summary refs log tree commit diff
path: root/crypto/src/crypto/engines/TwofishEngine.cs
blob: 0758451e4136b9d0d395c8e8e94615b8a0b94ba6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
using System;

using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Crypto.Utilities;
using Org.BouncyCastle.Utilities;

namespace Org.BouncyCastle.Crypto.Engines
{
    /**
    * A class that provides Twofish encryption operations.
    *
    * This Java implementation is based on the Java reference
    * implementation provided by Bruce Schneier and developed
    * by Raif S. Naffah.
    */
    public sealed class TwofishEngine
		: IBlockCipher
    {
        private static readonly byte[,] P =  {
        {  // p0
            (byte) 0xA9, (byte) 0x67, (byte) 0xB3, (byte) 0xE8,
            (byte) 0x04, (byte) 0xFD, (byte) 0xA3, (byte) 0x76,
            (byte) 0x9A, (byte) 0x92, (byte) 0x80, (byte) 0x78,
            (byte) 0xE4, (byte) 0xDD, (byte) 0xD1, (byte) 0x38,
            (byte) 0x0D, (byte) 0xC6, (byte) 0x35, (byte) 0x98,
            (byte) 0x18, (byte) 0xF7, (byte) 0xEC, (byte) 0x6C,
            (byte) 0x43, (byte) 0x75, (byte) 0x37, (byte) 0x26,
            (byte) 0xFA, (byte) 0x13, (byte) 0x94, (byte) 0x48,
            (byte) 0xF2, (byte) 0xD0, (byte) 0x8B, (byte) 0x30,
            (byte) 0x84, (byte) 0x54, (byte) 0xDF, (byte) 0x23,
            (byte) 0x19, (byte) 0x5B, (byte) 0x3D, (byte) 0x59,
            (byte) 0xF3, (byte) 0xAE, (byte) 0xA2, (byte) 0x82,
            (byte) 0x63, (byte) 0x01, (byte) 0x83, (byte) 0x2E,
            (byte) 0xD9, (byte) 0x51, (byte) 0x9B, (byte) 0x7C,
            (byte) 0xA6, (byte) 0xEB, (byte) 0xA5, (byte) 0xBE,
            (byte) 0x16, (byte) 0x0C, (byte) 0xE3, (byte) 0x61,
            (byte) 0xC0, (byte) 0x8C, (byte) 0x3A, (byte) 0xF5,
            (byte) 0x73, (byte) 0x2C, (byte) 0x25, (byte) 0x0B,
            (byte) 0xBB, (byte) 0x4E, (byte) 0x89, (byte) 0x6B,
            (byte) 0x53, (byte) 0x6A, (byte) 0xB4, (byte) 0xF1,
            (byte) 0xE1, (byte) 0xE6, (byte) 0xBD, (byte) 0x45,
            (byte) 0xE2, (byte) 0xF4, (byte) 0xB6, (byte) 0x66,
            (byte) 0xCC, (byte) 0x95, (byte) 0x03, (byte) 0x56,
            (byte) 0xD4, (byte) 0x1C, (byte) 0x1E, (byte) 0xD7,
            (byte) 0xFB, (byte) 0xC3, (byte) 0x8E, (byte) 0xB5,
            (byte) 0xE9, (byte) 0xCF, (byte) 0xBF, (byte) 0xBA,
            (byte) 0xEA, (byte) 0x77, (byte) 0x39, (byte) 0xAF,
            (byte) 0x33, (byte) 0xC9, (byte) 0x62, (byte) 0x71,
            (byte) 0x81, (byte) 0x79, (byte) 0x09, (byte) 0xAD,
            (byte) 0x24, (byte) 0xCD, (byte) 0xF9, (byte) 0xD8,
            (byte) 0xE5, (byte) 0xC5, (byte) 0xB9, (byte) 0x4D,
            (byte) 0x44, (byte) 0x08, (byte) 0x86, (byte) 0xE7,
            (byte) 0xA1, (byte) 0x1D, (byte) 0xAA, (byte) 0xED,
            (byte) 0x06, (byte) 0x70, (byte) 0xB2, (byte) 0xD2,
            (byte) 0x41, (byte) 0x7B, (byte) 0xA0, (byte) 0x11,
