1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
using System;
using System.Diagnostics;
#if NETSTANDARD1_0_OR_GREATER || NETCOREAPP1_0_OR_GREATER
using System.Runtime.CompilerServices;
#endif
#if NETCOREAPP3_0_OR_GREATER
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;
#endif
using Org.BouncyCastle.Crypto.Utilities;
using Org.BouncyCastle.Math.Raw;
using Org.BouncyCastle.Utilities;
namespace Org.BouncyCastle.Crypto.Modes.Gcm
{
internal static class GcmUtilities
{
internal struct FieldElement
{
internal ulong n0, n1;
}
private const uint E1 = 0xe1000000;
private const ulong E1UL = (ulong)E1 << 32;
internal static void One(out FieldElement x)
{
x.n0 = 1UL << 63;
x.n1 = 0UL;
}
#if NETSTANDARD1_0_OR_GREATER || NETCOREAPP1_0_OR_GREATER
[MethodImpl(MethodImplOptions.AggressiveInlining)]
#endif
internal static void AsBytes(ulong x0, ulong x1, byte[] z)
{
Pack.UInt64_To_BE(x0, z, 0);
Pack.UInt64_To_BE(x1, z, 8);
}
#if NETSTANDARD1_0_OR_GREATER || NETCOREAPP1_0_OR_GREATER
[MethodImpl(MethodImplOptions.AggressiveInlining)]
#endif
internal static void AsBytes(ref FieldElement x, byte[] z)
{
AsBytes(x.n0, x.n1, z);
}
#if NETSTANDARD1_0_OR_GREATER || NETCOREAPP1_0_OR_GREATER
[MethodImpl(MethodImplOptions.AggressiveInlining)]
#endif
internal static void AsFieldElement(byte[] x, out FieldElement z)
{
z.n0 = Pack.BE_To_UInt64(x, 0);
z.n1 = Pack.BE_To_UInt64(x, 8);
}
internal static void DivideP(ref FieldElement x, out FieldElement z)
{
ulong x0 = x.n0, x1 = x.n1;
ulong m = (ulong)((long)x0 >> 63);
x0 ^= (m & E1UL);
z.n0 = (x0 << 1) | (x1 >> 63);
z.n1 = (x1 << 1) | (ulong)(-(long)m);
}
internal static void Multiply(byte[] x, byte[] y)
{
AsFieldElement(x, out FieldElement X);
AsFieldElement(y, out FieldElement Y);
Multiply(ref X, ref Y);
AsBytes(ref X, x);
}
internal static void Multiply(ref FieldElement x, ref FieldElement y)
{
ulong z0, z1, z2, z3;
#if NETCOREAPP3_0_OR_GREATER
if (Pclmulqdq.IsSupported)
{
var X = Vector128.Create(x.n1, x.n0);
var Y = Vector128.Create(y.n1, y.n0);
var Z0 = Pclmulqdq.CarrylessMultiply(X, Y, 0x00);
var Z1 = Sse2.Xor(
Pclmulqdq.CarrylessMultiply(X, Y, 0x01),
Pclmulqdq.CarrylessMultiply(X, Y, 0x10));
var Z2 = Pclmulqdq.CarrylessMultiply(X, Y, 0x11);
ulong t3 = Z0.GetElement(0);
ulong t2 = Z0.GetElement(1) ^ Z1.GetElement(0);
ulong t1 = Z2.GetElement(0) ^ Z1.GetElement(1);
ulong t0 = Z2.GetElement(1);
z0 = (t0 << 1) | (t1 >> 63);
z1 = (t1 << 1) | (t2 >> 63);
z2 = (t2 << 1) | (t3 >> 63);
z3 = (t3 << 1);
}
else
#endif
{
/*
* "Three-way recursion" as described in "Batch binary Edwards", Daniel J. Bernstein.
*
* Without access to the high part of a 64x64 product x * y, we use a bit reversal to calculate it:
* rev(x) * rev(y) == rev((x * y) << 1)
*/
ulong x0 = x.n0, x1 = x.n1;
ulong y0 = y.n0, y1 = y.n1;
ulong x0r = Longs.Reverse(x0), x1r = Longs.Reverse(x1);
ulong y0r = Longs.Reverse(y0), y1r = Longs.Reverse(y1);
ulong h0 = Longs.Reverse(ImplMul64(x0r, y0r));
ulong h1 = ImplMul64(x0, y0) << 1;
ulong h2 = Longs.Reverse(ImplMul64(x1r, y1r));
ulong h3 = ImplMul64(x1, y1) << 1;
ulong h4 = Longs.Reverse(ImplMul64(x0r ^ x1r, y0r ^ y1r));
ulong h5 = ImplMul64(x0 ^ x1, y0 ^ y1) << 1;
z0 = h0;
z1 = h1 ^ h0 ^ h2 ^ h4;
z2 = h2 ^ h1 ^ h3 ^ h5;
z3 = h3;
}
Debug.Assert(z3 << 63 == 0);
z1 ^= z3 ^ (z3 >> 1) ^ (z3 >> 2) ^ (z3 >> 7);
// z2 ^= (z3 << 63) ^ (z3 << 62) ^ (z3 << 57);
