1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
|
using System;
using System.Collections;
using Org.BouncyCastle.Math.EC.Abc;
using Org.BouncyCastle.Math.EC.Multiplier;
using Org.BouncyCastle.Math.Field;
using Org.BouncyCastle.Utilities;
namespace Org.BouncyCastle.Math.EC
{
/// <remarks>Base class for an elliptic curve.</remarks>
public abstract class ECCurve
{
public const int COORD_AFFINE = 0;
public const int COORD_HOMOGENEOUS = 1;
public const int COORD_JACOBIAN = 2;
public const int COORD_JACOBIAN_CHUDNOVSKY = 3;
public const int COORD_JACOBIAN_MODIFIED = 4;
public const int COORD_LAMBDA_AFFINE = 5;
public const int COORD_LAMBDA_PROJECTIVE = 6;
public const int COORD_SKEWED = 7;
public static int[] GetAllCoordinateSystems()
{
return new int[]{ COORD_AFFINE, COORD_HOMOGENEOUS, COORD_JACOBIAN, COORD_JACOBIAN_CHUDNOVSKY,
COORD_JACOBIAN_MODIFIED, COORD_LAMBDA_AFFINE, COORD_LAMBDA_PROJECTIVE, COORD_SKEWED };
}
public class Config
{
protected ECCurve outer;
protected int coord;
protected ECMultiplier multiplier;
internal Config(ECCurve outer, int coord, ECMultiplier multiplier)
{
this.outer = outer;
this.coord = coord;
this.multiplier = multiplier;
}
public Config SetCoordinateSystem(int coord)
{
this.coord = coord;
return this;
}
public Config SetMultiplier(ECMultiplier multiplier)
{
this.multiplier = multiplier;
return this;
}
public ECCurve Create()
{
if (!outer.SupportsCoordinateSystem(coord))
{
throw new InvalidOperationException("unsupported coordinate system");
}
ECCurve c = outer.CloneCurve();
if (c == outer)
{
throw new InvalidOperationException("implementation returned current curve");
}
c.m_coord = coord;
c.m_multiplier = multiplier;
return c;
}
}
protected readonly IFiniteField m_field;
protected ECFieldElement m_a, m_b;
protected BigInteger m_order, m_cofactor;
protected int m_coord = COORD_AFFINE;
protected ECMultiplier m_multiplier = null;
protected ECCurve(IFiniteField field)
{
this.m_field = field;
}
public abstract int FieldSize { get; }
public abstract ECFieldElement FromBigInteger(BigInteger x);
public virtual Config Configure()
{
return new Config(this, this.m_coord, this.m_multiplier);
}
public virtual ECPoint CreatePoint(BigInteger x, BigInteger y)
{
return CreatePoint(x, y, false);
}
[Obsolete("Per-point compression property will be removed")]
public virtual ECPoint CreatePoint(BigInteger x, BigInteger y, bool withCompression)
{
return CreateRawPoint(FromBigInteger(x), FromBigInteger(y), withCompression);
}
protected abstract ECCurve CloneCurve();
protected internal abstract ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression);
protected internal abstract ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression);
protected virtual ECMultiplier CreateDefaultMultiplier()
{
return new WNafL2RMultiplier();
}
public virtual bool SupportsCoordinateSystem(int coord)
{
return coord == COORD_AFFINE;
}
public virtual PreCompInfo GetPreCompInfo(ECPoint point, string name)
{
CheckPoint(point);
lock (point)
{
IDictionary table = point.m_preCompTable;
return table == null ? null : (PreCompInfo)table[name];
}
}
/**
* Adds <code>PreCompInfo</code> for a point on this curve, under a given name. Used by
* <code>ECMultiplier</code>s to save the precomputation for this <code>ECPoint</code> for use
* by subsequent multiplication.
*
* @param point
* The <code>ECPoint</code> to store precomputations for.
* @param name
* A <code>String</code> used to index precomputations of different types.
* @param preCompInfo
* The values precomputed by the <code>ECMultiplier</code>.