            (byte) 0x31, (byte) 0xC2, (byte) 0x27, (byte) 0x90,
            (byte) 0x20, (byte) 0xF6, (byte) 0x60, (byte) 0xFF,
            (byte) 0x96, (byte) 0x5C, (byte) 0xB1, (byte) 0xAB,
            (byte) 0x9E, (byte) 0x9C, (byte) 0x52, (byte) 0x1B,
            (byte) 0x5F, (byte) 0x93, (byte) 0x0A, (byte) 0xEF,
            (byte) 0x91, (byte) 0x85, (byte) 0x49, (byte) 0xEE,
            (byte) 0x2D, (byte) 0x4F, (byte) 0x8F, (byte) 0x3B,
            (byte) 0x47, (byte) 0x87, (byte) 0x6D, (byte) 0x46,
            (byte) 0xD6, (byte) 0x3E, (byte) 0x69, (byte) 0x64,
            (byte) 0x2A, (byte) 0xCE, (byte) 0xCB, (byte) 0x2F,
            (byte) 0xFC, (byte) 0x97, (byte) 0x05, (byte) 0x7A,
            (byte) 0xAC, (byte) 0x7F, (byte) 0xD5, (byte) 0x1A,
            (byte) 0x4B, (byte) 0x0E, (byte) 0xA7, (byte) 0x5A,
            (byte) 0x28, (byte) 0x14, (byte) 0x3F, (byte) 0x29,
            (byte) 0x88, (byte) 0x3C, (byte) 0x4C, (byte) 0x02,
            (byte) 0xB8, (byte) 0xDA, (byte) 0xB0, (byte) 0x17,
            (byte) 0x55, (byte) 0x1F, (byte) 0x8A, (byte) 0x7D,
            (byte) 0x57, (byte) 0xC7, (byte) 0x8D, (byte) 0x74,
            (byte) 0xB7, (byte) 0xC4, (byte) 0x9F, (byte) 0x72,
            (byte) 0x7E, (byte) 0x15, (byte) 0x22, (byte) 0x12,
            (byte) 0x58, (byte) 0x07, (byte) 0x99, (byte) 0x34,
            (byte) 0x6E, (byte) 0x50, (byte) 0xDE, (byte) 0x68,
            (byte) 0x65, (byte) 0xBC, (byte) 0xDB, (byte) 0xF8,
            (byte) 0xC8, (byte) 0xA8, (byte) 0x2B, (byte) 0x40,
            (byte) 0xDC, (byte) 0xFE, (byte) 0x32, (byte) 0xA4,
            (byte) 0xCA, (byte) 0x10, (byte) 0x21, (byte) 0xF0,
            (byte) 0xD3, (byte) 0x5D, (byte) 0x0F, (byte) 0x00,
            (byte) 0x6F, (byte) 0x9D, (byte) 0x36, (byte) 0x42,
            (byte) 0x4A, (byte) 0x5E, (byte) 0xC1, (byte) 0xE0 },
        {  // p1
            (byte) 0x75, (byte) 0xF3, (byte) 0xC6, (byte) 0xF4,
            (byte) 0xDB, (byte) 0x7B, (byte) 0xFB, (byte) 0xC8,
            (byte) 0x4A, (byte) 0xD3, (byte) 0xE6, (byte) 0x6B,
            (byte) 0x45, (byte) 0x7D, (byte) 0xE8, (byte) 0x4B,
            (byte) 0xD6, (byte) 0x32, (byte) 0xD8, (byte) 0xFD,
            (byte) 0x37, (byte) 0x71, (byte) 0xF1, (byte) 0xE1,
            (byte) 0x30, (byte) 0x0F, (byte) 0xF8, (byte) 0x1B,
            (byte) 0x87, (byte) 0xFA, (byte) 0x06, (byte) 0x3F,
            (byte) 0x5E, (byte) 0xBA, (byte) 0xAE, (byte) 0x5B,
            (byte) 0x8A, (byte) 0x00, (byte) 0xBC, (byte) 0x9D,
            (byte) 0x6D, (byte) 0xC1, (byte) 0xB1, (byte) 0x0E,
            (byte) 0x80, (byte) 0x5D, (byte) 0xD2, (byte) 0xD5,
            (byte) 0xA0, (byte) 0x84, (byte) 0x07, (byte) 0x14,
            (byte) 0xB5, (byte) 0x90, (byte) 0x2C, (byte) 0xA3,
            (byte) 0xB2, (byte) 0x73, (byte) 0x4C, (byte) 0x54,
            (byte) 0x92, (byte) 0x74, (byte) 0x36, (byte) 0x51,
            (byte) 0x38, (byte) 0xB0, (byte) 0xBD, (byte) 0x5A,
            (byte) 0xFC, (byte) 0x60, (byte) 0x62, (byte) 0x96,