z2 ^= (z3 << 62) ^ (z3 << 57);
z0 ^= z2 ^ (z2 >> 1) ^ (z2 >> 2) ^ (z2 >> 7);
z1 ^= (z2 << 63) ^ (z2 << 62) ^ (z2 << 57);
x.n0 = z0;
x.n1 = z1;
}
internal static void MultiplyP7(ref FieldElement x)
{
ulong x0 = x.n0, x1 = x.n1;
ulong c = x1 << 57;
x.n0 = (x0 >> 7) ^ c ^ (c >> 1) ^ (c >> 2) ^ (c >> 7);
x.n1 = (x1 >> 7) | (x0 << 57);
}
internal static void MultiplyP8(ref FieldElement x)
{
ulong x0 = x.n0, x1 = x.n1;
ulong c = x1 << 56;
x.n0 = (x0 >> 8) ^ c ^ (c >> 1) ^ (c >> 2) ^ (c >> 7);
x.n1 = (x1 >> 8) | (x0 << 56);
}
internal static void MultiplyP8(ref FieldElement x, out FieldElement y)
{
ulong x0 = x.n0, x1 = x.n1;
ulong c = x1 << 56;
y.n0 = (x0 >> 8) ^ c ^ (c >> 1) ^ (c >> 2) ^ (c >> 7);
y.n1 = (x1 >> 8) | (x0 << 56);
}
internal static void MultiplyP16(ref FieldElement x)
{
ulong x0 = x.n0, x1 = x.n1;
ulong c = x1 << 48;
x.n0 = (x0 >> 16) ^ c ^ (c >> 1) ^ (c >> 2) ^ (c >> 7);
x.n1 = (x1 >> 16) | (x0 << 48);
}
internal static void Square(ref FieldElement x)
{
ulong z1 = Interleave.Expand64To128Rev(x.n0, out ulong z0);
ulong z3 = Interleave.Expand64To128Rev(x.n1, out ulong z2);
Debug.Assert(z3 << 63 == 0UL);
z1 ^= z3 ^ (z3 >> 1) ^ (z3 >> 2) ^ (z3 >> 7);
// z2 ^= (z3 << 63) ^ (z3 << 62) ^ (z3 << 57);
z2 ^= (z3 << 62) ^ (z3 << 57);
Debug.Assert(z2 << 63 == 0UL);
z0 ^= z2 ^ (z2 >> 1) ^ (z2 >> 2) ^ (z2 >> 7);
// z1 ^= (z2 << 63) ^ (z2 << 62) ^ (z2 << 57);
z1 ^= (z2 << 62) ^ (z2 << 57);
x.n0 = z0;
x.n1 = z1;
}
internal static void Xor(byte[] x, byte[] y)
{
int i = 0;
do
{
x[i] ^= y[i]; ++i;
x[i] ^= y[i]; ++i;
x[i] ^= y[i]; ++i;
x[i] ^= y[i]; ++i;
}
while (i < 16);
}
internal static void Xor(byte[] x, byte[] y, int yOff)
{
int i = 0;
do
{
x[i] ^= y[yOff + i]; ++i;
x[i] ^= y[yOff + i]; ++i;
x[i] ^= y[yOff + i]; ++i;
x[i] ^= y[yOff + i]; ++i;
}
while (i < 16);
}
internal static void Xor(byte[] x, byte[] y, int yOff, int yLen)
{
while (--yLen >= 0)
{
x[yLen] ^= y[yOff + yLen];
}
}
internal static void Xor(byte[] x, int xOff, byte[] y, int yOff, int len)
{
while (--len >= 0)
{
x[xOff + len] ^= y[yOff + len];
}
}
internal static void Xor(ref FieldElement x, ref FieldElement y)
{
x.n0 ^= y.n0;
x.n1 ^= y.n1;
}
internal static void Xor(ref FieldElement x, ref FieldElement y, out FieldElement z)
{
z.n0 = x.n0 ^ y.n0;
z.n1 = x.n1 ^ y.n1;
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER
internal static void Xor(Span<byte> x, ReadOnlySpan<byte> y)
{
int i = 0;
do
{
x[i] ^= y[i]; ++i;
x[i] ^= y[i]; ++i;
x[i] ^= y[i]; ++i;
x[i] ^= y[i]; ++i;
}
while (i < 16);
}
internal static void Xor(Span<byte> x, ReadOnlySpan<byte> y, int len)
{
for (int i = 0; i < len; ++i)
{
x[i] ^= y[i];
}
}
#endif
private static ulong ImplMul64(ulong x, ulong y)
{
ulong x0 = x & 0x1111111111111111UL;
ulong x1 = x & 0x2222222222222222UL;
ulong x2 = x & 0x4444444444444444UL;
ulong x3 = x & 0x8888888888888888UL;
ulong y0 = y & 0x1111111111111111UL;
ulong y1 = y & 0x2222222222222222UL;
ulong y2 = y & 0x4444444444444444UL;
ulong y3 = y & 0x8888888888888888UL;
ulong z0 = (x0 * y0) ^ (x1 * y3) ^ (x2 * y2) ^ (x3 * y1);
ulong z1 = (x0 * y1) ^ (x1 * y0) ^ (x2 * y3) ^ (x3 * y2);
ulong z2 = (x0 * y2) ^ (x1 * y1) ^ (x2 * y0) ^ (x3 * y3);
ulong z3 = (x0 * y3) ^ (x1 * y2) ^ (x2 * y1) ^ (x3 * y0);
z0 &= 0x1111111111111111UL;
z1 &= 0x2222222222222222UL;
z2 &= 0x4444444444444444UL;
z3 &= 0x8888888888888888UL;
return z0 | z1 | z2 | z3;
}
}
}
|