1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
|
using System;
using Org.BouncyCastle.Math.EC.Multiplier;
using Org.BouncyCastle.Math.Field;
namespace Org.BouncyCastle.Math.EC
{
public class ECAlgorithms
{
public static bool IsF2mCurve(ECCurve c)
{
IFiniteField field = c.Field;
return field.Dimension > 1 && field.Characteristic.Equals(BigInteger.Two)
&& field is IPolynomialExtensionField;
}
public static bool IsFpCurve(ECCurve c)
{
return c.Field.Dimension == 1;
}
public static ECPoint SumOfTwoMultiplies(ECPoint P, BigInteger a, ECPoint Q, BigInteger b)
{
ECCurve cp = P.Curve;
Q = ImportPoint(cp, Q);
// Point multiplication for Koblitz curves (using WTNAF) beats Shamir's trick
if (cp is F2mCurve)
{
F2mCurve f2mCurve = (F2mCurve) cp;
if (f2mCurve.IsKoblitz)
{
return P.Multiply(a).Add(Q.Multiply(b));
}
}
return ImplShamirsTrickWNaf(P, a, Q, b);
}
/*
* "Shamir's Trick", originally due to E. G. Straus
* (Addition chains of vectors. American Mathematical Monthly,
* 71(7):806-808, Aug./Sept. 1964)
*
* Input: The points P, Q, scalar k = (km?, ... , k1, k0)
* and scalar l = (lm?, ... , l1, l0).
* Output: R = k * P + l * Q.
* 1: Z <- P + Q
* 2: R <- O
* 3: for i from m-1 down to 0 do
* 4: R <- R + R {point doubling}
* 5: if (ki = 1) and (li = 0) then R <- R + P end if
* 6: if (ki = 0) and (li = 1) then R <- R + Q end if
* 7: if (ki = 1) and (li = 1) then R <- R + Z end if
* 8: end for
* 9: return R
*/
public static ECPoint ShamirsTrick(ECPoint P, BigInteger k, ECPoint Q, BigInteger l)
{
ECCurve cp = P.Curve;
Q = ImportPoint(cp, Q);
return ImplShamirsTrickJsf(P, k, Q, l);
}
public static ECPoint ImportPoint(ECCurve c, ECPoint p)
{
ECCurve cp = p.Curve;
if (!c.Equals(cp))
throw new ArgumentException("Point must be on the same curve");
return c.ImportPoint(p);
}
public static void MontgomeryTrick(ECFieldElement[] zs, int off, int len)
{
/*
* Uses the "Montgomery Trick" to invert many field elements, with only a single actual
* field inversion. See e.g. the paper:
* "Fast Multi-scalar Multiplication Methods on Elliptic Curves with Precomputation Strategy Using Montgomery Trick"
* by Katsuyuki Okeya, Kouichi Sakurai.
*/
ECFieldElement[] c = new ECFieldElement[len];
c[0] = zs[off];
int i = 0;
while (++i < len)
{
c[i] = c[i - 1].Multiply(zs[off + i]);
}
ECFieldElement u = c[--i].Invert();
while (i > 0)
{
int j = off + i--;
ECFieldElement tmp = zs[j];
zs[j] = c[i].Multiply(u);
u = u.Multiply(tmp);
}
zs[off] = u;
}
internal static ECPoint ImplShamirsTrickJsf(ECPoint P, BigInteger k, ECPoint Q, BigInteger l)
{
ECCurve curve = P.Curve;
ECPoint infinity = curve.Infinity;
// TODO conjugate co-Z addition (ZADDC) can return both of these
ECPoint PaddQ = P.Add(Q);
ECPoint PsubQ = P.Subtract(Q);
ECPoint[] points = new ECPoint[] { Q, PsubQ, P, PaddQ };
curve.NormalizeAll(points);
ECPoint[] table = new ECPoint[] {
points[3].Negate(), points[2].Negate(), points[1].Negate(),
points[0].Negate(), infinity, points[0],
points[1], points[2], points[3] };
byte[] jsf = WNafUtilities.GenerateJsf(k, l);
ECPoint R = infinity;
int i = jsf.Length;
while (--i >= 0)
{
int jsfi = jsf[i];
// NOTE: The shifting ensures the sign is extended correctly
int kDigit = ((jsfi << 24) >> 28), lDigit = ((jsfi << 28) >> 28);
int index = 4 + (kDigit * 3) + lDigit;
R = R.TwicePlus(table[index]);
}
return R;
}
internal static ECPoint ImplShamirsTrickWNaf(ECPoint P, BigInteger k, ECPoint Q, BigInteger l)
{
int widthP = System.Math.Max(2, System.Math.Min(16, WNafUtilities.GetWindowSize(k.BitLength)));
int widthQ = System.Math.Max(2, System.Math.Min(16, WNafUtilities.GetWindowSize(l.BitLength)));
WNafPreCompInfo infoP = WNafUtilities.Precompute(P, widthP, true);
WNafPreCompInfo infoQ = WNafUtilities.Precompute(Q, widthQ, true);
ECPoint[] preCompP = infoP.PreComp;
ECPoint[] preCompQ = infoQ.PreComp;
ECPoint[] preCompNegP = infoP.PreCompNeg;
ECPoint[] preCompNegQ = infoQ.PreCompNeg;
byte[] wnafP = WNafUtilities.GenerateWindowNaf(widthP, k);
byte[] wnafQ = WNafUtilities.GenerateWindowNaf(widthQ, l);
int len = System.Math.Max(wnafP.Length, wnafQ.Length);
ECCurve curve = P.Curve;
ECPoint infinity = curve.Infinity;
ECPoint R = infinity;
int zeroes = 0;
for (int i = len - 1; i >= 0; --i)
{
int wiP = i < wnafP.Length ? (int)(sbyte)wnafP[i] : 0;
int wiQ = i < wnafQ.Length ? (int)(sbyte)wnafQ[i] : 0;
if ((wiP | wiQ) == 0)
{
++zeroes;
continue;
}
ECPoint r = infinity;
if (wiP != 0)
{
int nP = System.Math.Abs(wiP);
ECPoint[] tableP = wiP < 0 ? preCompNegP : preCompP;
r = r.Add(tableP[nP >> 1]);
}
if (wiQ != 0)
{
int nQ = System.Math.Abs(wiQ);
ECPoint[] tableQ = wiQ < 0 ? preCompNegQ : preCompQ;
r = r.Add(tableQ[nQ >> 1]);
}
if (zeroes > 0)
{
R = R.TimesPow2(zeroes);
zeroes = 0;
}
R = R.TwicePlus(r);
}
if (zeroes > 0)
{
R = R.TimesPow2(zeroes);
}
return R;
}
}
}
|