1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
using System;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Crypto.Utilities;
namespace Org.BouncyCastle.Crypto.Engines
{
/**
* Tnepres is a 128-bit 32-round block cipher with variable key lengths,
* including 128, 192 and 256 bit keys conjectured to be at least as
* secure as three-key triple-DES.
* <p>
* Tnepres is based on Serpent which was designed by Ross Anderson, Eli Biham and Lars Knudsen as a
* candidate algorithm for the NIST AES Quest. Unfortunately there was an endianness issue
* with test vectors in the AES submission and the resulting confusion lead to the Tnepres cipher
* as well, which is a byte swapped version of Serpent.
* </p>
* <p>
* For full details see <a href="http://www.cl.cam.ac.uk/~rja14/serpent.html">The Serpent home page</a>
* </p>
*/
public sealed class TnepresEngine
: SerpentEngineBase
{
public override string AlgorithmName
{
get { return "Tnepres"; }
}
/**
* Expand a user-supplied key material into a session key.
*
* @param key The user-key bytes (multiples of 4) to use.
* @exception ArgumentException
*/
protected override int[] MakeWorkingKey(byte[] key)
{
//
// pad key to 256 bits
//
int[] kPad = new int[16];
int off = 0;
int length = 0;
for (off = key.Length - 4; off > 0; off -= 4)
{
kPad[length++] = (int)Pack.BE_To_UInt32(key, off);
}
if (off == 0)
{
kPad[length++] = (int)Pack.BE_To_UInt32(key, 0);
if (length < 8)
{
kPad[length] = 1;
}
}
else
{
throw new ArgumentException("key must be a multiple of 4 bytes");
}
//
// expand the padded key up to 33 x 128 bits of key material
//
int amount = (ROUNDS + 1) * 4;
int[] w = new int[amount];
//
// compute w0 to w7 from w-8 to w-1
//
for (int i = 8; i < 16; i++)
{
kPad[i] = RotateLeft(kPad[i - 8] ^ kPad[i - 5] ^ kPad[i - 3] ^ kPad[i - 1] ^ PHI ^ (i - 8), 11);
}
Array.Copy(kPad, 8, w, 0, 8);
//
// compute w8 to w136
//
for (int i = 8; i < amount; i++)
{
w[i] = RotateLeft(w[i - 8] ^ w[i - 5] ^ w[i - 3] ^ w[i - 1] ^ PHI ^ i, 11);
}
//
// create the working keys by processing w with the Sbox and IP
//
Sb3(w[0], w[1], w[2], w[3]);
w[0] = X0; w[1] = X1; w[2] = X2; w[3] = X3;
Sb2(w[4], w[5], w[6], w[7]);
w[4] = X0; w[5] = X1; w[6] = X2; w[7] = X3;
Sb1(w[8], w[9], w[10], w[11]);
w[8] = X0; w[9] = X1; w[10] = X2; w[11] = X3;
Sb0(w[12], w[13], w[14], w[15]);
w[12] = X0; w[13] = X1; w[14] = X2; w[15] = X3;
Sb7(w[16], w[17], w[18], w[19]);
w[16] = X0; w[17] = X1; w[18] = X2; w[19] = X3;
Sb6(w[20], w[21], w[22], w[23]);
w[20] = X0; w[21] = X1; w[22] = X2; w[23] = X3;
