summary refs log tree commit diff
path: root/crypto/src/crypto/macs/Poly1305.cs
blob: 1a951ca04a6f7b018c22b0f3cd273cbc975c1686 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
using System;

using Org.BouncyCastle.Crypto.Generators;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Crypto.Utilities;

namespace Org.BouncyCastle.Crypto.Macs
{

    /// <summary>
    /// Poly1305 message authentication code, designed by D. J. Bernstein.
    /// </summary>
    /// <remarks>
    /// Poly1305 computes a 128-bit (16 bytes) authenticator, using a 128 bit nonce and a 256 bit key
    /// consisting of a 128 bit key applied to an underlying cipher, and a 128 bit key (with 106
    /// effective key bits) used in the authenticator.
    /// 
    /// The polynomial calculation in this implementation is adapted from the public domain <a
    /// href="https://github.com/floodyberry/poly1305-donna">poly1305-donna-unrolled</a> C implementation
    /// by Andrew M (@floodyberry).
    /// </remarks>
    /// <seealso cref="Org.BouncyCastle.Crypto.Generators.Poly1305KeyGenerator"/>
    public class Poly1305
        : IMac
    {
        private const int BLOCK_SIZE = 16;

        private readonly IBlockCipher cipher;

        private readonly byte[] singleByte = new byte[1];

        // Initialised state

        /** Polynomial key */
        private uint r0, r1, r2, r3, r4;

        /** Precomputed 5 * r[1..4] */
        private uint s1, s2, s3, s4;

        /** Encrypted nonce */
        private uint k0, k1, k2, k3;

        // Accumulating state

        /** Current block of buffered input */
        private byte[] currentBlock = new byte[BLOCK_SIZE];

        /** Current offset in input buffer */
        private int currentBlockOffset = 0;

        /** Polynomial accumulator */
        private uint h0, h1, h2, h3, h4;

        /**
         * Constructs a Poly1305 MAC, where the key passed to init() will be used directly.
         */
        public Poly1305()
        {
            this.cipher = null;
        }

        /**
         * Constructs a Poly1305 MAC, using a 128 bit block cipher.
         */
        public Poly1305(IBlockCipher cipher)
        {
            if (cipher.GetBlockSize() != BLOCK_SIZE)
            {
                throw new ArgumentException("Poly1305 requires a 128 bit block cipher.");
            }
            this.cipher = cipher;
        }

        /// <summary>
        /// Initialises the Poly1305 MAC.
        /// </summary>
        /// <param name="parameters">a {@link ParametersWithIV} containing a 128 bit nonce and a {@link KeyParameter} with
        ///          a 256 bit key complying to the {@link Poly1305KeyGenerator Poly1305 key format}.</param>
        public void Init(ICipherParameters parameters)
        {
            byte[] nonce = null;

            if (cipher != null)
            {
                if (!(parameters is ParametersWithIV))
                    throw new ArgumentException("Poly1305 requires an IV when used with a block cipher.", "parameters");

                ParametersWithIV ivParams = (ParametersWithIV)parameters;
                nonce = ivParams.GetIV();
                parameters = ivParams.Parameters;
            }

            if (!(parameters is KeyParameter))
                throw new ArgumentException("Poly1305 requires a key.");

            KeyParameter keyParams = (KeyParameter)parameters;

            SetKey(keyParams.GetKey(), nonce);

            Reset();
        }

        private void SetKey(byte[] key, byte[] nonce)
        {
            if (cipher != null && (nonce == null || nonce.Length != BLOCK_SIZE))
                throw new ArgumentException("Poly1305 requires a 128 bit IV.");

            Poly1305KeyGenerator.CheckKey(key);

