1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
#if FALSE
using System;
namespace Org.BouncyCastle.Math.EC.Multiplier
{
/**
* Class implementing the WNAF (Window Non-Adjacent Form) multiplication
* algorithm.
*/
internal class WNafMultiplier
: ECMultiplier
{
/**
* Computes the Window NAF (non-adjacent Form) of an integer.
* @param width The width <code>w</code> of the Window NAF. The width is
* defined as the minimal number <code>w</code>, such that for any
* <code>w</code> consecutive digits in the resulting representation, at
* most one is non-zero.
* @param k The integer of which the Window NAF is computed.
* @return The Window NAF of the given width, such that the following holds:
* <code>k = −<sub>i=0</sub><sup>l-1</sup> k<sub>i</sub>2<sup>i</sup>
* </code>, where the <code>k<sub>i</sub></code> denote the elements of the
* returned <code>sbyte[]</code>.
*/
public sbyte[] WindowNaf(sbyte width, BigInteger k)
{
// The window NAF is at most 1 element longer than the binary
// representation of the integer k. sbyte can be used instead of short or
// int unless the window width is larger than 8. For larger width use
// short or int. However, a width of more than 8 is not efficient for
// m = log2(q) smaller than 2305 Bits. Note: Values for m larger than
// 1000 Bits are currently not used in practice.
sbyte[] wnaf = new sbyte[k.BitLength + 1];
// 2^width as short and BigInteger
short pow2wB = (short)(1 << width);
BigInteger pow2wBI = BigInteger.ValueOf(pow2wB);
int i = 0;
// The actual length of the WNAF
int length = 0;
// while k >= 1
while (k.SignValue > 0)
{
// if k is odd
if (k.TestBit(0))
{
// k Mod 2^width
BigInteger remainder = k.Mod(pow2wBI);
// if remainder > 2^(width - 1) - 1
if (remainder.TestBit(width - 1))
{
wnaf[i] = (sbyte)(remainder.IntValue - pow2wB);
}
else
{
wnaf[i] = (sbyte)remainder.IntValue;
}
// wnaf[i] is now in [-2^(width-1), 2^(width-1)-1]
k = k.Subtract(BigInteger.ValueOf(wnaf[i]));
length = i;
}
else
{
wnaf[i] = 0;
}
// k = k/2
k = k.ShiftRight(1);
i++;
}
length++;
// Reduce the WNAF array to its actual length
sbyte[] wnafShort = new sbyte[length];
Array.Copy(wnaf, 0, wnafShort, 0, length);
return wnafShort;
}
/**
* Multiplies <code>this</code> by an integer <code>k</code> using the
* Window NAF method.
* @param k The integer by which <code>this</code> is multiplied.
* @return A new <code>ECPoint</code> which equals <code>this</code>
* multiplied by <code>k</code>.
*/
public ECPoint Multiply(ECPoint p, BigInteger k, PreCompInfo preCompInfo)
{
WNafPreCompInfo wnafPreCompInfo;
if ((preCompInfo != null) && (preCompInfo is WNafPreCompInfo))
{
wnafPreCompInfo = (WNafPreCompInfo)preCompInfo;
}
else
{
// Ignore empty PreCompInfo or PreCompInfo of incorrect type
wnafPreCompInfo = new WNafPreCompInfo();
}
// floor(log2(k))
int m = k.BitLength;
// width of the Window NAF
sbyte width;
// Required length of precomputation array
int reqPreCompLen;
// Determine optimal width and corresponding length of precomputation
// array based on literature values
if (m < 13)
{
width = 2;
reqPreCompLen = 1;
}
else
{
if (m < 41)
{
width = 3;
reqPreCompLen = 2;
}
else
{
if (m < 121)
{
width = 4;
reqPreCompLen = 4;
}
else
{
if (m < 337)
{
width = 5;
reqPreCompLen = 8;
}
else
{
if (m < 897)
{
width = 6;
reqPreCompLen = 16;
}
else
{
if (m < 2305)
{
width = 7;
reqPreCompLen = 32;
}
else
{
width = 8;
reqPreCompLen = 127;
}
}
}
}
}
}
// The length of the precomputation array
int preCompLen = 1;
ECPoint[] preComp = wnafPreCompInfo.GetPreComp();
ECPoint twiceP = wnafPreCompInfo.GetTwiceP();
// Check if the precomputed ECPoints already exist
if (preComp == null)
{
// Precomputation must be performed from scratch, create an empty
// precomputation array of desired length
preComp = new ECPoint[]{ p };
}
else
{
// Take the already precomputed ECPoints to start with
preCompLen = preComp.Length;
}
if (twiceP == null)
{
// Compute twice(p)
twiceP = p.Twice();
}
if (preCompLen < reqPreCompLen)
{
// Precomputation array must be made bigger, copy existing preComp
// array into the larger new preComp array
ECPoint[] oldPreComp = preComp;
preComp = new ECPoint[reqPreCompLen];
Array.Copy(oldPreComp, 0, preComp, 0, preCompLen);
for (int i = preCompLen; i < reqPreCompLen; i++)
{
// Compute the new ECPoints for the precomputation array.
// The values 1, 3, 5, ..., 2^(width-1)-1 times p are
// computed
preComp[i] = twiceP.Add(preComp[i - 1]);
}
}
// Compute the Window NAF of the desired width
sbyte[] wnaf = WindowNaf(width, k);
int l = wnaf.Length;
// Apply the Window NAF to p using the precomputed ECPoint values.
ECPoint q = p.Curve.Infinity;
for (int i = l - 1; i >= 0; i--)
{
q = q.Twice();
if (wnaf[i] != 0)
{
if (wnaf[i] > 0)
{
q = q.Add(preComp[(wnaf[i] - 1)/2]);
}
else
{
// wnaf[i] < 0
q = q.Subtract(preComp[(-wnaf[i] - 1)/2]);
}
}
}
// Set PreCompInfo in ECPoint, such that it is available for next
// multiplication.
wnafPreCompInfo.SetPreComp(preComp);
wnafPreCompInfo.SetTwiceP(twiceP);
p.SetPreCompInfo(wnafPreCompInfo);
return q;
}
}
}
#endif
|