Sb5(w[24], w[25], w[26], w[27]);
w[24] = X0; w[25] = X1; w[26] = X2; w[27] = X3;
Sb4(w[28], w[29], w[30], w[31]);
w[28] = X0; w[29] = X1; w[30] = X2; w[31] = X3;
Sb3(w[32], w[33], w[34], w[35]);
w[32] = X0; w[33] = X1; w[34] = X2; w[35] = X3;
Sb2(w[36], w[37], w[38], w[39]);
w[36] = X0; w[37] = X1; w[38] = X2; w[39] = X3;
Sb1(w[40], w[41], w[42], w[43]);
w[40] = X0; w[41] = X1; w[42] = X2; w[43] = X3;
Sb0(w[44], w[45], w[46], w[47]);
w[44] = X0; w[45] = X1; w[46] = X2; w[47] = X3;
Sb7(w[48], w[49], w[50], w[51]);
w[48] = X0; w[49] = X1; w[50] = X2; w[51] = X3;
Sb6(w[52], w[53], w[54], w[55]);
w[52] = X0; w[53] = X1; w[54] = X2; w[55] = X3;
Sb5(w[56], w[57], w[58], w[59]);
w[56] = X0; w[57] = X1; w[58] = X2; w[59] = X3;
Sb4(w[60], w[61], w[62], w[63]);
w[60] = X0; w[61] = X1; w[62] = X2; w[63] = X3;
Sb3(w[64], w[65], w[66], w[67]);
w[64] = X0; w[65] = X1; w[66] = X2; w[67] = X3;
Sb2(w[68], w[69], w[70], w[71]);
w[68] = X0; w[69] = X1; w[70] = X2; w[71] = X3;
Sb1(w[72], w[73], w[74], w[75]);
w[72] = X0; w[73] = X1; w[74] = X2; w[75] = X3;
Sb0(w[76], w[77], w[78], w[79]);
w[76] = X0; w[77] = X1; w[78] = X2; w[79] = X3;
Sb7(w[80], w[81], w[82], w[83]);
w[80] = X0; w[81] = X1; w[82] = X2; w[83] = X3;
Sb6(w[84], w[85], w[86], w[87]);
w[84] = X0; w[85] = X1; w[86] = X2; w[87] = X3;
Sb5(w[88], w[89], w[90], w[91]);
w[88] = X0; w[89] = X1; w[90] = X2; w[91] = X3;
Sb4(w[92], w[93], w[94], w[95]);
w[92] = X0; w[93] = X1; w[94] = X2; w[95] = X3;
Sb3(w[96], w[97], w[98], w[99]);
w[96] = X0; w[97] = X1; w[98] = X2; w[99] = X3;
Sb2(w[100], w[101], w[102], w[103]);
w[100] = X0; w[101] = X1; w[102] = X2; w[103] = X3;
Sb1(w[104], w[105], w[106], w[107]);
w[104] = X0; w[105] = X1; w[106] = X2; w[107] = X3;
Sb0(w[108], w[109], w[110], w[111]);
w[108] = X0; w[109] = X1; w[110] = X2; w[111] = X3;
Sb7(w[112], w[113], w[114], w[115]);
w[112] = X0; w[113] = X1; w[114] = X2; w[115] = X3;
Sb6(w[116], w[117], w[118], w[119]);
w[116] = X0; w[117] = X1; w[118] = X2; w[119] = X3;
Sb5(w[120], w[121], w[122], w[123]);
w[120] = X0; w[121] = X1; w[122] = X2; w[123] = X3;
Sb4(w[124], w[125], w[126], w[127]);
w[124] = X0; w[125] = X1; w[126] = X2; w[127] = X3;
Sb3(w[128], w[129], w[130], w[131]);
w[128] = X0; w[129] = X1; w[130] = X2; w[131] = X3;
return w;
}
/**
* Encrypt one block of plaintext.
*
* @param input the array containing the input data.
* @param inOff offset into the in array the data starts at.
* @param output the array the output data will be copied into.
* @param outOff the offset into the out array the output will start at.