            (byte) 0x6C, (byte) 0x42, (byte) 0xF7, (byte) 0x10,
            (byte) 0x7C, (byte) 0x28, (byte) 0x27, (byte) 0x8C,
            (byte) 0x13, (byte) 0x95, (byte) 0x9C, (byte) 0xC7,
            (byte) 0x24, (byte) 0x46, (byte) 0x3B, (byte) 0x70,
            (byte) 0xCA, (byte) 0xE3, (byte) 0x85, (byte) 0xCB,
            (byte) 0x11, (byte) 0xD0, (byte) 0x93, (byte) 0xB8,
            (byte) 0xA6, (byte) 0x83, (byte) 0x20, (byte) 0xFF,
            (byte) 0x9F, (byte) 0x77, (byte) 0xC3, (byte) 0xCC,
            (byte) 0x03, (byte) 0x6F, (byte) 0x08, (byte) 0xBF,
            (byte) 0x40, (byte) 0xE7, (byte) 0x2B, (byte) 0xE2,
            (byte) 0x79, (byte) 0x0C, (byte) 0xAA, (byte) 0x82,
            (byte) 0x41, (byte) 0x3A, (byte) 0xEA, (byte) 0xB9,
            (byte) 0xE4, (byte) 0x9A, (byte) 0xA4, (byte) 0x97,
            (byte) 0x7E, (byte) 0xDA, (byte) 0x7A, (byte) 0x17,
            (byte) 0x66, (byte) 0x94, (byte) 0xA1, (byte) 0x1D,
            (byte) 0x3D, (byte) 0xF0, (byte) 0xDE, (byte) 0xB3,
            (byte) 0x0B, (byte) 0x72, (byte) 0xA7, (byte) 0x1C,
            (byte) 0xEF, (byte) 0xD1, (byte) 0x53, (byte) 0x3E,
            (byte) 0x8F, (byte) 0x33, (byte) 0x26, (byte) 0x5F,
            (byte) 0xEC, (byte) 0x76, (byte) 0x2A, (byte) 0x49,
            (byte) 0x81, (byte) 0x88, (byte) 0xEE, (byte) 0x21,
            (byte) 0xC4, (byte) 0x1A, (byte) 0xEB, (byte) 0xD9,
            (byte) 0xC5, (byte) 0x39, (byte) 0x99, (byte) 0xCD,
            (byte) 0xAD, (byte) 0x31, (byte) 0x8B, (byte) 0x01,
            (byte) 0x18, (byte) 0x23, (byte) 0xDD, (byte) 0x1F,
            (byte) 0x4E, (byte) 0x2D, (byte) 0xF9, (byte) 0x48,
            (byte) 0x4F, (byte) 0xF2, (byte) 0x65, (byte) 0x8E,
            (byte) 0x78, (byte) 0x5C, (byte) 0x58, (byte) 0x19,
            (byte) 0x8D, (byte) 0xE5, (byte) 0x98, (byte) 0x57,
            (byte) 0x67, (byte) 0x7F, (byte) 0x05, (byte) 0x64,
            (byte) 0xAF, (byte) 0x63, (byte) 0xB6, (byte) 0xFE,
            (byte) 0xF5, (byte) 0xB7, (byte) 0x3C, (byte) 0xA5,
            (byte) 0xCE, (byte) 0xE9, (byte) 0x68, (byte) 0x44,
            (byte) 0xE0, (byte) 0x4D, (byte) 0x43, (byte) 0x69,
            (byte) 0x29, (byte) 0x2E, (byte) 0xAC, (byte) 0x15,
            (byte) 0x59, (byte) 0xA8, (byte) 0x0A, (byte) 0x9E,
            (byte) 0x6E, (byte) 0x47, (byte) 0xDF, (byte) 0x34,
            (byte) 0x35, (byte) 0x6A, (byte) 0xCF, (byte) 0xDC,
            (byte) 0x22, (byte) 0xC9, (byte) 0xC0, (byte) 0x9B,
            (byte) 0x89, (byte) 0xD4, (byte) 0xED, (byte) 0xAB,
            (byte) 0x12, (byte) 0xA2, (byte) 0x0D, (byte) 0x52,
            (byte) 0xBB, (byte) 0x02, (byte) 0x2F, (byte) 0xA9,
            (byte) 0xD7, (byte) 0x61, (byte) 0x1E, (byte) 0xB4,
            (byte) 0x50, (byte) 0x04, (byte) 0xF6, (byte) 0xC2,
            (byte) 0x16, (byte) 0x25, (byte) 0x86, (byte) 0x56,
            (byte) 0x55, (byte) 0x09, (byte) 0xBE, (byte) 0x91  }
        };

