summary refs log tree commit diff
path: root/crypto/src/math/ec/ECAlgorithms.cs
blob: 15204e4edc0ef5d147843afa69bf5536211524d3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
using System;

using Org.BouncyCastle.Math.EC.Endo;
using Org.BouncyCastle.Math.EC.Multiplier;
using Org.BouncyCastle.Math.Field;
using Org.BouncyCastle.Math.Raw;

namespace Org.BouncyCastle.Math.EC
{
    public class ECAlgorithms
    {
        public static bool IsF2mCurve(ECCurve c)
        {
            return IsF2mField(c.Field);
        }

        public static bool IsF2mField(IFiniteField field)
        {
            return field.Dimension > 1 && field.Characteristic.Equals(BigInteger.Two)
                && field is IPolynomialExtensionField;
        }

        public static bool IsFpCurve(ECCurve c)
        {
            return IsFpField(c.Field);
        }

        public static bool IsFpField(IFiniteField field)
        {
            return field.Dimension == 1;
        }

        public static ECPoint SumOfMultiplies(ECPoint[] ps, BigInteger[] ks)
        {
            if (ps == null || ks == null || ps.Length != ks.Length || ps.Length < 1)
                throw new ArgumentException("point and scalar arrays should be non-null, and of equal, non-zero, length");

            int count = ps.Length;
            switch (count)
            {
                case 1:
                    return ps[0].Multiply(ks[0]);
                case 2:
                    return SumOfTwoMultiplies(ps[0], ks[0], ps[1], ks[1]);
                default:
                    break;
            }

            ECPoint p = ps[0];
            ECCurve c = p.Curve;

            ECPoint[] imported = new ECPoint[count];
            imported[0] = p;
            for (int i = 1; i < count; ++i)
            {
                imported[i] = ImportPoint(c, ps[i]);
            }

            GlvEndomorphism glvEndomorphism = c.GetEndomorphism() as GlvEndomorphism;
            if (glvEndomorphism != null)
            {
                return ImplCheckResult(ImplSumOfMultipliesGlv(imported, ks, glvEndomorphism));
            }

            return ImplCheckResult(ImplSumOfMultiplies(imported, ks));
        }

        public static ECPoint SumOfTwoMultiplies(ECPoint P, BigInteger a, ECPoint Q, BigInteger b)
        {
            ECCurve cp = P.Curve;
            Q = ImportPoint(cp, Q);

            // Point multiplication for Koblitz curves (using WTNAF) beats Shamir's trick
            {
                AbstractF2mCurve f2mCurve = cp as AbstractF2mCurve;
                if (f2mCurve != null && f2mCurve.IsKoblitz)
                {
                    return ImplCheckResult(P.Multiply(a).Add(Q.Multiply(b)));
                }
            }

            GlvEndomorphism glvEndomorphism = cp.GetEndomorphism() as GlvEndomorphism;
            if (glvEndomorphism != null)
            {
                return ImplCheckResult(
                    ImplSumOfMultipliesGlv(new ECPoint[] { P, Q }, new BigInteger[] { a, b }, glvEndomorphism));
            }

            return ImplCheckResult(ImplShamirsTrickWNaf(P, a, Q, b));
        }

        /*
        * "Shamir's Trick", originally due to E. G. Straus
        * (Addition chains of vectors. American Mathematical Monthly,
        * 71(7):806-808, Aug./Sept. 1964)
        *  
        * Input: The points P, Q, scalar k = (km?, ... , k1, k0)
        * and scalar l = (lm?, ... , l1, l0).
        * Output: R = k * P + l * Q.
        * 1: Z <- P + Q
        * 2: R <- O
        * 3: for i from m-1 down to 0 do
        * 4:        R <- R + R        {point doubling}
        * 5:        if (ki = 1) and (li = 0) then R <- R + P end if
        * 6:        if (ki = 0) and (li = 1) then R <- R + Q end if
        * 7:        if (ki = 1) and (li = 1) then R <- R + Z end if
        * 8: end for
        * 9: return R
        */
        public static ECPoint ShamirsTrick(ECPoint P, BigInteger k, ECPoint Q, BigInteger l)
        {
            ECCurve cp = P.Curve;
            Q = ImportPoint(cp, Q);

            return ImplCheckResult(ImplShamirsTrickJsf(P, k, Q, l));
        }

        public static ECPoint ImportPoint(ECCurve c, ECPoint p)
        {
            ECCurve cp = p.Curve;
            if (!c.Equals(cp))
                throw new ArgumentException("Point must be on the same curve");

            return c.ImportPoint(p);
        }

        public static void MontgomeryTrick(ECFieldElement[] zs, int off, int len)
        {
            MontgomeryTrick(zs, off, len, null);
        }

        public static void MontgomeryTrick(ECFieldElement[] zs, int off, int len, ECFieldElement scale)
        {
            /*
             * Uses the "Montgomery Trick" to invert many field elements, with only a single actual
             * field inversion. See e.g. the paper:
             * "Fast Multi-scalar Multiplication Methods on Elliptic Curves with Precomputation Strategy Using Montgomery Trick"
             * by Katsuyuki Okeya, Kouichi Sakurai.
             */