            // Extract r portion of key
            uint t0 = Pack.LE_To_UInt32(key, BLOCK_SIZE + 0);
            uint t1 = Pack.LE_To_UInt32(key, BLOCK_SIZE + 4);
            uint t2 = Pack.LE_To_UInt32(key, BLOCK_SIZE + 8);
            uint t3 = Pack.LE_To_UInt32(key, BLOCK_SIZE + 12);

            r0 = t0 & 0x3ffffff; t0 >>= 26; t0 |= t1 << 6;
            r1 = t0 & 0x3ffff03; t1 >>= 20; t1 |= t2 << 12;
            r2 = t1 & 0x3ffc0ff; t2 >>= 14; t2 |= t3 << 18;
            r3 = t2 & 0x3f03fff; t3 >>= 8;
            r4 = t3 & 0x00fffff;

            // Precompute multipliers
            s1 = r1 * 5;
            s2 = r2 * 5;
            s3 = r3 * 5;
            s4 = r4 * 5;

            byte[] kBytes;
            if (cipher == null)
            {
                kBytes = key;
            }
            else
            {
                // Compute encrypted nonce
                kBytes = new byte[BLOCK_SIZE];
                cipher.Init(true, new KeyParameter(key, 0, BLOCK_SIZE));
                cipher.ProcessBlock(nonce, 0, kBytes, 0);
            }

            k0 = Pack.LE_To_UInt32(kBytes, 0);
            k1 = Pack.LE_To_UInt32(kBytes, 4);
            k2 = Pack.LE_To_UInt32(kBytes, 8);
            k3 = Pack.LE_To_UInt32(kBytes, 12);
        }

        public string AlgorithmName
        {
            get { return cipher == null ? "Poly1305" : "Poly1305-" + cipher.AlgorithmName; }
        }

        public int GetMacSize()
        {
            return BLOCK_SIZE;
        }

        public void Update(byte input)
        {
            singleByte[0] = input;
            BlockUpdate(singleByte, 0, 1);
        }

        public void BlockUpdate(byte[] input, int inOff, int len)
        {
            int copied = 0;
            while (len > copied)
            {
                if (currentBlockOffset == BLOCK_SIZE)
                {
                    processBlock();
                    currentBlockOffset = 0;
                }

                int toCopy = System.Math.Min((len - copied), BLOCK_SIZE - currentBlockOffset);
                Array.Copy(input, copied + inOff, currentBlock, currentBlockOffset, toCopy);
                copied += toCopy;
                currentBlockOffset += toCopy;
            }

        }

        private void processBlock()
        {
            if (currentBlockOffset < BLOCK_SIZE)
            {
                currentBlock[currentBlockOffset] = 1;
                for (int i = currentBlockOffset + 1; i < BLOCK_SIZE; i++)
                {
                    currentBlock[i] = 0;
                }
            }

            ulong t0 = Pack.LE_To_UInt32(currentBlock, 0);
            ulong t1 = Pack.LE_To_UInt32(currentBlock, 4);
            ulong t2 = Pack.LE_To_UInt32(currentBlock, 8);
            ulong t3 = Pack.LE_To_UInt32(currentBlock, 12);

            h0 += (uint)(t0 & 0x3ffffffU);
            h1 += (uint)((((t1 << 32) | t0) >> 26) & 0x3ffffff);
            h2 += (uint)((((t2 << 32) | t1) >> 20) & 0x3ffffff);
            h3 += (uint)((((t3 << 32) | t2) >> 14) & 0x3ffffff);
            h4 += (uint)(t3 >> 8);

            if (currentBlockOffset == BLOCK_SIZE)
            {
                h4 += (1 << 24);
            }