        /**
        * Define the fixed p0/p1 permutations used in keyed S-box lookup.
        * By changing the following constant definitions, the S-boxes will
        * automatically Get changed in the Twofish engine.
        */
        private const int P_00 = 1;
        private const int P_01 = 0;
        private const int P_02 = 0;
        private const int P_03 = P_01 ^ 1;
        private const int P_04 = 1;

        private const int P_10 = 0;
        private const int P_11 = 0;
        private const int P_12 = 1;
        private const int P_13 = P_11 ^ 1;
        private const int P_14 = 0;

        private const int P_20 = 1;
        private const int P_21 = 1;
        private const int P_22 = 0;
        private const int P_23 = P_21 ^ 1;
        private const int P_24 = 0;

        private const int P_30 = 0;
        private const int P_31 = 1;
        private const int P_32 = 1;
        private const int P_33 = P_31 ^ 1;
        private const int P_34 = 1;

        /* Primitive polynomial for GF(256) */
        private const int GF256_FDBK = 0x169;
        private const int GF256_FDBK_2 = GF256_FDBK / 2;
        private const int GF256_FDBK_4 = GF256_FDBK / 4;

        private const int RS_GF_FDBK = 0x14D; // field generator

        //====================================
        // Useful constants
        //====================================

        private const int    ROUNDS = 16;
        private const int    MAX_ROUNDS = 16;  // bytes = 128 bits
        private const int    BLOCK_SIZE = 16;  // bytes = 128 bits
        private const int    MAX_KEY_BITS = 256;

        private const int    INPUT_WHITEN=0;
        private const int    OUTPUT_WHITEN=INPUT_WHITEN+BLOCK_SIZE/4; // 4
        private const int    ROUND_SUBKEYS=OUTPUT_WHITEN+BLOCK_SIZE/4;// 8

        private const int    TOTAL_SUBKEYS=ROUND_SUBKEYS+2*MAX_ROUNDS;// 40

        private const int    SK_STEP = 0x02020202;
        private const int    SK_BUMP = 0x01010101;
        private const int    SK_ROTL = 9;

        private bool encrypting;

        private int[] gMDS0 = new int[MAX_KEY_BITS];
        private int[] gMDS1 = new int[MAX_KEY_BITS];
        private int[] gMDS2 = new int[MAX_KEY_BITS];
        private int[] gMDS3 = new int[MAX_KEY_BITS];

        /**
        * gSubKeys[] and gSBox[] are eventually used in the
        * encryption and decryption methods.
        */
        private int[] gSubKeys;
        private int[] gSBox;

        private int k64Cnt;

        private byte[] workingKey;

        public TwofishEngine()
        {
            // calculate the MDS matrix
            int[] m1 = new int[2];
            int[] mX = new int[2];
            int[] mY = new int[2];
            int j;

            for (int i=0; i< MAX_KEY_BITS ; i++)
            {
                j = P[0,i] & 0xff;
                m1[0] = j;
                mX[0] = Mx_X(j) & 0xff;
                mY[0] = Mx_Y(j) & 0xff;

                j = P[1,i] & 0xff;
                m1[1] = j;
                mX[1] = Mx_X(j) & 0xff;
                mY[1] = Mx_Y(j) & 0xff;

                gMDS0[i] = m1[P_00]       | mX[P_00] <<  8 |
                            mY[P_00] << 16 | mY[P_00] << 24;

                gMDS1[i] = mY[P_10]       | mY[P_10] <<  8 |
                            mX[P_10] << 16 | m1[P_10] << 24;

                gMDS2[i] = mX[P_20]       | mY[P_20] <<  8 |
                            m1[P_20] << 16 | mY[P_20] << 24;

                gMDS3[i] = mX[P_30]       | m1[P_30] <<  8 |
                            mY[P_30] << 16 | mX[P_30] << 24;
            }
        }

