summary refs log tree commit diff
path: root/crypto/src/math/ec/ECCurve.cs
blob: 67c6097c0cf8b7e6dbfc9ec83467f9dc31d7c427 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
using System;
using System.Collections;

using Org.BouncyCastle.Math.EC.Abc;

namespace Org.BouncyCastle.Math.EC
{
    /// <remarks>Base class for an elliptic curve.</remarks>
    public abstract class ECCurve
    {
        internal ECFieldElement a, b;

        public abstract int FieldSize { get; }
        public abstract ECFieldElement FromBigInteger(BigInteger x);
        public abstract ECPoint CreatePoint(BigInteger x, BigInteger y, bool withCompression);
        public abstract ECPoint Infinity { get; }

        public ECFieldElement A
        {
            get { return a; }
        }

        public ECFieldElement B
        {
            get { return b; }
        }

        public override bool Equals(
            object obj)
        {
            if (obj == this)
                return true;

            ECCurve other = obj as ECCurve;

            if (other == null)
                return false;

            return Equals(other);
        }

        protected bool Equals(
            ECCurve other)
        {
            return a.Equals(other.a) && b.Equals(other.b);
        }

        public override int GetHashCode()
        {
            return a.GetHashCode() ^ b.GetHashCode();
        }

        protected abstract ECPoint DecompressPoint(int yTilde, BigInteger X1);

        /**
         * Decode a point on this curve from its ASN.1 encoding. The different
         * encodings are taken account of, including point compression for
         * <code>F<sub>p</sub></code> (X9.62 s 4.2.1 pg 17).
         * @return The decoded point.
         */
        public virtual ECPoint DecodePoint(byte[] encoded)
        {
            ECPoint p = null;
            int expectedLength = (FieldSize + 7) / 8;

            switch (encoded[0])
            {
                case 0x00: // infinity
                {
                    if (encoded.Length != 1)
                        throw new ArgumentException("Incorrect length for infinity encoding", "encoded");

                    p = Infinity;
                    break;
                }

                case 0x02: // compressed
                case 0x03: // compressed
                {
                    if (encoded.Length != (expectedLength + 1))
                        throw new ArgumentException("Incorrect length for compressed encoding", "encoded");

                    int yTilde = encoded[0] & 1;
                    BigInteger X1 = new BigInteger(1, encoded, 1, expectedLength);

                    p = DecompressPoint(yTilde, X1);
                    break;
                }

                case 0x04: // uncompressed
                case 0x06: // hybrid
                case 0x07: // hybrid
                {
                    if (encoded.Length != (2 * expectedLength + 1))
                        throw new ArgumentException("Incorrect length for uncompressed/hybrid encoding", "encoded");

                    BigInteger X1 = new BigInteger(1, encoded, 1, expectedLength);
                    BigInteger Y1 = new BigInteger(1, encoded, 1 + expectedLength, expectedLength);

                    p = CreatePoint(X1, Y1, false);
                    break;
                }

                default:
                    throw new FormatException("Invalid point encoding " + encoded[0]);
            }

            return p;
        }
    }

    /**
     * Elliptic curve over Fp
     */
    public class FpCurve : ECCurve
    {
        private readonly BigInteger q;
        private readonly FpPoint infinity;

        public FpCurve(BigInteger q, BigInteger a, BigInteger b)
        {
            this.q = q;
            this.a = FromBigInteger(a);
            this.b = FromBigInteger(b);
            this.infinity = new FpPoint(this, null, null);
        }

        public BigInteger Q
        {
            get { return q; }
        }

        public override ECPoint Infinity
        {
            get { return infinity; }
        }

        public override int FieldSize
        {
            get { return q.BitLength; }
        }

        public override ECFieldElement FromBigInteger(BigInteger x)
        {
            return new FpFieldElement(this.q, x);
        }

        public override ECPoint CreatePoint(
            BigInteger	X1,
            BigInteger	Y1,
            bool		withCompression)
        {
            // TODO Validation of X1, Y1?
            return new FpPoint(
                this,
                FromBigInteger(X1),
                FromBigInteger(Y1),
                withCompression);
        }

        protected override ECPoint DecompressPoint(
            int			yTilde,
            BigInteger	X1)
        {
            ECFieldElement x = FromBigInteger(X1);
            ECFieldElement alpha = x.Multiply(x.Square().Add(a)).Add(b);
            ECFieldElement beta = alpha.Sqrt();