*/
public virtual void SetPreCompInfo(ECPoint point, string name, PreCompInfo preCompInfo)
{
CheckPoint(point);
lock (point)
{
IDictionary table = point.m_preCompTable;
if (null == table)
{
point.m_preCompTable = table = Platform.CreateHashtable(4);
}
table[name] = preCompInfo;
}
}
public virtual ECPoint ImportPoint(ECPoint p)
{
if (this == p.Curve)
{
return p;
}
if (p.IsInfinity)
{
return Infinity;
}
// TODO Default behaviour could be improved if the two curves have the same coordinate system by copying any Z coordinates.
p = p.Normalize();
return CreatePoint(p.XCoord.ToBigInteger(), p.YCoord.ToBigInteger(), p.IsCompressed);
}
/**
* Normalization ensures that any projective coordinate is 1, and therefore that the x, y
* coordinates reflect those of the equivalent point in an affine coordinate system. Where more
* than one point is to be normalized, this method will generally be more efficient than
* normalizing each point separately.
*
* @param points
* An array of points that will be updated in place with their normalized versions,
* where necessary
*/
public virtual void NormalizeAll(ECPoint[] points)
{
CheckPoints(points);
if (this.CoordinateSystem == ECCurve.COORD_AFFINE)
{
return;
}
/*
* Figure out which of the points actually need to be normalized
*/
ECFieldElement[] zs = new ECFieldElement[points.Length];
int[] indices = new int[points.Length];
int count = 0;
for (int i = 0; i < points.Length; ++i)
{
ECPoint p = points[i];
if (null != p && !p.IsNormalized())
{
zs[count] = p.GetZCoord(0);
indices[count++] = i;
}
}
if (count == 0)
{
return;
}
ECAlgorithms.MontgomeryTrick(zs, 0, count);
for (int j = 0; j < count; ++j)
{
int index = indices[j];
points[index] = points[index].Normalize(zs[j]);
}
}
public abstract ECPoint Infinity { get; }
public virtual IFiniteField Field
{
get { return m_field; }
}
public virtual ECFieldElement A
{
get { return m_a; }
}
public virtual ECFieldElement B
{
get { return m_b; }
}
public virtual BigInteger Order
{
get { return m_order; }
}
public virtual BigInteger Cofactor
{
get { return m_cofactor; }
}
public virtual int CoordinateSystem
{
get { return m_coord; }
}
protected virtual void CheckPoint(ECPoint point)
{
if (null == point || (this != point.Curve))
throw new ArgumentException("must be non-null and on this curve", "point");
}
protected virtual void CheckPoints(ECPoint[] points)
{
if (points == null)
throw new ArgumentNullException("points");
for (int i = 0; i < points.Length; ++i)
{
ECPoint point = points[i];
if (null != point && this != point.Curve)
throw new ArgumentException("entries must be null or on this curve", "points");
}
}
public virtual bool Equals(ECCurve other)
{
if (this == other)
return true;
if (null == other)
return false;
return Field.Equals(other.Field)
&& A.ToBigInteger().Equals(other.A.ToBigInteger())
&& B.ToBigInteger().Equals(other.B.ToBigInteger());
}
public override bool Equals(object obj)
{
return Equals(obj as ECCurve);
}
public override int GetHashCode()
{
return Field.GetHashCode()
^ Integers.RotateLeft(A.ToBigInteger().GetHashCode(), 8)
^ Integers.RotateLeft(B.ToBigInteger().GetHashCode(), 16);
}
protected abstract ECPoint DecompressPoint(int yTilde, BigInteger X1);
/**
* Sets the default <code>ECMultiplier</code>, unless already set.
*/
public virtual ECMultiplier GetMultiplier()
{
lock (this)
{
if (this.m_multiplier == null)
{
this.m_multiplier = CreateDefaultMultiplier();
}
return this.m_multiplier;
}
}
/**
* Decode a point on this curve from its ASN.1 encoding. The different
* encodings are taken account of, including point compression for
* <code>F<sub>p</sub></code> (X9.62 s 4.2.1 pg 17).
* @return The decoded point.
