1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
using System;
using System.Text;
namespace Org.BouncyCastle.Math.EC.Abc
{
/**
* Class representing a simple version of a big decimal. A
* <code>SimpleBigDecimal</code> is basically a
* {@link java.math.BigInteger BigInteger} with a few digits on the right of
* the decimal point. The number of (binary) digits on the right of the decimal
* point is called the <code>scale</code> of the <code>SimpleBigDecimal</code>.
* Unlike in {@link java.math.BigDecimal BigDecimal}, the scale is not adjusted
* automatically, but must be set manually. All <code>SimpleBigDecimal</code>s
* taking part in the same arithmetic operation must have equal scale. The
* result of a multiplication of two <code>SimpleBigDecimal</code>s returns a
* <code>SimpleBigDecimal</code> with double scale.
*/
internal class SimpleBigDecimal
// : Number
{
// private static final long serialVersionUID = 1L;
private readonly BigInteger bigInt;
private readonly int scale;
/**
* Returns a <code>SimpleBigDecimal</code> representing the same numerical
* value as <code>value</code>.
* @param value The value of the <code>SimpleBigDecimal</code> to be
* created.
* @param scale The scale of the <code>SimpleBigDecimal</code> to be
* created.
* @return The such created <code>SimpleBigDecimal</code>.
*/
public static SimpleBigDecimal GetInstance(BigInteger val, int scale)
{
return new SimpleBigDecimal(val.ShiftLeft(scale), scale);
}
/**
* Constructor for <code>SimpleBigDecimal</code>. The value of the
* constructed <code>SimpleBigDecimal</code> Equals <code>bigInt /
* 2<sup>scale</sup></code>.
* @param bigInt The <code>bigInt</code> value parameter.
* @param scale The scale of the constructed <code>SimpleBigDecimal</code>.
*/
public SimpleBigDecimal(BigInteger bigInt, int scale)
{
if (scale < 0)
throw new ArgumentException("scale may not be negative");
this.bigInt = bigInt;
this.scale = scale;
}
private SimpleBigDecimal(SimpleBigDecimal limBigDec)
{
bigInt = limBigDec.bigInt;
scale = limBigDec.scale;
}
private void CheckScale(SimpleBigDecimal b)
{
if (scale != b.scale)
throw new ArgumentException("Only SimpleBigDecimal of same scale allowed in arithmetic operations");
}
public SimpleBigDecimal AdjustScale(int newScale)
{
if (newScale < 0)
throw new ArgumentException("scale may not be negative");
if (newScale == scale)
return this;
return new SimpleBigDecimal(bigInt.ShiftLeft(newScale - scale), newScale);
}
public SimpleBigDecimal Add(SimpleBigDecimal b)
{
CheckScale(b);
return new SimpleBigDecimal(bigInt.Add(b.bigInt), scale);
}
public SimpleBigDecimal Add(BigInteger b)
{
return new SimpleBigDecimal(bigInt.Add(b.ShiftLeft(scale)), scale);
}
public SimpleBigDecimal Negate()
{
return new SimpleBigDecimal(bigInt.Negate(), scale);
}
public SimpleBigDecimal Subtract(SimpleBigDecimal b)
{
return Add(b.Negate());
}
public SimpleBigDecimal Subtract(BigInteger b)
{
return new SimpleBigDecimal(bigInt.Subtract(b.ShiftLeft(scale)), scale);
}
public SimpleBigDecimal Multiply(SimpleBigDecimal b)
{
CheckScale(b);
return new SimpleBigDecimal(bigInt.Multiply(b.bigInt), scale + scale);
}
public SimpleBigDecimal Multiply(BigInteger b)
{
return new SimpleBigDecimal(bigInt.Multiply(b), scale);
}
public SimpleBigDecimal Divide(SimpleBigDecimal b)
{
CheckScale(b);
BigInteger dividend = bigInt.ShiftLeft(scale);
return new SimpleBigDecimal(dividend.Divide(b.bigInt), scale);
}
public SimpleBigDecimal Divide(BigInteger b)
{
return new SimpleBigDecimal(bigInt.Divide(b), scale);
}
public SimpleBigDecimal ShiftLeft(int n)
{
return new SimpleBigDecimal(bigInt.ShiftLeft(n), scale);
}
public int CompareTo(SimpleBigDecimal val)
{
CheckScale(val);
return bigInt.CompareTo(val.bigInt);
}
public int CompareTo(BigInteger val)
{
return bigInt.CompareTo(val.ShiftLeft(scale));
}
public BigInteger Floor()
{
return bigInt.ShiftRight(scale);
}
public BigInteger Round()
{
SimpleBigDecimal oneHalf = new SimpleBigDecimal(BigInteger.One, 1);
return Add(oneHalf.AdjustScale(scale)).Floor();
}
public int IntValue
{
get { return Floor().IntValue; }
}
public long LongValue
{
get { return Floor().LongValue; }
}
// public double doubleValue()
// {
// return new Double(ToString()).doubleValue();
// }
//
// public float floatValue()
// {
// return new Float(ToString()).floatValue();
// }
public int Scale
{
get { return scale; }
}
public override string ToString()
{
if (scale == 0)
return bigInt.ToString();
BigInteger floorBigInt = Floor();
BigInteger fract = bigInt.Subtract(floorBigInt.ShiftLeft(scale));
if (bigInt.SignValue < 0)
{
fract = BigInteger.One.ShiftLeft(scale).Subtract(fract);
}
if ((floorBigInt.SignValue == -1) && (!(fract.Equals(BigInteger.Zero))))
{
floorBigInt = floorBigInt.Add(BigInteger.One);
}
string leftOfPoint = floorBigInt.ToString();
char[] rightOfPoint = new char[scale];
string fractStr = fract.ToString(2);
int fractLen = fractStr.Length;
int zeroes = scale - fractLen;
for (int i = 0; i < zeroes; i++)
{
rightOfPoint[i] = '0';
}
for (int j = 0; j < fractLen; j++)
{
rightOfPoint[zeroes + j] = fractStr[j];
}
StringBuilder sb = new StringBuilder(leftOfPoint);
sb.Append(".");
sb.Append(rightOfPoint);
return sb.ToString();
}
public override bool Equals(
object obj)
{
if (this == obj)
return true;
SimpleBigDecimal other = obj as SimpleBigDecimal;
if (other == null)
return false;
return bigInt.Equals(other.bigInt)
&& scale == other.scale;
}
public override int GetHashCode()
{
return bigInt.GetHashCode() ^ scale;
}
}
}
|