            //
            // if we can't find a sqrt we haven't got a point on the
            // curve - run!
            //
            if (beta == null)
                throw new ArithmeticException("Invalid point compression");

            BigInteger betaValue = beta.ToBigInteger();
            int bit0 = betaValue.TestBit(0) ? 1 : 0;

            if (bit0 != yTilde)
            {
                // Use the other root
                beta = beta.Negate();
            }

            return new FpPoint(this, x, beta, true);
        }

        public override bool Equals(
            object obj)
        {
            if (obj == this)
                return true;

            FpCurve other = obj as FpCurve;

            if (other == null)
                return false;

            return Equals(other);
        }

        protected bool Equals(
            FpCurve other)
        {
            return base.Equals(other) && q.Equals(other.q);
        }

        public override int GetHashCode()
        {
            return base.GetHashCode() ^ q.GetHashCode();
        }
    }

    /**
     * Elliptic curves over F2m. The Weierstrass equation is given by
     * <code>y<sup>2</sup> + xy = x<sup>3</sup> + ax<sup>2</sup> + b</code>.
     */
    public class F2mCurve : ECCurve
    {
        /**
         * The exponent <code>m</code> of <code>F<sub>2<sup>m</sup></sub></code>.
         */
        private readonly int m;

        /**
         * TPB: The integer <code>k</code> where <code>x<sup>m</sup> +
         * x<sup>k</sup> + 1</code> represents the reduction polynomial
         * <code>f(z)</code>.<br/>
         * PPB: The integer <code>k1</code> where <code>x<sup>m</sup> +
         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
         * represents the reduction polynomial <code>f(z)</code>.<br/>
         */
        private readonly int k1;

        /**
         * TPB: Always set to <code>0</code><br/>
         * PPB: The integer <code>k2</code> where <code>x<sup>m</sup> +
         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
         * represents the reduction polynomial <code>f(z)</code>.<br/>
         */
        private readonly int k2;

        /**
         * TPB: Always set to <code>0</code><br/>
         * PPB: The integer <code>k3</code> where <code>x<sup>m</sup> +
         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
         * represents the reduction polynomial <code>f(z)</code>.<br/>
         */
        private readonly int k3;

        /**
         * The order of the base point of the curve.
         */
        private readonly BigInteger n;

        /**
         * The cofactor of the curve.
         */
        private readonly BigInteger h;

        /**
         * The point at infinity on this curve.
         */
        private readonly F2mPoint infinity;

        /**
         * The parameter <code>&#956;</code> of the elliptic curve if this is
         * a Koblitz curve.
         */
        private sbyte mu = 0;

        /**
         * The auxiliary values <code>s<sub>0</sub></code> and
         * <code>s<sub>1</sub></code> used for partial modular reduction for
         * Koblitz curves.
         */
        private BigInteger[] si = null;

        /**
         * Constructor for Trinomial Polynomial Basis (TPB).
         * @param m  The exponent <code>m</code> of
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param k The integer <code>k</code> where <code>x<sup>m</sup> +
         * x<sup>k</sup> + 1</code> represents the reduction
         * polynomial <code>f(z)</code>.
         * @param a The coefficient <code>a</code> in the Weierstrass equation
         * for non-supersingular elliptic curves over
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param b The coefficient <code>b</code> in the Weierstrass equation
         * for non-supersingular elliptic curves over
         * <code>F<sub>2<sup>m</sup></sub></code>.
         */
        public F2mCurve(
            int			m,
            int			k,
            BigInteger	a,
            BigInteger	b)
            : this(m, k, 0, 0, a, b, null, null)
        {
        }