*/
public virtual ECPoint DecodePoint(byte[] encoded)
{
ECPoint p = null;
int expectedLength = (FieldSize + 7) / 8;
switch (encoded[0])
{
case 0x00: // infinity
{
if (encoded.Length != 1)
throw new ArgumentException("Incorrect length for infinity encoding", "encoded");
p = Infinity;
break;
}
case 0x02: // compressed
case 0x03: // compressed
{
if (encoded.Length != (expectedLength + 1))
throw new ArgumentException("Incorrect length for compressed encoding", "encoded");
int yTilde = encoded[0] & 1;
BigInteger X1 = new BigInteger(1, encoded, 1, expectedLength);
p = DecompressPoint(yTilde, X1);
break;
}
case 0x04: // uncompressed
case 0x06: // hybrid
case 0x07: // hybrid
{
if (encoded.Length != (2 * expectedLength + 1))
throw new ArgumentException("Incorrect length for uncompressed/hybrid encoding", "encoded");
BigInteger X1 = new BigInteger(1, encoded, 1, expectedLength);
BigInteger Y1 = new BigInteger(1, encoded, 1 + expectedLength, expectedLength);
p = CreatePoint(X1, Y1);
break;
}
default:
throw new FormatException("Invalid point encoding " + encoded[0]);
}
return p;
}
}
/**
* Elliptic curve over Fp
*/
public class FpCurve
: ECCurve
{
private const int FP_DEFAULT_COORDS = COORD_JACOBIAN_MODIFIED;
protected readonly BigInteger m_q, m_r;
protected readonly FpPoint m_infinity;
public FpCurve(BigInteger q, BigInteger a, BigInteger b)
: this(q, a, b, null, null)
{
}
public FpCurve(BigInteger q, BigInteger a, BigInteger b, BigInteger order, BigInteger cofactor)
: base(FiniteFields.GetPrimeField(q))
{
this.m_q = q;
this.m_r = FpFieldElement.CalculateResidue(q);
this.m_infinity = new FpPoint(this, null, null);
this.m_a = FromBigInteger(a);
this.m_b = FromBigInteger(b);
this.m_order = order;
this.m_cofactor = cofactor;
this.m_coord = FP_DEFAULT_COORDS;
}
protected FpCurve(BigInteger q, BigInteger r, ECFieldElement a, ECFieldElement b)
: this(q, r, a, b, null, null)
{
}
protected FpCurve(BigInteger q, BigInteger r, ECFieldElement a, ECFieldElement b, BigInteger order, BigInteger cofactor)
: base(FiniteFields.GetPrimeField(q))
{
this.m_q = q;
this.m_r = r;
this.m_infinity = new FpPoint(this, null, null);
this.m_a = a;
this.m_b = b;
this.m_order = order;
this.m_cofactor = cofactor;
this.m_coord = FP_DEFAULT_COORDS;
}
protected override ECCurve CloneCurve()
{
return new FpCurve(m_q, m_r, m_a, m_b, m_order, m_cofactor);
}
public override bool SupportsCoordinateSystem(int coord)
{
switch (coord)
{
case COORD_AFFINE:
case COORD_HOMOGENEOUS:
case COORD_JACOBIAN:
case COORD_JACOBIAN_MODIFIED:
return true;
default:
return false;
}
}
public virtual BigInteger Q
{
get { return m_q; }
}
public override ECPoint Infinity
{
get { return m_infinity; }
}
public override int FieldSize
{
get { return m_q.BitLength; }
}
public override ECFieldElement FromBigInteger(BigInteger x)
{
return new FpFieldElement(this.m_q, this.m_r, x);
}
protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
{
return new FpPoint(this, x, y, withCompression);
}
protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
{
return new FpPoint(this, x, y, zs, withCompression);
}
public override ECPoint ImportPoint(ECPoint p)
{
if (this != p.Curve && this.CoordinateSystem == COORD_JACOBIAN && !p.IsInfinity)
{
switch (p.Curve.CoordinateSystem)
{
case COORD_JACOBIAN:
case COORD_JACOBIAN_CHUDNOVSKY:
case COORD_JACOBIAN_MODIFIED:
return new FpPoint(this,
FromBigInteger(p.RawXCoord.ToBigInteger()),
FromBigInteger(p.RawYCoord.ToBigInteger()),
new ECFieldElement[] { FromBigInteger(p.GetZCoord(0).ToBigInteger()) },
p.IsCompressed);
default:
break;
}
}
return base.ImportPoint(p);
}
protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
{
ECFieldElement x = FromBigInteger(X1);
ECFieldElement alpha = x.Square().Add(m_a).Multiply(x).Add(m_b);
ECFieldElement beta = alpha.Sqrt();
//
// if we can't find a sqrt we haven't got a point on the
// curve - run!
