1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
using System;
using Org.BouncyCastle.Math.Field;
namespace Org.BouncyCastle.Math.EC
{
public class ECAlgorithms
{
public static bool IsF2mCurve(ECCurve c)
{
IFiniteField field = c.Field;
return field.Dimension > 1 && field.Characteristic.Equals(BigInteger.Two)
&& field is IPolynomialExtensionField;
}
public static bool IsFpCurve(ECCurve c)
{
return c.Field.Dimension == 1;
}
public static ECPoint SumOfTwoMultiplies(ECPoint P, BigInteger a, ECPoint Q, BigInteger b)
{
ECCurve cp = P.Curve;
Q = ImportPoint(cp, Q);
// Point multiplication for Koblitz curves (using WTNAF) beats Shamir's trick
if (cp is F2mCurve)
{
F2mCurve f2mCurve = (F2mCurve) cp;
if (f2mCurve.IsKoblitz)
{
return P.Multiply(a).Add(Q.Multiply(b));
}
}
return ImplShamirsTrick(P, a, Q, b);
}
/*
* "Shamir's Trick", originally due to E. G. Straus
* (Addition chains of vectors. American Mathematical Monthly,
* 71(7):806-808, Aug./Sept. 1964)
*
* Input: The points P, Q, scalar k = (km?, ... , k1, k0)
* and scalar l = (lm?, ... , l1, l0).
* Output: R = k * P + l * Q.
* 1: Z <- P + Q
* 2: R <- O
* 3: for i from m-1 down to 0 do
* 4: R <- R + R {point doubling}
* 5: if (ki = 1) and (li = 0) then R <- R + P end if
* 6: if (ki = 0) and (li = 1) then R <- R + Q end if
* 7: if (ki = 1) and (li = 1) then R <- R + Z end if
* 8: end for
* 9: return R
*/
public static ECPoint ShamirsTrick(ECPoint P, BigInteger k, ECPoint Q, BigInteger l)
{
ECCurve cp = P.Curve;
Q = ImportPoint(cp, Q);
return ImplShamirsTrick(P, k, Q, l);
}
public static ECPoint ImportPoint(ECCurve c, ECPoint p)
{
ECCurve cp = p.Curve;
if (!c.Equals(cp))
throw new ArgumentException("Point must be on the same curve");
return c.ImportPoint(p);
}
public static void MontgomeryTrick(ECFieldElement[] zs, int off, int len)
{
/*
* Uses the "Montgomery Trick" to invert many field elements, with only a single actual
* field inversion. See e.g. the paper:
* "Fast Multi-scalar Multiplication Methods on Elliptic Curves with Precomputation Strategy Using Montgomery Trick"
* by Katsuyuki Okeya, Kouichi Sakurai.
*/
ECFieldElement[] c = new ECFieldElement[len];
c[0] = zs[off];
int i = 0;
while (++i < len)
{
c[i] = c[i - 1].Multiply(zs[off + i]);
}
ECFieldElement u = c[--i].Invert();
while (i > 0)
{
int j = off + i--;
ECFieldElement tmp = zs[j];
zs[j] = c[i].Multiply(u);
u = u.Multiply(tmp);
}
zs[off] = u;
}
internal static ECPoint ImplShamirsTrick(ECPoint P, BigInteger k,
ECPoint Q, BigInteger l)
{
int m = System.Math.Max(k.BitLength, l.BitLength);
ECPoint Z = P.Add(Q);
ECPoint R = P.Curve.Infinity;
for (int i = m - 1; i >= 0; --i)
{
R = R.Twice();
if (k.TestBit(i))
{
if (l.TestBit(i))
{
R = R.Add(Z);
}
else
{
R = R.Add(P);
}
}
else
{
if (l.TestBit(i))
{
R = R.Add(Q);
}
}
}
return R;
}
}
}
|