        /**
        * initialise a Twofish cipher.
        *
        * @param forEncryption whether or not we are for encryption.
        * @param parameters the parameters required to set up the cipher.
        * @exception ArgumentException if the parameters argument is
        * inappropriate.
        */
        public void Init(
            bool              forEncryption,
            ICipherParameters parameters)
        {
            if (!(parameters is KeyParameter))
				throw new ArgumentException("invalid parameter passed to Twofish init - " + Platform.GetTypeName(parameters));

			this.encrypting = forEncryption;
			this.workingKey = ((KeyParameter)parameters).GetKey();

            int keyBits = this.workingKey.Length * 8;
            switch (keyBits)
            {
            case 128:
            case 192:
            case 256:
                break;
            default:
                throw new ArgumentException("Key length not 128/192/256 bits.");
            }

            this.k64Cnt = this.workingKey.Length / 8;
			SetKey(this.workingKey);
        }

		public string AlgorithmName
        {
            get { return "Twofish"; }
        }

		public bool IsPartialBlockOkay
		{
			get { return false; }
		}

		public int ProcessBlock(
            byte[]	input,
            int		inOff,
            byte[]	output,
            int		outOff)
        {
            if (workingKey == null)
                throw new InvalidOperationException("Twofish not initialised");

            Check.DataLength(input, inOff, BLOCK_SIZE, "input buffer too short");
            Check.OutputLength(output, outOff, BLOCK_SIZE, "output buffer too short");

            if (encrypting)
            {
                EncryptBlock(input, inOff, output, outOff);
            }
            else
            {
                DecryptBlock(input, inOff, output, outOff);
            }

            return BLOCK_SIZE;
        }

        public void Reset()
        {
            if (this.workingKey != null)
            {
                SetKey(this.workingKey);
            }
        }

        public int GetBlockSize()
        {
            return BLOCK_SIZE;
        }

        //==================================
        // Private Implementation
        //==================================

        private void SetKey(byte[] key)
        {
            int[] k32e = new int[MAX_KEY_BITS/64]; // 4
            int[] k32o = new int[MAX_KEY_BITS/64]; // 4

            int[] sBoxKeys = new int[MAX_KEY_BITS/64]; // 4
            gSubKeys = new int[TOTAL_SUBKEYS];

            /*
             * k64Cnt is the number of 8 byte blocks (64 chunks) that are in the input key.
             * The input key is 16, 24 or 32 bytes, so the range for k64Cnt is 2..4
             */
            for (int i = 0; i < k64Cnt; i++)
            {
                int p = i * 8;

                k32e[i] = (int)Pack.LE_To_UInt32(key, p);
                k32o[i] = (int)Pack.LE_To_UInt32(key, p + 4);

                sBoxKeys[k64Cnt-1-i] = RS_MDS_Encode(k32e[i], k32o[i]);
            }

            int q,A,B;
            for (int i=0; i < TOTAL_SUBKEYS / 2 ; i++)
            {
                q = i*SK_STEP;
                A = F32(q,         k32e);
                B = F32(q+SK_BUMP, k32o);
                B = Integers.RotateLeft(B, 8);
                A += B;
                gSubKeys[i*2] = A;
                A += B;
                gSubKeys[i*2 + 1] = Integers.RotateLeft(A, SK_ROTL);
            }