*/
protected override void EncryptBlock(byte[] input, int inOff, byte[] output, int outOff)
{
X3 = (int)Pack.BE_To_UInt32(input, inOff);
X2 = (int)Pack.BE_To_UInt32(input, inOff + 4);
X1 = (int)Pack.BE_To_UInt32(input, inOff + 8);
X0 = (int)Pack.BE_To_UInt32(input, inOff + 12);
Sb0(wKey[0] ^ X0, wKey[1] ^ X1, wKey[2] ^ X2, wKey[3] ^ X3); LT();
Sb1(wKey[4] ^ X0, wKey[5] ^ X1, wKey[6] ^ X2, wKey[7] ^ X3); LT();
Sb2(wKey[8] ^ X0, wKey[9] ^ X1, wKey[10] ^ X2, wKey[11] ^ X3); LT();
Sb3(wKey[12] ^ X0, wKey[13] ^ X1, wKey[14] ^ X2, wKey[15] ^ X3); LT();
Sb4(wKey[16] ^ X0, wKey[17] ^ X1, wKey[18] ^ X2, wKey[19] ^ X3); LT();
Sb5(wKey[20] ^ X0, wKey[21] ^ X1, wKey[22] ^ X2, wKey[23] ^ X3); LT();
Sb6(wKey[24] ^ X0, wKey[25] ^ X1, wKey[26] ^ X2, wKey[27] ^ X3); LT();
Sb7(wKey[28] ^ X0, wKey[29] ^ X1, wKey[30] ^ X2, wKey[31] ^ X3); LT();
Sb0(wKey[32] ^ X0, wKey[33] ^ X1, wKey[34] ^ X2, wKey[35] ^ X3); LT();
Sb1(wKey[36] ^ X0, wKey[37] ^ X1, wKey[38] ^ X2, wKey[39] ^ X3); LT();
Sb2(wKey[40] ^ X0, wKey[41] ^ X1, wKey[42] ^ X2, wKey[43] ^ X3); LT();
Sb3(wKey[44] ^ X0, wKey[45] ^ X1, wKey[46] ^ X2, wKey[47] ^ X3); LT();
Sb4(wKey[48] ^ X0, wKey[49] ^ X1, wKey[50] ^ X2, wKey[51] ^ X3); LT();
Sb5(wKey[52] ^ X0, wKey[53] ^ X1, wKey[54] ^ X2, wKey[55] ^ X3); LT();
Sb6(wKey[56] ^ X0, wKey[57] ^ X1, wKey[58] ^ X2, wKey[59] ^ X3); LT();
Sb7(wKey[60] ^ X0, wKey[61] ^ X1, wKey[62] ^ X2, wKey[63] ^ X3); LT();
Sb0(wKey[64] ^ X0, wKey[65] ^ X1, wKey[66] ^ X2, wKey[67] ^ X3); LT();
Sb1(wKey[68] ^ X0, wKey[69] ^ X1, wKey[70] ^ X2, wKey[71] ^ X3); LT();
Sb2(wKey[72] ^ X0, wKey[73] ^ X1, wKey[74] ^ X2, wKey[75] ^ X3); LT();
Sb3(wKey[76] ^ X0, wKey[77] ^ X1, wKey[78] ^ X2, wKey[79] ^ X3); LT();
Sb4(wKey[80] ^ X0, wKey[81] ^ X1, wKey[82] ^ X2, wKey[83] ^ X3); LT();
Sb5(wKey[84] ^ X0, wKey[85] ^ X1, wKey[86] ^ X2, wKey[87] ^ X3); LT();
Sb6(wKey[88] ^ X0, wKey[89] ^ X1, wKey[90] ^ X2, wKey[91] ^ X3); LT();
Sb7(wKey[92] ^ X0, wKey[93] ^ X1, wKey[94] ^ X2, wKey[95] ^ X3); LT();
Sb0(wKey[96] ^ X0, wKey[97] ^ X1, wKey[98] ^ X2, wKey[99] ^ X3); LT();
Sb1(wKey[100] ^ X0, wKey[101] ^ X1, wKey[102] ^ X2, wKey[103] ^ X3); LT();
Sb2(wKey[104] ^ X0, wKey[105] ^ X1, wKey[106] ^ X2, wKey[107] ^ X3); LT();
Sb3(wKey[108] ^ X0, wKey[109] ^ X1, wKey[110] ^ X2, wKey[111] ^ X3); LT();
Sb4(wKey[112] ^ X0, wKey[113] ^ X1, wKey[114] ^ X2, wKey[115] ^ X3); LT();
Sb5(wKey[116] ^ X0, wKey[117] ^ X1, wKey[118] ^ X2, wKey[119] ^ X3); LT();
Sb6(wKey[120] ^ X0, wKey[121] ^ X1, wKey[122] ^ X2, wKey[123] ^ X3); LT();
Sb7(wKey[124] ^ X0, wKey[125] ^ X1, wKey[126] ^ X2, wKey[127] ^ X3);
Pack.UInt32_To_BE((uint)(wKey[131] ^ X3), output, outOff);
Pack.UInt32_To_BE((uint)(wKey[130] ^ X2), output, outOff + 4);
Pack.UInt32_To_BE((uint)(wKey[129] ^ X1), output, outOff + 8);
Pack.UInt32_To_BE((uint)(wKey[128] ^ X0), output, outOff + 12);
}
/**
* Decrypt one block of ciphertext.
*
* @param input the array containing the input data.
