summary refs log tree commit diff
path: root/crypto/src/crypto/generators/RsaKeyPairGenerator.cs
blob: 4499765500e19f91652eddca57848e13b77b9cbf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
using System;

using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Math.EC.Multiplier;
using Org.BouncyCastle.Utilities;

namespace Org.BouncyCastle.Crypto.Generators
{
    /**
     * an RSA key pair generator.
     */
    public class RsaKeyPairGenerator
        :   IAsymmetricCipherKeyPairGenerator
    {
        private static readonly int[] SPECIAL_E_VALUES = new int[]{ 3, 5, 17, 257, 65537 };
        private static readonly int SPECIAL_E_HIGHEST = SPECIAL_E_VALUES[SPECIAL_E_VALUES.Length - 1];
        private static readonly int SPECIAL_E_BITS = BigInteger.ValueOf(SPECIAL_E_HIGHEST).BitLength;

        protected static readonly BigInteger One = BigInteger.One;
        protected static readonly BigInteger DefaultPublicExponent = BigInteger.ValueOf(0x10001);
        protected const int DefaultTests = 100;

        protected RsaKeyGenerationParameters parameters;

        public virtual void Init(
            KeyGenerationParameters parameters)
        {
            if (parameters is RsaKeyGenerationParameters)
            {
                this.parameters = (RsaKeyGenerationParameters)parameters;
            }
            else
            {
                this.parameters = new RsaKeyGenerationParameters(
                    DefaultPublicExponent, parameters.Random, parameters.Strength, DefaultTests);
            }
        }

        public virtual AsymmetricCipherKeyPair GenerateKeyPair()
        {
            for (;;)
            {
                //
                // p and q values should have a length of half the strength in bits
                //
                int strength = parameters.Strength;
                int pBitlength = (strength + 1) / 2;
                int qBitlength = strength - pBitlength;
                int mindiffbits = strength / 3;
                int minWeight = strength >> 2;

                BigInteger e = parameters.PublicExponent;

                // TODO Consider generating safe primes for p, q (see DHParametersHelper.generateSafePrimes)
                // (then p-1 and q-1 will not consist of only small factors - see "Pollard's algorithm")

                BigInteger p = ChooseRandomPrime(pBitlength, e);
                BigInteger q, n;

                //
                // generate a modulus of the required length
                //
                for (;;)
                {
                    q = ChooseRandomPrime(qBitlength, e);

                    // p and q should not be too close together (or equal!)
                    BigInteger diff = q.Subtract(p).Abs();
                    if (diff.BitLength < mindiffbits)
                        continue;

                    //
                    // calculate the modulus
                    //
                    n = p.Multiply(q);

                    if (n.BitLength != strength)
                    {
                        //
                        // if we get here our primes aren't big enough, make the largest
                        // of the two p and try again
                        //
                        p = p.Max(q);
                        continue;
                    }

                    /*
	                 * Require a minimum weight of the NAF representation, since low-weight composites may
	                 * be weak against a version of the number-field-sieve for factoring.
	                 *
	                 * See "The number field sieve for integers of low weight", Oliver Schirokauer.
	                 */
                    if (WNafUtilities.GetNafWeight(n) < minWeight)
                    {
                        p = ChooseRandomPrime(pBitlength, e);
                        continue;
                    }

                    break;
                }

                if (p.CompareTo(q) < 0)
                {
                    BigInteger tmp = p;
                    p = q;
                    q = tmp;
                }

                BigInteger pSub1 = p.Subtract(One);
                BigInteger qSub1 = q.Subtract(One);
                //BigInteger phi = pSub1.Multiply(qSub1);
                BigInteger gcd = pSub1.Gcd(qSub1);
                BigInteger lcm = pSub1.Divide(gcd).Multiply(qSub1);

                //
                // calculate the private exponent
                //
                BigInteger d = e.ModInverse(lcm);

                if (d.BitLength <= qBitlength)
                    continue;

                //
                // calculate the CRT factors
                //
                BigInteger dP = d.Remainder(pSub1);
                BigInteger dQ = d.Remainder(qSub1);
                BigInteger qInv = q.ModInverse(p);

                return new AsymmetricCipherKeyPair(
                    new RsaKeyParameters(false, n, e),
                    new RsaPrivateCrtKeyParameters(n, e, d, p, q, dP, dQ, qInv));
            }
        }

        /// <summary>Choose a random prime value for use with RSA</summary>
        /// <param name="bitlength">the bit-length of the returned prime</param>
        /// <param name="e">the RSA public exponent</param>
        /// <returns>a prime p, with (p-1) relatively prime to e</returns>
        protected virtual BigInteger ChooseRandomPrime(int bitlength, BigInteger e)
        {
            bool eIsKnownOddPrime = (e.BitLength <= SPECIAL_E_BITS) && Arrays.Contains(SPECIAL_E_VALUES, e.IntValue);

            for (;;)
            {
                BigInteger p = new BigInteger(bitlength, 1, parameters.Random);

                if (p.Mod(e).Equals(One))
                    continue;

                if (!p.IsProbablePrime(parameters.Certainty, true))
                    continue;

                if (!eIsKnownOddPrime && !e.Gcd(p.Subtract(One)).Equals(One))
                    continue;

                return p;
            }
        }
    }
}