            ECFieldElement[] c = new ECFieldElement[len];
            c[0] = zs[off];

            int i = 0;
            while (++i < len)
            {
                c[i] = c[i - 1].Multiply(zs[off + i]);
            }

            --i;

            if (scale != null)
            {
                c[i] = c[i].Multiply(scale);
            }

            ECFieldElement u = c[i].Invert();

            while (i > 0)
            {
                int j = off + i--;
                ECFieldElement tmp = zs[j];
                zs[j] = c[i].Multiply(u);
                u = u.Multiply(tmp);
            }

            zs[off] = u;
        }

        /**
         * Simple shift-and-add multiplication. Serves as reference implementation to verify (possibly
         * faster) implementations, and for very small scalars. CAUTION: This implementation is NOT
         * constant-time in any way. It is only intended to be used for diagnostics.
         * 
         * @param p
         *            The point to multiply.
         * @param k
         *            The multiplier.
         * @return The result of the point multiplication <code>kP</code>.
         */
        public static ECPoint ReferenceMultiply(ECPoint p, BigInteger k)
        {
            BigInteger x = k.Abs();
            ECPoint q = p.Curve.Infinity;
            int t = x.BitLength;
            if (t > 0)
            {
                if (x.TestBit(0))
                {
                    q = p;
                }
                for (int i = 1; i < t; i++)
                {
                    p = p.Twice();
                    if (x.TestBit(i))
                    {
                        q = q.Add(p);
                    }
                }
            }
            return k.SignValue < 0 ? q.Negate() : q;
        }

        public static ECPoint ValidatePoint(ECPoint p)
        {
            if (!p.IsValid())
                throw new InvalidOperationException("Invalid point");

            return p;
        }

        public static ECPoint CleanPoint(ECCurve c, ECPoint p)
        {
            ECCurve cp = p.Curve;
            if (!c.Equals(cp))
                throw new ArgumentException("Point must be on the same curve", nameof(p));

#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
            int encodedLength = p.GetEncodedLength(false);
            Span<byte> encoding = encodedLength <= 512
                ? stackalloc byte[encodedLength]
                : new byte[encodedLength];
            p.EncodeTo(false, encoding);
            return c.DecodePoint(encoding);
#else
            return c.DecodePoint(p.GetEncoded(false));
#endif
        }

        internal static ECPoint ImplCheckResult(ECPoint p)
        {
            if (!p.IsValidPartial())
                throw new InvalidOperationException("Invalid result");

            return p;
        }

        internal static ECPoint ImplShamirsTrickJsf(ECPoint P, BigInteger k, ECPoint Q, BigInteger l)
        {
            ECCurve curve = P.Curve;
            ECPoint infinity = curve.Infinity;

            // TODO conjugate co-Z addition (ZADDC) can return both of these
            ECPoint PaddQ = P.Add(Q);
            ECPoint PsubQ = P.Subtract(Q);

            ECPoint[] points = new ECPoint[] { Q, PsubQ, P, PaddQ };
            curve.NormalizeAll(points);

            ECPoint[] table = new ECPoint[] {
            points[3].Negate(), points[2].Negate(), points[1].Negate(),
            points[0].Negate(), infinity, points[0],
            points[1], points[2], points[3] };

            byte[] jsf = WNafUtilities.GenerateJsf(k, l);

            ECPoint R = infinity;

            int i = jsf.Length;
            while (--i >= 0)
            {
                int jsfi = jsf[i];

                // NOTE: The shifting ensures the sign is extended correctly
                int kDigit = ((jsfi << 24) >> 28), lDigit = ((jsfi << 28) >> 28);

                int index = 4 + (kDigit * 3) + lDigit;
                R = R.TwicePlus(table[index]);
            }

            return R;
        }

        internal static ECPoint ImplShamirsTrickWNaf(ECPoint P, BigInteger k,
            ECPoint Q, BigInteger l)
        {
            bool negK = k.SignValue < 0, negL = l.SignValue < 0;