//
if (beta == null)
throw new ArithmeticException("Invalid point compression");
if (beta.TestBitZero() != (yTilde == 1))
{
// Use the other root
beta = beta.Negate();
}
return new FpPoint(this, x, beta, true);
}
}
/**
* Elliptic curves over F2m. The Weierstrass equation is given by
* <code>y<sup>2</sup> + xy = x<sup>3</sup> + ax<sup>2</sup> + b</code>.
*/
public class F2mCurve : ECCurve
{
private const int F2M_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
private static IFiniteField BuildField(int m, int k1, int k2, int k3)
{
if (k1 == 0)
{
throw new ArgumentException("k1 must be > 0");
}
if (k2 == 0)
{
if (k3 != 0)
{
throw new ArgumentException("k3 must be 0 if k2 == 0");
}
return FiniteFields.GetBinaryExtensionField(new int[]{ 0, k1, m });
}
if (k2 <= k1)
{
throw new ArgumentException("k2 must be > k1");
}
if (k3 <= k2)
{
throw new ArgumentException("k3 must be > k2");
}
return FiniteFields.GetBinaryExtensionField(new int[]{ 0, k1, k2, k3, m });
}
/**
* The exponent <code>m</code> of <code>F<sub>2<sup>m</sup></sub></code>.
*/
private readonly int m;
/**
* TPB: The integer <code>k</code> where <code>x<sup>m</sup> +
* x<sup>k</sup> + 1</code> represents the reduction polynomial
* <code>f(z)</code>.<br/>
* PPB: The integer <code>k1</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.<br/>
*/
private readonly int k1;
/**
* TPB: Always set to <code>0</code><br/>
* PPB: The integer <code>k2</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.<br/>
*/
private readonly int k2;
/**
* TPB: Always set to <code>0</code><br/>
* PPB: The integer <code>k3</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.<br/>
*/
private readonly int k3;
/**
* The point at infinity on this curve.
*/
protected readonly F2mPoint m_infinity;
/**
* The parameter <code>μ</code> of the elliptic curve if this is
* a Koblitz curve.
*/
private sbyte mu = 0;
/**
* The auxiliary values <code>s<sub>0</sub></code> and
* <code>s<sub>1</sub></code> used for partial modular reduction for
* Koblitz curves.
*/
private BigInteger[] si = null;
/**
* Constructor for Trinomial Polynomial Basis (TPB).
* @param m The exponent <code>m</code> of
* <code>F<sub>2<sup>m</sup></sub></code>.
* @param k The integer <code>k</code> where <code>x<sup>m</sup> +
* x<sup>k</sup> + 1</code> represents the reduction
* polynomial <code>f(z)</code>.
* @param a The coefficient <code>a</code> in the Weierstrass equation
* for non-supersingular elliptic curves over
* <code>F<sub>2<sup>m</sup></sub></code>.
* @param b The coefficient <code>b</code> in the Weierstrass equation
* for non-supersingular elliptic curves over
* <code>F<sub>2<sup>m</sup></sub></code>.
*/
public F2mCurve(
int m,
int k,
BigInteger a,
BigInteger b)
: this(m, k, 0, 0, a, b, null, null)
{
}
/**
* Constructor for Trinomial Polynomial Basis (TPB).
* @param m The exponent <code>m</code> of
* <code>F<sub>2<sup>m</sup></sub></code>.
* @param k The integer <code>k</code> where <code>x<sup>m</sup> +
* x<sup>k</sup> + 1</code> represents the reduction
* polynomial <code>f(z)</code>.
* @param a The coefficient <code>a</code> in the Weierstrass equation
* for non-supersingular elliptic curves over
* <code>F<sub>2<sup>m</sup></sub></code>.
* @param b The coefficient <code>b</code> in the Weierstrass equation
* for non-supersingular elliptic curves over
* <code>F<sub>2<sup>m</sup></sub></code>.
* @param order The order of the main subgroup of the elliptic curve.
* @param cofactor The cofactor of the elliptic curve, i.e.
* <code>#E<sub>a</sub>(F<sub>2<sup>m</sup></sub>) = h * n</code>.