            /*
            * fully expand the table for speed
            */
            int k0 = sBoxKeys[0];
            int k1 = sBoxKeys[1];
            int k2 = sBoxKeys[2];
            int k3 = sBoxKeys[3];
            int b0, b1, b2, b3;
            gSBox = new int[4*MAX_KEY_BITS];
            for (int i=0; i<MAX_KEY_BITS; i++)
            {
                b0 = b1 = b2 = b3 = i;
                switch (k64Cnt & 3)
                {
                    case 1:
                        gSBox[i*2]       = gMDS0[(P[P_01,b0] & 0xff) ^ M_b0(k0)];
                        gSBox[i*2+1]     = gMDS1[(P[P_11,b1] & 0xff) ^ M_b1(k0)];
                        gSBox[i*2+0x200] = gMDS2[(P[P_21,b2] & 0xff) ^ M_b2(k0)];
                        gSBox[i*2+0x201] = gMDS3[(P[P_31,b3] & 0xff) ^ M_b3(k0)];
                    break;
                    case 0: // 256 bits of key
                        b0 = (P[P_04,b0] & 0xff) ^ M_b0(k3);
                        b1 = (P[P_14,b1] & 0xff) ^ M_b1(k3);
                        b2 = (P[P_24,b2] & 0xff) ^ M_b2(k3);
                        b3 = (P[P_34,b3] & 0xff) ^ M_b3(k3);
                        // fall through, having pre-processed b[0]..b[3] with k32[3]
                        goto case 3;
                    case 3: // 192 bits of key
                        b0 = (P[P_03,b0] & 0xff) ^ M_b0(k2);
                        b1 = (P[P_13,b1] & 0xff) ^ M_b1(k2);
                        b2 = (P[P_23,b2] & 0xff) ^ M_b2(k2);
                        b3 = (P[P_33,b3] & 0xff) ^ M_b3(k2);
                        // fall through, having pre-processed b[0]..b[3] with k32[2]
                        goto case 2;
                    case 2: // 128 bits of key
                        gSBox[i * 2] = gMDS0[(P[P_01, (P[P_02, b0] & 0xff) ^ M_b0(k1)] & 0xff) ^ M_b0(k0)];
                        gSBox[i*2+1] = gMDS1[(P[P_11,(P[P_12,b1] & 0xff) ^ M_b1(k1)] & 0xff) ^ M_b1(k0)];
                        gSBox[i*2+0x200] = gMDS2[(P[P_21,(P[P_22,b2] & 0xff) ^ M_b2(k1)] & 0xff) ^ M_b2(k0)];
                        gSBox[i * 2 + 0x201] = gMDS3[(P[P_31, (P[P_32, b3] & 0xff) ^ M_b3(k1)] & 0xff) ^ M_b3(k0)];
                        break;
                }
            }

            /*
            * the function exits having setup the gSBox with the
            * input key material.
            */
        }

        /**
        * Encrypt the given input starting at the given offset and place
        * the result in the provided buffer starting at the given offset.
        * The input will be an exact multiple of our blocksize.
        *
        * encryptBlock uses the pre-calculated gSBox[] and subKey[]
        * arrays.
        */
        private void EncryptBlock(
            byte[] src,
            int srcIndex,
            byte[] dst,
            int dstIndex)
        {
            int x0 = (int)Pack.LE_To_UInt32(src, srcIndex) ^ gSubKeys[INPUT_WHITEN];
            int x1 = (int)Pack.LE_To_UInt32(src, srcIndex + 4) ^ gSubKeys[INPUT_WHITEN + 1];
            int x2 = (int)Pack.LE_To_UInt32(src, srcIndex + 8) ^ gSubKeys[INPUT_WHITEN + 2];
            int x3 = (int)Pack.LE_To_UInt32(src, srcIndex + 12) ^ gSubKeys[INPUT_WHITEN + 3];

            int k = ROUND_SUBKEYS;
            int t0, t1;
            for (int r = 0; r < ROUNDS; r +=2)
            {
                t0 = Fe32_0(x0);
                t1 = Fe32_3(x1);
                x2 ^= t0 + t1 + gSubKeys[k++];
                x2 = Integers.RotateRight(x2, 1);
                x3 = Integers.RotateLeft(x3, 1) ^ (t0 + 2*t1 + gSubKeys[k++]);

                t0 = Fe32_0(x2);
                t1 = Fe32_3(x3);
                x0 ^= t0 + t1 + gSubKeys[k++];
                x0 = Integers.RotateRight(x0, 1);
                x1 = Integers.RotateLeft(x1, 1) ^ (t0 + 2*t1 + gSubKeys[k++]);
            }