            BigInteger kAbs = k.Abs(), lAbs = l.Abs();

            int minWidthP = WNafUtilities.GetWindowSize(kAbs.BitLength, 8);
            int minWidthQ = WNafUtilities.GetWindowSize(lAbs.BitLength, 8);

            WNafPreCompInfo infoP = WNafUtilities.Precompute(P, minWidthP, true);
            WNafPreCompInfo infoQ = WNafUtilities.Precompute(Q, minWidthQ, true);

            // When P, Q are 'promoted' (i.e. reused several times), switch to fixed-point algorithm
            {
                ECCurve c = P.Curve;
                int combSize = FixedPointUtilities.GetCombSize(c);
                if (!negK && !negL
                    && k.BitLength <= combSize && l.BitLength <= combSize
                    && infoP.IsPromoted && infoQ.IsPromoted)
                {
                    return ImplShamirsTrickFixedPoint(P, k, Q, l);
                }
            }

            int widthP = System.Math.Min(8, infoP.Width);
            int widthQ = System.Math.Min(8, infoQ.Width);

            ECPoint[] preCompP = negK ? infoP.PreCompNeg : infoP.PreComp;
            ECPoint[] preCompQ = negL ? infoQ.PreCompNeg : infoQ.PreComp;
            ECPoint[] preCompNegP = negK ? infoP.PreComp : infoP.PreCompNeg;
            ECPoint[] preCompNegQ = negL ? infoQ.PreComp : infoQ.PreCompNeg;

            byte[] wnafP = WNafUtilities.GenerateWindowNaf(widthP, kAbs);
            byte[] wnafQ = WNafUtilities.GenerateWindowNaf(widthQ, lAbs);

            return ImplShamirsTrickWNaf(preCompP, preCompNegP, wnafP, preCompQ, preCompNegQ, wnafQ);
        }

        internal static ECPoint ImplShamirsTrickWNaf(ECEndomorphism endomorphism, ECPoint P, BigInteger k, BigInteger l)
        {
            bool negK = k.SignValue < 0, negL = l.SignValue < 0;

            k = k.Abs();
            l = l.Abs();

            int minWidth = WNafUtilities.GetWindowSize(System.Math.Max(k.BitLength, l.BitLength), 8);

            WNafPreCompInfo infoP = WNafUtilities.Precompute(P, minWidth, true);
            ECPoint Q = EndoUtilities.MapPoint(endomorphism, P);
            WNafPreCompInfo infoQ = WNafUtilities.PrecomputeWithPointMap(Q, endomorphism.PointMap, infoP, true);

            int widthP = System.Math.Min(8, infoP.Width);
            int widthQ = System.Math.Min(8, infoQ.Width);

            ECPoint[] preCompP = negK ? infoP.PreCompNeg : infoP.PreComp;
            ECPoint[] preCompQ = negL ? infoQ.PreCompNeg : infoQ.PreComp;
            ECPoint[] preCompNegP = negK ? infoP.PreComp : infoP.PreCompNeg;
            ECPoint[] preCompNegQ = negL ? infoQ.PreComp : infoQ.PreCompNeg;

            byte[] wnafP = WNafUtilities.GenerateWindowNaf(widthP, k);
            byte[] wnafQ = WNafUtilities.GenerateWindowNaf(widthQ, l);

            return ImplShamirsTrickWNaf(preCompP, preCompNegP, wnafP, preCompQ, preCompNegQ, wnafQ);
        }

        private static ECPoint ImplShamirsTrickWNaf(ECPoint[] preCompP, ECPoint[] preCompNegP, byte[] wnafP,
            ECPoint[] preCompQ, ECPoint[] preCompNegQ, byte[] wnafQ)
        {
            int len = System.Math.Max(wnafP.Length, wnafQ.Length);

            ECCurve curve = preCompP[0].Curve;
            ECPoint infinity = curve.Infinity;

            ECPoint R = infinity;
            int zeroes = 0;

            for (int i = len - 1; i >= 0; --i)
            {
                int wiP = i < wnafP.Length ? (int)(sbyte)wnafP[i] : 0;
                int wiQ = i < wnafQ.Length ? (int)(sbyte)wnafQ[i] : 0;

                if ((wiP | wiQ) == 0)
                {
                    ++zeroes;
                    continue;
                }

