1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
using System;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Utilities;
namespace Org.BouncyCastle.Math
{
public static class Primes
{
private static readonly BigInteger One = BigInteger.One;
private static readonly BigInteger Two = BigInteger.Two;
private static readonly BigInteger Three = BigInteger.Three;
/**
* Used to return the output from the {@linkplain #generateSTRandomPrime(Digest) Shawe-Taylor Random_Prime Routine}
*/
public class STOutput
{
private readonly BigInteger mPrime;
private readonly byte[] mPrimeSeed;
private readonly int mPrimeGenCounter;
internal STOutput(BigInteger prime, byte[] primeSeed, int primeGenCounter)
{
this.mPrime = prime;
this.mPrimeSeed = primeSeed;
this.mPrimeGenCounter = primeGenCounter;
}
public BigInteger Prime
{
get { return mPrime; }
}
public byte[] PrimeSeed
{
get { return mPrimeSeed; }
}
public int PrimeGenCounter
{
get { return mPrimeGenCounter; }
}
}
/**
* FIPS 186-4 C.6 Shawe-Taylor Random_Prime Routine
*
* Construct a provable prime number using a hash function.
*
* @param hash
* the {@link Digest} instance to use (as "Hash()"). Cannot be null.
* @param length
* the length (in bits) of the prime to be generated. Must be >= 2.
* @param inputSeed
* the seed to be used for the generation of the requested prime. Cannot be null or
* empty.
* @returns an {@link STOutput} instance containing the requested prime.
*/
public static STOutput GenerateSTRandomPrime(IDigest hash, int length, byte[] inputSeed)
{
if (hash == null)
throw new ArgumentNullException("hash");
if (length < 2)
throw new ArgumentException("must be >= 2", "length");
if (inputSeed == null)
throw new ArgumentNullException("inputSeed");
if (inputSeed.Length == 0)
throw new ArgumentException("cannot be empty", "inputSeed");
return ImplSTRandomPrime(hash, length, Arrays.Clone(inputSeed));
}
private static STOutput ImplSTRandomPrime(IDigest d, int length, byte[] primeSeed)
{
int dLen = d.GetDigestSize();
if (length < 33)
{
int primeGenCounter = 0;
byte[] c0 = new byte[dLen];
byte[] c1 = new byte[dLen];
for (;;)
{
Hash(d, primeSeed, c0, 0);
Inc(primeSeed, 1);
Hash(d, primeSeed, c1, 0);
Inc(primeSeed, 1);
uint c = Extract32(c0) ^ Extract32(c1);
c &= (uint.MaxValue >> (32 - length));
c |= (1U << (length - 1)) | 1U;
++primeGenCounter;
if (IsPrime32(c))
{
return new STOutput(BigInteger.ValueOf((long)c), primeSeed, primeGenCounter);
}
if (primeGenCounter > (4 * length))
{
throw new InvalidOperationException("Too many iterations in Shawe-Taylor Random_Prime Routine");
}
}
}
STOutput rec = ImplSTRandomPrime(d, (length + 3)/2, primeSeed);
{
BigInteger c0 = rec.Prime;
primeSeed = rec.PrimeSeed;
int primeGenCounter = rec.PrimeGenCounter;
int outlen = 8 * dLen;
int iterations = (length - 1)/outlen;
int oldCounter = primeGenCounter;
BigInteger x = HashGen(d, primeSeed, iterations + 1);
x = x.Mod(One.ShiftLeft(length - 1)).SetBit(length - 1);
BigInteger c0x2 = c0.ShiftLeft(1);
BigInteger t = x.Subtract(One).Divide(c0x2).Add(One);
BigInteger c = t.Multiply(c0x2).Add(One);
for (;;)
{
if (c.BitLength > length)
{
t = One.ShiftLeft(length - 1).Subtract(One).Divide(c0x2).Add(One);
c = t.Multiply(c0x2).Add(One);
}
++primeGenCounter;
/*
* This is an optimization of the original algorithm, using trial division to screen out
* many non-primes quickly.
*
* NOTE: 'primeSeed' is still incremented as if we performed the full check!
*/
if (MightBePrime(c))
{
BigInteger a = HashGen(d, primeSeed, iterations + 1);
a = a.Mod(c.Subtract(Three)).Add(Two);
BigInteger z = a.ModPow(t.ShiftLeft(1), c);
if (c.Gcd(z.Subtract(One)).Equals(One) && z.ModPow(c0, c).Equals(One))
{
return new STOutput(c, primeSeed, primeGenCounter);
}
}
else
{
Inc(primeSeed, iterations + 1);
}
if (primeGenCounter >= ((4 * length) + oldCounter))
{
throw new InvalidOperationException("Too many iterations in Shawe-Taylor Random_Prime Routine");
}
t = t.Add(One);
c = c.Add(c0x2);
}
}
}
private static uint Extract32(byte[] bs)
{
uint result = 0;
int count = System.Math.Min(4, bs.Length);
for (int i = 0; i < count; ++i)
{
uint b = bs[bs.Length - (i + 1)];
result |= (b << (8 * i));
}
return result;
}
private static void Hash(IDigest d, byte[] input, byte[] output, int outPos)
{
d.BlockUpdate(input, 0, input.Length);
d.DoFinal(output, outPos);
}
private static BigInteger HashGen(IDigest d, byte[] seed, int count)
{
int dLen = d.GetDigestSize();
int pos = count * dLen;
byte[] buf = new byte[pos];
for (int i = 0; i < count; ++i)
{
pos -= dLen;
Hash(d, seed, buf, pos);
Inc(seed, 1);
}
return new BigInteger(1, buf);
}
private static void Inc(byte[] seed, int c)
{
int pos = seed.Length;
while (c > 0 && --pos >= 0)
{
c += seed[pos];
seed[pos] = (byte)c;
c >>= 8;
}
}
private static bool IsPrime32(uint x)
{
/*
* Use wheel factorization with 2, 3, 5 to select trial divisors.
*/
if (x <= 5)
{
return x == 2 || x == 3 || x == 5;
}
if ((x & 1) == 0 || (x % 3) == 0 || (x % 5) == 0)
{
return false;
}
uint[] ds = new uint[]{ 1, 7, 11, 13, 17, 19, 23, 29 };
uint b = 0;
for (int pos = 1; ; pos = 0)
{
/*
* Trial division by wheel-selected divisors
*/
while (pos < ds.Length)
{
uint d = b + ds[pos];
if (x % d == 0)
{
return x < 30;
}
++pos;
}
b += 30;
if ((b >> 16 != 0) || (b * b >= x))
{
return true;
}
}
}
private static bool MightBePrime(BigInteger x)
{
/*
* Bundle trial divisors into ~32-bit moduli then use fast tests on the ~32-bit remainders.
*/
int m0 = 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23;
int r0 = x.Mod(BigInteger.ValueOf(m0)).IntValue;
if ((r0 & 1) != 0 && (r0 % 3) != 0 && (r0 % 5) != 0 && (r0 % 7) != 0 && (r0 % 11) != 0
&& (r0 % 13) != 0 && (r0 % 17) != 0 && (r0 % 19) != 0 && (r0 % 23) != 0)
{
int m1 = 29 * 31 * 37 * 41 * 43;
int r1 = x.Mod(BigInteger.ValueOf(m1)).IntValue;
if ((r1 % 29) != 0 && (r1 % 31) != 0 && (r1 % 37) != 0 && (r1 % 41) != 0 && (r1 % 43) != 0)
{
return true;
}
}
return false;
}
}
}
|