*/
public F2mCurve(
int m,
int k,
BigInteger a,
BigInteger b,
BigInteger order,
BigInteger cofactor)
: this(m, k, 0, 0, a, b, order, cofactor)
{
}
/**
* Constructor for Pentanomial Polynomial Basis (PPB).
* @param m The exponent <code>m</code> of
* <code>F<sub>2<sup>m</sup></sub></code>.
* @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.
* @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.
* @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.
* @param a The coefficient <code>a</code> in the Weierstrass equation
* for non-supersingular elliptic curves over
* <code>F<sub>2<sup>m</sup></sub></code>.
* @param b The coefficient <code>b</code> in the Weierstrass equation
* for non-supersingular elliptic curves over
* <code>F<sub>2<sup>m</sup></sub></code>.
*/
public F2mCurve(
int m,
int k1,
int k2,
int k3,
BigInteger a,
BigInteger b)
: this(m, k1, k2, k3, a, b, null, null)
{
}
/**
* Constructor for Pentanomial Polynomial Basis (PPB).
* @param m The exponent <code>m</code> of
* <code>F<sub>2<sup>m</sup></sub></code>.
* @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.
* @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.
* @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +
* x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
* represents the reduction polynomial <code>f(z)</code>.
* @param a The coefficient <code>a</code> in the Weierstrass equation
* for non-supersingular elliptic curves over
* <code>F<sub>2<sup>m</sup></sub></code>.
* @param b The coefficient <code>b</code> in the Weierstrass equation
* for non-supersingular elliptic curves over
* <code>F<sub>2<sup>m</sup></sub></code>.
* @param order The order of the main subgroup of the elliptic curve.
* @param cofactor The cofactor of the elliptic curve, i.e.
* <code>#E<sub>a</sub>(F<sub>2<sup>m</sup></sub>) = h * n</code>.
*/
public F2mCurve(
int m,
int k1,
int k2,
int k3,
BigInteger a,
BigInteger b,
BigInteger order,
BigInteger cofactor)
: base(BuildField(m, k1, k2, k3))
{
this.m = m;
this.k1 = k1;
this.k2 = k2;
this.k3 = k3;
this.m_order = order;
this.m_cofactor = cofactor;
this.m_infinity = new F2mPoint(this, null, null);
if (k1 == 0)
throw new ArgumentException("k1 must be > 0");
if (k2 == 0)
{
if (k3 != 0)
throw new ArgumentException("k3 must be 0 if k2 == 0");
}
else
{
if (k2 <= k1)
throw new ArgumentException("k2 must be > k1");
if (k3 <= k2)
throw new ArgumentException("k3 must be > k2");
}
this.m_a = FromBigInteger(a);
this.m_b = FromBigInteger(b);
this.m_coord = F2M_DEFAULT_COORDS;
}
protected F2mCurve(int m, int k1, int k2, int k3, ECFieldElement a, ECFieldElement b, BigInteger order, BigInteger cofactor)
: base(BuildField(m, k1, k2, k3))
{
this.m = m;
this.k1 = k1;
this.k2 = k2;
this.k3 = k3;
this.m_order = order;
this.m_cofactor = cofactor;
this.m_infinity = new F2mPoint(this, null, null);
this.m_a = a;
this.m_b = b;
this.m_coord = F2M_DEFAULT_COORDS;
}
protected override ECCurve CloneCurve()
{
return new F2mCurve(m, k1, k2, k3, m_a, m_b, m_order, m_cofactor);
}
public override bool SupportsCoordinateSystem(int coord)
{
switch (coord)
{
case COORD_AFFINE:
case COORD_HOMOGENEOUS:
case COORD_LAMBDA_PROJECTIVE:
return true;
default:
return false;
}
}
protected override ECMultiplier CreateDefaultMultiplier()
{
if (IsKoblitz)
{
return new WTauNafMultiplier();
}
return base.CreateDefaultMultiplier();
}
public override int FieldSize
{
get { return m; }
}
public override ECFieldElement FromBigInteger(BigInteger x)
{
return new F2mFieldElement(this.m, this.k1, this.k2, this.k3, x);
}
[Obsolete("Per-point compression property will be removed")]
public override ECPoint CreatePoint(BigInteger x, BigInteger y, bool withCompression)
{
ECFieldElement X = FromBigInteger(x), Y = FromBigInteger(y);
switch (this.CoordinateSystem)
{
case COORD_LAMBDA_AFFINE:
case COORD_LAMBDA_PROJECTIVE:
{
if (X.IsZero)
{
if (!Y.Square().Equals(B))
throw new ArgumentException();
}
else
{
// Y becomes Lambda (X + Y/X) here
Y = Y.Divide(X).Add(X);
}
break;
}
default:
{
break;
}
}
return CreateRawPoint(X, Y, withCompression);
}
protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
{
return new F2mPoint(this, x, y, withCompression);
}
protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
{
return new F2mPoint(this, x, y, zs, withCompression);
}
public override ECPoint Infinity
{
get { return m_infinity; }
}
/**
* Returns true if this is a Koblitz curve (ABC curve).
