2);
            x = Bits.BitPermuteStep(x, 0x22222222U, 1);
            return x;
        }

        internal static ulong Shuffle(ulong x)
        {
            // "shuffle" low half to even bits and high half to odd bits
            x = Bits.BitPermuteStep(x, 0x00000000FFFF0000UL, 16);
            x = Bits.BitPermuteStep(x, 0x0000FF000000FF00UL, 8);
            x = Bits.BitPermuteStep(x, 0x00F000F000F000F0UL, 4);
            x = Bits.BitPermuteStep(x, 0x0C0C0C0C0C0C0C0CUL, 2);
            x = Bits.BitPermuteStep(x, 0x2222222222222222UL, 1);
            return x;
        }

        internal static uint Shuffle2(uint x)
        {
            // "shuffle" (twice) low half to even bits and high half to odd bits
            x = Bits.BitPermuteStep(x, 0x00AA00AAU, 7);
            x = Bits.BitPermuteStep(x, 0x0000CCCCU, 14);
            x = Bits.BitPermuteStep(x, 0x00F000F0U, 4);
            x = Bits.BitPermuteStep(x, 0x0000FF00U, 8);
            return x;
        }

        internal static uint Unshuffle(uint x)
        {
            // "unshuffle" even bits to low half and odd bits to high half
            x = Bits.BitPermuteStep(x, 0x22222222U, 1);
            x = Bits.BitPermuteStep(x, 0x0C0C0C0CU, 2);
            x = Bits.BitPermuteStep(x, 0x00F000F0U, 4);
            x = Bits.BitPermuteStep(x, 0x0000FF00U, 8);
            return x;
        }

        internal static ulong Unshuffle(ulong x)
        {
#if NETCOREAPP3_0_OR_GREATER
            if (Bmi2.X64.IsSupported)
            {
                return Bmi2.X64.ParallelBitExtract(x, 0xAAAAAAAAAAAAAAAAUL) << 32
                    |  Bmi2.X64.ParallelBitExtract(x, 0x5555555555555555UL);
            }
#endif

            // "unshuffle" even bits to low half and odd bits to high half
            x = Bits.BitPermuteStep(x, 0x2222222222222222UL, 1);
            x = Bits.BitPermuteStep(x, 0x0C0C0C0C0C0C0C0CUL, 2);
            x = Bits.BitPermuteStep(x, 0x00F000F000F000F0UL, 4);
            x = Bits.BitPermuteStep(x, 0x0000FF000000FF00UL, 8);
            x = Bits.BitPermuteStep(x, 0x00000000FFFF0000UL, 16);
            return x;
        }

        internal static ulong Unshuffle(ulong x, out ulong even)
        {
#if NETCOREAPP3_0_OR_GREATER
            if (Bmi2.X64.IsSupported)
            {
                even = Bmi2.X64.ParallelBitExtract(x, 0x5555555555555555UL);
                return Bmi2.X64.ParallelBitExtract(x, 0xAAAAAAAAAAAAAAAAUL);
            }
#endif

            ulong u0 = Unshuffle(x);
            even = u0 & 0x00000000FFFFFFFFUL;
            return u0 >> 32;
        }

        internal static ulong Unshuffle(ulong x0, ulong x1, out ulong even)
        {
#if NETCOREAPP3_0_OR_GREATER
            if (Bmi2.X64.IsSupported)
            {
                even = Bmi2.X64.ParallelBitExtract(x0, 0x5555555555555555UL)
                    |  Bmi2.X64.ParallelBitExtract(x1, 0x5555555555555555UL) << 32;
                return Bmi2.X64.ParallelBitExtract(x0, 0xAAAAAAAAAAAAAAAAUL)
                    |  Bmi2.X64.ParallelBitExtract(x1, 0xAAAAAAAAAAAAAAAAUL) << 32;
            }
#endif

            ulong u0 = Unshuffle(x0);
            ulong u1 = Unshuffle(x1);
            even = (u1 << 32) | (u0 & 0x00000000FFFFFFFFUL);
            return (u0 >> 32) | (u1 & 0xFFFFFFFF00000000UL);
        }

        internal static uint Unshuffle2(uint x)
        {
            // "unshuffle" (twice) even bits to low half and odd bits to high half
            x = Bits.BitPermuteStep(x, 0x0000FF00U, 8);
            x = Bits.BitPermuteStep(x, 0x00F000F0U, 4);
            x = Bits.BitPermuteStep(x, 0x0000CCCCU, 14);
            x = Bits.BitPermuteStep(x, 0x00AA00AAU, 7);
            return x;
        }
    }
}