        /**
         * Constructor for Trinomial Polynomial Basis (TPB).
         * @param m  The exponent <code>m</code> of
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param k The integer <code>k</code> where <code>x<sup>m</sup> +
         * x<sup>k</sup> + 1</code> represents the reduction
         * polynomial <code>f(z)</code>.
         * @param a The coefficient <code>a</code> in the Weierstrass equation
         * for non-supersingular elliptic curves over
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param b The coefficient <code>b</code> in the Weierstrass equation
         * for non-supersingular elliptic curves over
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param n The order of the main subgroup of the elliptic curve.
         * @param h The cofactor of the elliptic curve, i.e.
         * <code>#E<sub>a</sub>(F<sub>2<sup>m</sup></sub>) = h * n</code>.
         */
        public F2mCurve(
            int			m, 
            int			k, 
            BigInteger	a, 
            BigInteger	b,
            BigInteger	n,
            BigInteger	h)
            : this(m, k, 0, 0, a, b, n, h)
        {
        }

        /**
         * Constructor for Pentanomial Polynomial Basis (PPB).
         * @param m  The exponent <code>m</code> of
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +
         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
         * represents the reduction polynomial <code>f(z)</code>.
         * @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +
         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
         * represents the reduction polynomial <code>f(z)</code>.
         * @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +
         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
         * represents the reduction polynomial <code>f(z)</code>.
         * @param a The coefficient <code>a</code> in the Weierstrass equation
         * for non-supersingular elliptic curves over
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param b The coefficient <code>b</code> in the Weierstrass equation
         * for non-supersingular elliptic curves over
         * <code>F<sub>2<sup>m</sup></sub></code>.
         */
        public F2mCurve(
            int			m,
            int			k1,
            int			k2,
            int			k3,
            BigInteger	a,
            BigInteger	b)
            : this(m, k1, k2, k3, a, b, null, null)
        {
        }

        /**
         * Constructor for Pentanomial Polynomial Basis (PPB).
         * @param m  The exponent <code>m</code> of
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +
         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
         * represents the reduction polynomial <code>f(z)</code>.
         * @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +
         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
         * represents the reduction polynomial <code>f(z)</code>.
         * @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +
         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
         * represents the reduction polynomial <code>f(z)</code>.
         * @param a The coefficient <code>a</code> in the Weierstrass equation
         * for non-supersingular elliptic curves over
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param b The coefficient <code>b</code> in the Weierstrass equation
         * for non-supersingular elliptic curves over
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param n The order of the main subgroup of the elliptic curve.
         * @param h The cofactor of the elliptic curve, i.e.
         * <code>#E<sub>a</sub>(F<sub>2<sup>m</sup></sub>) = h * n</code>.
         */
        public F2mCurve(
            int			m, 
            int			k1, 
            int			k2, 
            int			k3,
            BigInteger	a, 
            BigInteger	b,
            BigInteger	n,
            BigInteger	h)
        {
            this.m = m;
            this.k1 = k1;
            this.k2 = k2;
            this.k3 = k3;
            this.n = n;
            this.h = h;
            this.infinity = new F2mPoint(this, null, null);

            if (k1 == 0)
                throw new ArgumentException("k1 must be > 0");

            if (k2 == 0)
            {
                if (k3 != 0)
                    throw new ArgumentException("k3 must be 0 if k2 == 0");
            }
            else
            {
                if (k2 <= k1)
                    throw new ArgumentException("k2 must be > k1");

                if (k3 <= k2)
                    throw new ArgumentException("k3 must be > k2");
            }

            this.a = FromBigInteger(a);
            this.b = FromBigInteger(b);
        }

        public override ECPoint Infinity
        {
            get { return infinity; }
        }

        public override int FieldSize
        {
            get { return m; }
        }

        public override ECFieldElement FromBigInteger(BigInteger x)
        {
            return new F2mFieldElement(this.m, this.k1, this.k2, this.k3, x);
        }

        /**
         * Returns true if this is a Koblitz curve (ABC curve).
         * @return true if this is a Koblitz curve (ABC curve), false otherwise
         */
        public bool IsKoblitz
        {
            get
            {
                return n != null && h != null
                    && (a.ToBigInteger().Equals(BigInteger.Zero)
                        || a.ToBigInteger().Equals(BigInteger.One))
                    && b.ToBigInteger().Equals(BigInteger.One);
            }
        }