            Pack.UInt32_To_LE((uint)(x2 ^ gSubKeys[OUTPUT_WHITEN]), dst, dstIndex);
            Pack.UInt32_To_LE((uint)(x3 ^ gSubKeys[OUTPUT_WHITEN + 1]), dst, dstIndex + 4);
            Pack.UInt32_To_LE((uint)(x0 ^ gSubKeys[OUTPUT_WHITEN + 2]), dst, dstIndex + 8);
            Pack.UInt32_To_LE((uint)(x1 ^ gSubKeys[OUTPUT_WHITEN + 3]), dst, dstIndex + 12);
        }

        /**
        * Decrypt the given input starting at the given offset and place
        * the result in the provided buffer starting at the given offset.
        * The input will be an exact multiple of our blocksize.
        */
        private void DecryptBlock(
            byte[] src,
            int srcIndex,
            byte[] dst,
            int dstIndex)
        {
            int x2 = (int)Pack.LE_To_UInt32(src, srcIndex) ^ gSubKeys[OUTPUT_WHITEN];
            int x3 = (int)Pack.LE_To_UInt32(src, srcIndex + 4) ^ gSubKeys[OUTPUT_WHITEN + 1];
            int x0 = (int)Pack.LE_To_UInt32(src, srcIndex + 8) ^ gSubKeys[OUTPUT_WHITEN + 2];
            int x1 = (int)Pack.LE_To_UInt32(src, srcIndex + 12) ^ gSubKeys[OUTPUT_WHITEN + 3];

            int k = ROUND_SUBKEYS + 2 * ROUNDS -1 ;
            int t0, t1;
            for (int r = 0; r< ROUNDS ; r +=2)
            {
                t0 = Fe32_0(x2);
                t1 = Fe32_3(x3);
                x1 ^= t0 + 2*t1 + gSubKeys[k--];
                x0 = Integers.RotateLeft(x0, 1) ^ (t0 + t1 + gSubKeys[k--]);
                x1 = Integers.RotateRight(x1, 1);

                t0 = Fe32_0(x0);
                t1 = Fe32_3(x1);
                x3 ^= t0 + 2*t1 + gSubKeys[k--];
                x2 = Integers.RotateLeft(x2, 1) ^ (t0 + t1 + gSubKeys[k--]);
                x3 = Integers.RotateRight(x3, 1);
            }

            Pack.UInt32_To_LE((uint)(x0 ^ gSubKeys[INPUT_WHITEN]), dst, dstIndex);
            Pack.UInt32_To_LE((uint)(x1 ^ gSubKeys[INPUT_WHITEN + 1]), dst, dstIndex + 4);
            Pack.UInt32_To_LE((uint)(x2 ^ gSubKeys[INPUT_WHITEN + 2]), dst, dstIndex + 8);
            Pack.UInt32_To_LE((uint)(x3 ^ gSubKeys[INPUT_WHITEN + 3]), dst, dstIndex + 12);
        }

        /*
        * TODO:  This can be optimised and made cleaner by combining
        * the functionality in this function and applying it appropriately
        * to the creation of the subkeys during key setup.
        */
        private  int F32(int x, int[] k32)
        {
            int b0 = M_b0(x);
            int b1 = M_b1(x);
            int b2 = M_b2(x);
            int b3 = M_b3(x);
            int k0 = k32[0];
            int k1 = k32[1];
            int k2 = k32[2];
            int k3 = k32[3];

            int result = 0;
            switch (k64Cnt & 3)
            {
                case 1:
                    result = gMDS0[(P[P_01,b0] & 0xff) ^ M_b0(k0)] ^
                            gMDS1[(P[P_11,b1] & 0xff) ^ M_b1(k0)] ^
                            gMDS2[(P[P_21,b2] & 0xff) ^ M_b2(k0)] ^
                            gMDS3[(P[P_31,b3] & 0xff) ^ M_b3(k0)];
                    break;
                case 0: /* 256 bits of key */
                    b0 = (P[P_04,b0] & 0xff) ^ M_b0(k3);
                    b1 = (P[P_14,b1] & 0xff) ^ M_b1(k3);
                    b2 = (P[P_24,b2] & 0xff) ^ M_b2(k3);
                    b3 = (P[P_34,b3] & 0xff) ^ M_b3(k3);
                    goto case 3;
                case 3:
                    b0 = (P[P_03,b0] & 0xff) ^ M_b0(k2);
                    b1 = (P[P_13,b1] & 0xff) ^ M_b1(k2);
                    b2 = (P[P_23,b2] & 0xff) ^ M_b2(k2);
                    b3 = (P[P_33,b3] & 0xff) ^ M_b3(k2);
                    goto case 2;
                case 2:
                    result =
                    gMDS0[(P[P_01,(P[P_02,b0]&0xff)^M_b0(k1)]&0xff)^M_b0(k0)] ^
                    gMDS1[(P[P_11,(P[P_12,b1]&0xff)^M_b1(k1)]&0xff)^M_b1(k0)] ^
                    gMDS2[(P[P_21,(P[P_22,b2]&0xff)^M_b2(k1)]&0xff)^M_b2(k0)] ^
                    gMDS3[(P[P_31,(P[P_32,b3]&0xff)^M_b3(k1)]&0xff)^M_b3(k0)];
                break;
            }
            return result;
        }