                ECPoint r = infinity;
                if (wiP != 0)
                {
                    int nP = System.Math.Abs(wiP);
                    ECPoint[] tableP = wiP < 0 ? preCompNegP : preCompP;
                    r = r.Add(tableP[nP >> 1]);
                }
                if (wiQ != 0)
                {
                    int nQ = System.Math.Abs(wiQ);
                    ECPoint[] tableQ = wiQ < 0 ? preCompNegQ : preCompQ;
                    r = r.Add(tableQ[nQ >> 1]);
                }

                if (zeroes > 0)
                {
                    R = R.TimesPow2(zeroes);
                    zeroes = 0;
                }

                R = R.TwicePlus(r);
            }

            if (zeroes > 0)
            {
                R = R.TimesPow2(zeroes);
            }

            return R;
        }

        internal static ECPoint ImplSumOfMultiplies(ECPoint[] ps, BigInteger[] ks)
        {
            int count = ps.Length;
            bool[] negs = new bool[count];
            WNafPreCompInfo[] infos = new WNafPreCompInfo[count];
            byte[][] wnafs = new byte[count][];

            for (int i = 0; i < count; ++i)
            {
                BigInteger ki = ks[i]; negs[i] = ki.SignValue < 0; ki = ki.Abs();

                int minWidth = WNafUtilities.GetWindowSize(ki.BitLength, 8);
                WNafPreCompInfo info = WNafUtilities.Precompute(ps[i], minWidth, true);

                int width = System.Math.Min(8, info.Width);

                infos[i] = info; 
                wnafs[i] = WNafUtilities.GenerateWindowNaf(width, ki);
            }

            return ImplSumOfMultiplies(negs, infos, wnafs);
        }

        internal static ECPoint ImplSumOfMultipliesGlv(ECPoint[] ps, BigInteger[] ks, GlvEndomorphism glvEndomorphism)
        {
            BigInteger n = ps[0].Curve.Order;

            int len = ps.Length;

            BigInteger[] abs = new BigInteger[len << 1];
            for (int i = 0, j = 0; i < len; ++i)
            {
                BigInteger[] ab = glvEndomorphism.DecomposeScalar(ks[i].Mod(n));
                abs[j++] = ab[0];
                abs[j++] = ab[1];
            }

            if (glvEndomorphism.HasEfficientPointMap)
            {
                return ImplSumOfMultiplies(glvEndomorphism, ps, abs);
            }

            ECPoint[] pqs = new ECPoint[len << 1];
            for (int i = 0, j = 0; i < len; ++i)
            {
                ECPoint p = ps[i];
                ECPoint q = EndoUtilities.MapPoint(glvEndomorphism, p); 
                pqs[j++] = p;
                pqs[j++] = q;
            }

            return ImplSumOfMultiplies(pqs, abs);
        }

        internal static ECPoint ImplSumOfMultiplies(ECEndomorphism endomorphism, ECPoint[] ps, BigInteger[] ks)
        {
            int halfCount = ps.Length, fullCount = halfCount << 1;

            bool[] negs = new bool[fullCount];
            WNafPreCompInfo[] infos = new WNafPreCompInfo[fullCount];
            byte[][] wnafs = new byte[fullCount][];

            ECPointMap pointMap = endomorphism.PointMap;

            for (int i = 0; i < halfCount; ++i)
            {
                int j0 = i << 1, j1 = j0 + 1;

                BigInteger kj0 = ks[j0]; negs[j0] = kj0.SignValue < 0; kj0 = kj0.Abs();
                BigInteger kj1 = ks[j1]; negs[j1] = kj1.SignValue < 0; kj1 = kj1.Abs();

                int minWidth = WNafUtilities.GetWindowSize(System.Math.Max(kj0.BitLength, kj1.BitLength), 8);

                ECPoint P = ps[i];
                WNafPreCompInfo infoP = WNafUtilities.Precompute(P, minWidth, true);
                ECPoint Q = EndoUtilities.MapPoint(endomorphism, P);
                WNafPreCompInfo infoQ = WNafUtilities.PrecomputeWithPointMap(Q, pointMap, infoP, true);

                int widthP = System.Math.Min(8, infoP.Width);
                int widthQ = System.Math.Min(8, infoQ.Width);

                infos[j0] = infoP;
                infos[j1] = infoQ;
                wnafs[j0] = WNafUtilities.GenerateWindowNaf(widthP, kj0);
                wnafs[j1] = WNafUtilities.GenerateWindowNaf(widthQ, kj1);
            }

            return ImplSumOfMultiplies(negs, infos, wnafs);
        }

        private static ECPoint ImplSumOfMultiplies(bool[] negs, WNafPreCompInfo[] infos, byte[][] wnafs)
        {
            int len = 0, count = wnafs.Length;
            for (int i = 0; i < count; ++i)
            {
                len = System.Math.Max(len, wnafs[i].Length);
            }