        /**
         * Returns the parameter <code>&#956;</code> of the elliptic curve.
         * @return <code>&#956;</code> of the elliptic curve.
         * @throws ArgumentException if the given ECCurve is not a
         * Koblitz curve.
         */
        internal sbyte GetMu()
        {
            if (mu == 0)
            {
                lock (this)
                {
                    if (mu == 0)
                    {
                        mu = Tnaf.GetMu(this);
                    }
                }
            }

            return mu;
        }

        /**
         * @return the auxiliary values <code>s<sub>0</sub></code> and
         * <code>s<sub>1</sub></code> used for partial modular reduction for
         * Koblitz curves.
         */
        internal BigInteger[] GetSi()
        {
            if (si == null)
            {
                lock (this)
                {
                    if (si == null)
                    {
                        si = Tnaf.GetSi(this);
                    }
                }
            }
            return si;
        }

        public override ECPoint CreatePoint(
            BigInteger	X1,
            BigInteger	Y1,
            bool		withCompression)
        {
            // TODO Validation of X1, Y1?
            return new F2mPoint(
                this,
                FromBigInteger(X1),
                FromBigInteger(Y1),
                withCompression);
        }

        protected override ECPoint DecompressPoint(
            int			yTilde,
            BigInteger	X1)
        {
            ECFieldElement xp = FromBigInteger(X1);
            ECFieldElement yp = null;
            if (xp.ToBigInteger().SignValue == 0)
            {
                yp = (F2mFieldElement)b;
                for (int i = 0; i < m - 1; i++)
                {
                    yp = yp.Square();
                }
            }
            else
            {
                ECFieldElement beta = xp.Add(a).Add(b.Multiply(xp.Square().Invert()));
                ECFieldElement z = solveQuadradicEquation(beta);

                if (z == null)
                    throw new ArithmeticException("Invalid point compression");

                int zBit = z.ToBigInteger().TestBit(0) ? 1 : 0;
                if (zBit != yTilde)
                {
                    z = z.Add(FromBigInteger(BigInteger.One));
                }

                yp = xp.Multiply(z);
            }

            return new F2mPoint(this, xp, yp, true);
        }

        /**
         * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
         * D.1.6) The other solution is <code>z + 1</code>.
         *
         * @param beta
         *            The value to solve the qradratic equation for.
         * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
         *         <code>null</code> if no solution exists.
         */
        private ECFieldElement solveQuadradicEquation(ECFieldElement beta)
        {
            if (beta.ToBigInteger().SignValue == 0)
            {
                return FromBigInteger(BigInteger.Zero);
            }

            ECFieldElement z = null;
            ECFieldElement gamma = FromBigInteger(BigInteger.Zero);

            while (gamma.ToBigInteger().SignValue == 0)
            {
                ECFieldElement t = FromBigInteger(new BigInteger(m, new Random()));
                z = FromBigInteger(BigInteger.Zero);

                ECFieldElement w = beta;
                for (int i = 1; i <= m - 1; i++)
                {
                    ECFieldElement w2 = w.Square();
                    z = z.Square().Add(w2.Multiply(t));
                    w = w2.Add(beta);
                }
                if (w.ToBigInteger().SignValue != 0)
                {
                    return null;
                }
                gamma = z.Square().Add(z);
            }
            return z;
        }

        public override bool Equals(
            object obj)
        {
            if (obj == this)
                return true;

            F2mCurve other = obj as F2mCurve;

            if (other == null)
                return false;

            return Equals(other);
        }

        protected bool Equals(
            F2mCurve other)
        {
            return m == other.m
                && k1 == other.k1
                && k2 == other.k2
                && k3 == other.k3
                && base.Equals(other);
        }

        public override int GetHashCode()
        {
            return base.GetHashCode() ^ m ^ k1 ^ k2 ^ k3;
        }

        public int M
        {
            get { return m; }
        }

        /**
         * Return true if curve uses a Trinomial basis.
         *
         * @return true if curve Trinomial, false otherwise.
         */
        public bool IsTrinomial()
        {
            return k2 == 0 && k3 == 0;
        }

        public int K1
        {
            get { return k1; }
        }

        public int K2
        {
            get { return k2; }
        }

        public int K3
        {
            get { return k3; }
        }

        public BigInteger N
        {
            get { return n; }
        }

        public BigInteger H
        {
            get { return h; }
        }
    }
}