            ulong tp0 = mul32x32_64(h0,r0) + mul32x32_64(h1,s4) + mul32x32_64(h2,s3) + mul32x32_64(h3,s2) + mul32x32_64(h4,s1);
            ulong tp1 = mul32x32_64(h0,r1) + mul32x32_64(h1,r0) + mul32x32_64(h2,s4) + mul32x32_64(h3,s3) + mul32x32_64(h4,s2);
            ulong tp2 = mul32x32_64(h0,r2) + mul32x32_64(h1,r1) + mul32x32_64(h2,r0) + mul32x32_64(h3,s4) + mul32x32_64(h4,s3);
            ulong tp3 = mul32x32_64(h0,r3) + mul32x32_64(h1,r2) + mul32x32_64(h2,r1) + mul32x32_64(h3,r0) + mul32x32_64(h4,s4);
            ulong tp4 = mul32x32_64(h0,r4) + mul32x32_64(h1,r3) + mul32x32_64(h2,r2) + mul32x32_64(h3,r1) + mul32x32_64(h4,r0);

            ulong b;
            h0 = (uint)tp0 & 0x3ffffff; b = (tp0 >> 26);
            tp1 += b; h1 = (uint)tp1 & 0x3ffffff; b = (tp1 >> 26);
            tp2 += b; h2 = (uint)tp2 & 0x3ffffff; b = (tp2 >> 26);
            tp3 += b; h3 = (uint)tp3 & 0x3ffffff; b = (tp3 >> 26);
            tp4 += b; h4 = (uint)tp4 & 0x3ffffff; b = (tp4 >> 26);
            h0 += (uint)(b * 5);
        }

        public int DoFinal(byte[] output, int outOff)
        {
            if (outOff + BLOCK_SIZE > output.Length)
            {
                throw new DataLengthException("Output buffer is too short.");
            }

            if (currentBlockOffset > 0)
            {
                // Process padded block
                processBlock();
            }

            ulong f0, f1, f2, f3;

            uint b = h0 >> 26;
            h0 = h0 & 0x3ffffff;
            h1 += b; b = h1 >> 26; h1 = h1 & 0x3ffffff;
            h2 += b; b = h2 >> 26; h2 = h2 & 0x3ffffff;
            h3 += b; b = h3 >> 26; h3 = h3 & 0x3ffffff;
            h4 += b; b = h4 >> 26; h4 = h4 & 0x3ffffff;
            h0 += b * 5;

            uint g0, g1, g2, g3, g4;
            g0 = h0 + 5; b = g0 >> 26; g0 &= 0x3ffffff;
            g1 = h1 + b; b = g1 >> 26; g1 &= 0x3ffffff;
            g2 = h2 + b; b = g2 >> 26; g2 &= 0x3ffffff;
            g3 = h3 + b; b = g3 >> 26; g3 &= 0x3ffffff;
            g4 = h4 + b - (1 << 26);

            b = (g4 >> 31) - 1;
            uint nb = ~b;
            h0 = (h0 & nb) | (g0 & b);
            h1 = (h1 & nb) | (g1 & b);
            h2 = (h2 & nb) | (g2 & b);
            h3 = (h3 & nb) | (g3 & b);
            h4 = (h4 & nb) | (g4 & b);

            f0 = ((h0      ) | (h1 << 26)) + (ulong)k0;
            f1 = ((h1 >> 6 ) | (h2 << 20)) + (ulong)k1;
            f2 = ((h2 >> 12) | (h3 << 14)) + (ulong)k2;
            f3 = ((h3 >> 18) | (h4 << 8 )) + (ulong)k3;

            Pack.UInt32_To_LE((uint)f0, output, outOff);
            f1 += (f0 >> 32);
            Pack.UInt32_To_LE((uint)f1, output, outOff + 4);
            f2 += (f1 >> 32);
            Pack.UInt32_To_LE((uint)f2, output, outOff + 8);
            f3 += (f2 >> 32);
            Pack.UInt32_To_LE((uint)f3, output, outOff + 12);

            Reset();
            return BLOCK_SIZE;
        }

        public void Reset()
        {
            currentBlockOffset = 0;

            h0 = h1 = h2 = h3 = h4 = 0;
        }

        private static ulong mul32x32_64(uint i1, uint i2)
        {
            return ((ulong)i1) * i2;
        }
    }
}