            ECCurve curve = infos[0].PreComp[0].Curve;
            ECPoint infinity = curve.Infinity;

            ECPoint R = infinity;
            int zeroes = 0;

            for (int i = len - 1; i >= 0; --i)
            {
                ECPoint r = infinity;

                for (int j = 0; j < count; ++j)
                {
                    byte[] wnaf = wnafs[j];
                    int wi = i < wnaf.Length ? (int)(sbyte)wnaf[i] : 0;
                    if (wi != 0)
                    {
                        int n = System.Math.Abs(wi);
                        WNafPreCompInfo info = infos[j];
                        ECPoint[] table = (wi < 0 == negs[j]) ? info.PreComp : info.PreCompNeg;
                        r = r.Add(table[n >> 1]);
                    }
                }

                if (r == infinity)
                {
                    ++zeroes;
                    continue;
                }

                if (zeroes > 0)
                {
                    R = R.TimesPow2(zeroes);
                    zeroes = 0;
                }

                R = R.TwicePlus(r);
            }

            if (zeroes > 0)
            {
                R = R.TimesPow2(zeroes);
            }

            return R;
        }

        private static ECPoint ImplShamirsTrickFixedPoint(ECPoint p, BigInteger k, ECPoint q, BigInteger l)
        {
            ECCurve c = p.Curve;
            int combSize = FixedPointUtilities.GetCombSize(c);

            if (k.BitLength > combSize || l.BitLength > combSize)
            {
                /*
                 * TODO The comb works best when the scalars are less than the (possibly unknown) order.
                 * Still, if we want to handle larger scalars, we could allow customization of the comb
                 * size, or alternatively we could deal with the 'extra' bits either by running the comb
                 * multiple times as necessary, or by using an alternative multiplier as prelude.
                 */
                throw new InvalidOperationException("fixed-point comb doesn't support scalars larger than the curve order");
            }

            FixedPointPreCompInfo infoP = FixedPointUtilities.Precompute(p);
            FixedPointPreCompInfo infoQ = FixedPointUtilities.Precompute(q);

            ECLookupTable lookupTableP = infoP.LookupTable;
            ECLookupTable lookupTableQ = infoQ.LookupTable;

            int widthP = infoP.Width;
            int widthQ = infoQ.Width;

            // TODO This shouldn't normally happen, but a better "solution" is desirable anyway
            if (widthP != widthQ)
            {
                FixedPointCombMultiplier m = new FixedPointCombMultiplier();
                ECPoint r1 = m.Multiply(p, k);
                ECPoint r2 = m.Multiply(q, l);
                return r1.Add(r2);
            }

            int width = widthP;
            int d = (combSize + width - 1) / width;
            int fullComb = d * width;

#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
            int len = Nat.GetLengthForBits(fullComb);
            Span<uint> K = len <= 64
                ? stackalloc uint[len]
                : new uint[len];
            Nat.FromBigInteger(fullComb, k, K);
            Span<uint> L = len <= 64
                ? stackalloc uint[len]
                : new uint[len];
            Nat.FromBigInteger(fullComb, l, L);
#else
            uint[] K = Nat.FromBigInteger(fullComb, k);
            uint[] L = Nat.FromBigInteger(fullComb, l);
#endif

            ECPoint R = c.Infinity;

            int top = fullComb - 1; 
            for (int i = 0; i < d; ++i)
            {
                uint secretIndexK = 0, secretIndexL = 0;

                for (int j = top - i; j >= 0; j -= d)
                {
                    uint secretBitK = K[j >> 5] >> (j & 0x1F);
                    secretIndexK ^= secretBitK >> 1;
                    secretIndexK <<= 1;
                    secretIndexK ^= secretBitK;

                    uint secretBitL = L[j >> 5] >> (j & 0x1F);
                    secretIndexL ^= secretBitL >> 1;
                    secretIndexL <<= 1;
                    secretIndexL ^= secretBitL;
                }

                ECPoint addP = lookupTableP.LookupVar((int)secretIndexK);
                ECPoint addQ = lookupTableQ.LookupVar((int)secretIndexL);

                ECPoint T = addP.Add(addQ);

                R = R.TwicePlus(T);
            }

            return R.Add(infoP.Offset).Add(infoQ.Offset);
        }
    }
}