* @return true if this is a Koblitz curve (ABC curve), false otherwise
*/
public virtual bool IsKoblitz
{
get
{
return m_order != null && m_cofactor != null && m_b.IsOne && (m_a.IsZero || m_a.IsOne);
}
}
/**
* Returns the parameter <code>μ</code> of the elliptic curve.
* @return <code>μ</code> of the elliptic curve.
* @throws ArgumentException if the given ECCurve is not a
* Koblitz curve.
*/
internal virtual sbyte GetMu()
{
if (mu == 0)
{
lock (this)
{
if (mu == 0)
{
mu = Tnaf.GetMu(this);
}
}
}
return mu;
}
/**
* @return the auxiliary values <code>s<sub>0</sub></code> and
* <code>s<sub>1</sub></code> used for partial modular reduction for
* Koblitz curves.
*/
internal virtual BigInteger[] GetSi()
{
if (si == null)
{
lock (this)
{
if (si == null)
{
si = Tnaf.GetSi(this);
}
}
}
return si;
}
protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
{
ECFieldElement xp = FromBigInteger(X1), yp;
if (xp.IsZero)
{
yp = m_b.Sqrt();
}
else
{
ECFieldElement beta = xp.Square().Invert().Multiply(B).Add(A).Add(xp);
ECFieldElement z = SolveQuadradicEquation(beta);
if (z == null)
throw new ArithmeticException("Invalid point compression");
if (z.TestBitZero() != (yTilde == 1))
{
z = z.AddOne();
}
switch (this.CoordinateSystem)
{
case COORD_LAMBDA_AFFINE:
case COORD_LAMBDA_PROJECTIVE:
{
yp = z.Add(xp);
break;
}
default:
{
yp = z.Multiply(xp);
break;
}
}
}
return new F2mPoint(this, xp, yp, true);
}
/**
* Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
* D.1.6) The other solution is <code>z + 1</code>.
*
* @param beta
* The value to solve the qradratic equation for.
* @return the solution for <code>z<sup>2</sup> + z = beta</code> or
* <code>null</code> if no solution exists.
*/
private ECFieldElement SolveQuadradicEquation(ECFieldElement beta)
{
if (beta.IsZero)
{
return beta;
}
ECFieldElement zeroElement = FromBigInteger(BigInteger.Zero);
ECFieldElement z = null;
ECFieldElement gamma = null;
Random rand = new Random();
do
{
ECFieldElement t = FromBigInteger(new BigInteger(m, rand));
z = zeroElement;
ECFieldElement w = beta;
for (int i = 1; i <= m - 1; i++)
{
ECFieldElement w2 = w.Square();
z = z.Square().Add(w2.Multiply(t));
w = w2.Add(beta);
}
if (!w.IsZero)
{
return null;
}
gamma = z.Square().Add(z);
}
while (gamma.IsZero);
return z;
}
public int M
{
get { return m; }
}
/**
* Return true if curve uses a Trinomial basis.
*
* @return true if curve Trinomial, false otherwise.
*/
public bool IsTrinomial()
{
return k2 == 0 && k3 == 0;
}
public int K1
{
get { return k1; }
}
public int K2
{
get { return k2; }
}
public int K3
{
get { return k3; }
}
[Obsolete("Use 'Order' property instead")]
public BigInteger N
{
get { return m_order; }
}
[Obsolete("Use 'Cofactor' property instead")]
public BigInteger H
{
get { return m_cofactor; }
}
}
}
|