        /**
        * Use (12, 8) Reed-Solomon code over GF(256) to produce
        * a key S-box 32-bit entity from 2 key material 32-bit
        * entities.
        *
        * @param    k0 first 32-bit entity
        * @param    k1 second 32-bit entity
        * @return     Remainder polynomial Generated using RS code
        */
        private  int RS_MDS_Encode(int k0, int k1)
        {
            int r = k1;
            for (int i = 0 ; i < 4 ; i++) // shift 1 byte at a time
            {
                r = RS_rem(r);
            }
            r ^= k0;
            for (int i=0 ; i < 4 ; i++)
            {
                r = RS_rem(r);
            }

            return r;
        }

        /**
        * Reed-Solomon code parameters: (12,8) reversible code:
		* <p>
        * <pre>
        * G(x) = x^4 + (a+1/a)x^3 + ax^2 + (a+1/a)x + 1
        * </pre>
        * where a = primitive root of field generator 0x14D
		* </p>
        */
        private  int RS_rem(int x)
        {
            int b = (int) (((uint)x >> 24) & 0xff);
            int g2 = ((b << 1) ^
                    ((b & 0x80) != 0 ? RS_GF_FDBK : 0)) & 0xff;
            int g3 = ( (int)((uint)b >> 1) ^
                    ((b & 0x01) != 0 ? (int)((uint)RS_GF_FDBK >> 1) : 0)) ^ g2 ;
            return ((x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b);
        }

        private  int LFSR1(int x)
        {
            return (x >> 1) ^
                    (((x & 0x01) != 0) ? GF256_FDBK_2 : 0);
        }

        private  int LFSR2(int x)
        {
            return (x >> 2) ^
                    (((x & 0x02) != 0) ? GF256_FDBK_2 : 0) ^
                    (((x & 0x01) != 0) ? GF256_FDBK_4 : 0);
        }

        private  int Mx_X(int x)
        {
            return x ^ LFSR2(x);
        } // 5B

        private  int Mx_Y(int x)
        {
            return x ^ LFSR1(x) ^ LFSR2(x);
        } // EF

        private  int M_b0(int x)
        {
            return x & 0xff;
        }

        private  int M_b1(int x)
        {
            return (int)((uint)x >> 8) & 0xff;
        }

        private  int M_b2(int x)
        {
            return (int)((uint)x >> 16) & 0xff;
        }

        private  int M_b3(int x)
        {
            return (int)((uint)x >> 24) & 0xff;
        }

        private  int Fe32_0(int x)
        {
            return gSBox[ 0x000 + 2*(x & 0xff) ] ^
                gSBox[ 0x001 + 2*((int)((uint)x >> 8) & 0xff) ] ^
                gSBox[ 0x200 + 2*((int)((uint)x >> 16) & 0xff) ] ^
                gSBox[ 0x201 + 2*((int)((uint)x >> 24) & 0xff) ];
        }

        private  int Fe32_3(int x)
        {
            return gSBox[ 0x000 + 2*((int)((uint)x >> 24) & 0xff) ] ^
                gSBox[ 0x001 + 2*(x & 0xff) ] ^
                gSBox[ 0x200 + 2*((int)((uint)x >> 8) & 0xff) ] ^
                gSBox[ 0x201 + 2*((int)((uint)x >> 16) & 0xff) ];
        }
    }
}