summary refs log tree commit diff
path: root/crypto/src/crypto/signers/ECDsaSigner.cs
blob: 32225ec8273b2638e918b64813107f4431abfb2e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
using System;

using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Math.EC;
using Org.BouncyCastle.Math.EC.Multiplier;
using Org.BouncyCastle.Security;
using Org.BouncyCastle.Utilities;

namespace Org.BouncyCastle.Crypto.Signers
{
    /**
     * EC-DSA as described in X9.62
     */
    public class ECDsaSigner
        : IDsa
    {
        private static readonly BigInteger Eight = BigInteger.ValueOf(8);

        protected readonly IDsaKCalculator kCalculator;

        protected ECKeyParameters key = null;
        protected SecureRandom random = null;

        /**
         * Default configuration, random K values.
         */
        public ECDsaSigner()
        {
            this.kCalculator = new RandomDsaKCalculator();
        }

        /**
         * Configuration with an alternate, possibly deterministic calculator of K.
         *
         * @param kCalculator a K value calculator.
         */
        public ECDsaSigner(IDsaKCalculator kCalculator)
        {
            this.kCalculator = kCalculator;
        }

        public virtual string AlgorithmName
        {
            get { return "ECDSA"; }
        }

        public virtual void Init(bool forSigning, ICipherParameters parameters)
        {
            SecureRandom providedRandom = null;

            if (forSigning)
            {
                if (parameters is ParametersWithRandom rParam)
                {
                    providedRandom = rParam.Random;
                    parameters = rParam.Parameters;
                }

                if (!(parameters is ECPrivateKeyParameters ecPrivateKeyParameters))
                    throw new InvalidKeyException("EC private key required for signing");

                this.key = ecPrivateKeyParameters;
            }
            else
            {
                if (!(parameters is ECPublicKeyParameters ecPublicKeyParameters))
                    throw new InvalidKeyException("EC public key required for verification");

                this.key = ecPublicKeyParameters;
            }

            this.random = InitSecureRandom(forSigning && !kCalculator.IsDeterministic, providedRandom);
        }

        public virtual BigInteger Order
        {
            get { return key.Parameters.N; }
        }

        // 5.3 pg 28
        /**
         * Generate a signature for the given message using the key we were
         * initialised with. For conventional DSA the message should be a SHA-1
         * hash of the message of interest.
         *
         * @param message the message that will be verified later.
         */
        public virtual BigInteger[] GenerateSignature(byte[] message)
        {
            ECDomainParameters ec = key.Parameters;
            BigInteger n = ec.N;
            BigInteger e = CalculateE(n, message);
            BigInteger d = ((ECPrivateKeyParameters)key).D;

            if (kCalculator.IsDeterministic)
            {
                kCalculator.Init(n, d, message);
            }
            else
            {
                kCalculator.Init(n, random);
            }

            BigInteger r, s;

            ECMultiplier basePointMultiplier = CreateBasePointMultiplier();

            // 5.3.2
            do // Generate s
            {
                BigInteger k;
                do // Generate r
                {
                    k = kCalculator.NextK();

                    ECPoint p = basePointMultiplier.Multiply(ec.G, k).Normalize();

                    // 5.3.3
                    r = p.AffineXCoord.ToBigInteger().Mod(n);
                }
                while (r.SignValue == 0);

                s = BigIntegers.ModOddInverse(n, k).Multiply(e.Add(d.Multiply(r))).Mod(n);
            }
            while (s.SignValue == 0);

            return new BigInteger[]{ r, s };
        }

        // 5.4 pg 29
        /**
         * return true if the value r and s represent a DSA signature for
         * the passed in message (for standard DSA the message should be
         * a SHA-1 hash of the real message to be verified).
         */
        public virtual bool VerifySignature(byte[] message, BigInteger r, BigInteger s)
        {
            BigInteger n = key.Parameters.N;

            // r and s should both in the range [1,n-1]
            if (r.SignValue < 1 || s.SignValue < 1
                || r.CompareTo(n) >= 0 || s.CompareTo(n) >= 0)
            {
                return false;
            }

            BigInteger e = CalculateE(n, message);
            BigInteger c = BigIntegers.ModOddInverseVar(n, s);

            BigInteger u1 = e.Multiply(c).Mod(n);
            BigInteger u2 = r.Multiply(c).Mod(n);

            ECPoint G = key.Parameters.G;
            ECPoint Q = ((ECPublicKeyParameters) key).Q;

            ECPoint point = ECAlgorithms.SumOfTwoMultiplies(G, u1, Q, u2);

            if (point.IsInfinity)
                return false;

            /*
             * If possible, avoid normalizing the point (to save a modular inversion in the curve field).
             * 
             * There are ~cofactor elements of the curve field that reduce (modulo the group order) to 'r'.
             * If the cofactor is known and small, we generate those possible field values and project each
             * of them to the same "denominator" (depending on the particular projective coordinates in use)
             * as the calculated point.X. If any of the projected values matches point.X, then we have:
             *     (point.X / Denominator mod p) mod n == r
             * as required, and verification succeeds.
             * 
             * Based on an original idea by Gregory Maxwell (https://github.com/gmaxwell), as implemented in
             * the libsecp256k1 project (https://github.com/bitcoin/secp256k1).
             */
            ECCurve curve = point.Curve;
            if (curve != null)
            {
                BigInteger cofactor = curve.Cofactor;
                if (cofactor != null && cofactor.CompareTo(Eight) <= 0)
                {
                    ECFieldElement D = GetDenominator(curve.CoordinateSystem, point);
                    if (D != null && !D.IsZero)
                    {
                        ECFieldElement X = point.XCoord;
                        while (curve.IsValidFieldElement(r))
                        {
                            ECFieldElement R = curve.FromBigInteger(r).Multiply(D);
                            if (R.Equals(X))
                            {
                                return true;
                            }
                            r = r.Add(n);
                        }
                        return false;
                    }
                }
            }

            BigInteger v = point.Normalize().AffineXCoord.ToBigInteger().Mod(n);
            return v.Equals(r);
        }

        protected virtual BigInteger CalculateE(BigInteger n, byte[] message)
        {
            int messageBitLength = message.Length * 8;
            BigInteger trunc = new BigInteger(1, message);

            if (n.BitLength < messageBitLength)
            {
                trunc = trunc.ShiftRight(messageBitLength - n.BitLength);
            }

            return trunc;
        }

        protected virtual ECMultiplier CreateBasePointMultiplier()
        {
            return new FixedPointCombMultiplier();
        }

        protected virtual ECFieldElement GetDenominator(int coordinateSystem, ECPoint p)
        {
            switch (coordinateSystem)
            {
                case ECCurve.COORD_HOMOGENEOUS:
                case ECCurve.COORD_LAMBDA_PROJECTIVE:
                case ECCurve.COORD_SKEWED:
                    return p.GetZCoord(0);
                case ECCurve.COORD_JACOBIAN:
                case ECCurve.COORD_JACOBIAN_CHUDNOVSKY:
                case ECCurve.COORD_JACOBIAN_MODIFIED:
                    return p.GetZCoord(0).Square();
                default:
                    return null;
            }
        }

        protected virtual SecureRandom InitSecureRandom(bool needed, SecureRandom provided)
        {
            return !needed ? null : CryptoServicesRegistrar.GetSecureRandom(provided);
        }
    }
}