* @param inOff offset into the in array the data starts at.
* @param output the array the output data will be copied into.
* @param outOff the offset into the out array the output will start at.
*/
protected override void DecryptBlock(byte[] input, int inOff, byte[] output, int outOff)
{
X3 = wKey[131] ^ (int)Pack.BE_To_UInt32(input, inOff);
X2 = wKey[130] ^ (int)Pack.BE_To_UInt32(input, inOff + 4);
X1 = wKey[129] ^ (int)Pack.BE_To_UInt32(input, inOff + 8);
X0 = wKey[128] ^ (int)Pack.BE_To_UInt32(input, inOff + 12);
Ib7(X0, X1, X2, X3);
X0 ^= wKey[124]; X1 ^= wKey[125]; X2 ^= wKey[126]; X3 ^= wKey[127];
InverseLT(); Ib6(X0, X1, X2, X3);
X0 ^= wKey[120]; X1 ^= wKey[121]; X2 ^= wKey[122]; X3 ^= wKey[123];
InverseLT(); Ib5(X0, X1, X2, X3);
X0 ^= wKey[116]; X1 ^= wKey[117]; X2 ^= wKey[118]; X3 ^= wKey[119];
InverseLT(); Ib4(X0, X1, X2, X3);
X0 ^= wKey[112]; X1 ^= wKey[113]; X2 ^= wKey[114]; X3 ^= wKey[115];
InverseLT(); Ib3(X0, X1, X2, X3);
X0 ^= wKey[108]; X1 ^= wKey[109]; X2 ^= wKey[110]; X3 ^= wKey[111];
InverseLT(); Ib2(X0, X1, X2, X3);
X0 ^= wKey[104]; X1 ^= wKey[105]; X2 ^= wKey[106]; X3 ^= wKey[107];
InverseLT(); Ib1(X0, X1, X2, X3);
X0 ^= wKey[100]; X1 ^= wKey[101]; X2 ^= wKey[102]; X3 ^= wKey[103];
InverseLT(); Ib0(X0, X1, X2, X3);
X0 ^= wKey[96]; X1 ^= wKey[97]; X2 ^= wKey[98]; X3 ^= wKey[99];
InverseLT(); Ib7(X0, X1, X2, X3);
X0 ^= wKey[92]; X1 ^= wKey[93]; X2 ^= wKey[94]; X3 ^= wKey[95];
InverseLT(); Ib6(X0, X1, X2, X3);
X0 ^= wKey[88]; X1 ^= wKey[89]; X2 ^= wKey[90]; X3 ^= wKey[91];
InverseLT(); Ib5(X0, X1, X2, X3);
X0 ^= wKey[84]; X1 ^= wKey[85]; X2 ^= wKey[86]; X3 ^= wKey[87];
InverseLT(); Ib4(X0, X1, X2, X3);
X0 ^= wKey[80]; X1 ^= wKey[81]; X2 ^= wKey[82]; X3 ^= wKey[83];
InverseLT(); Ib3(X0, X1, X2, X3);
X0 ^= wKey[76]; X1 ^= wKey[77]; X2 ^= wKey[78]; X3 ^= wKey[79];
InverseLT(); Ib2(X0, X1, X2, X3);
X0 ^= wKey[72]; X1 ^= wKey[73]; X2 ^= wKey[74]; X3 ^= wKey[75];
InverseLT(); Ib1(X0, X1, X2, X3);
X0 ^= wKey[68]; X1 ^= wKey[69]; X2 ^= wKey[70]; X3 ^= wKey[71];
InverseLT(); Ib0(X0, X1, X2, X3);
X0 ^= wKey[64]; X1 ^= wKey[65]; X2 ^= wKey[66]; X3 ^= wKey[67];
InverseLT(); Ib7(X0, X1, X2, X3);
X0 ^= wKey[60]; X1 ^= wKey[61]; X2 ^= wKey[62]; X3 ^= wKey[63];
InverseLT(); Ib6(X0, X1, X2, X3);
X0 ^= wKey[56]; X1 ^= wKey[57]; X2 ^= wKey[58]; X3 ^= wKey[59];
InverseLT(); Ib5(X0, X1, X2, X3);
X0 ^= wKey[52]; X1 ^= wKey[53]; X2 ^= wKey[54]; X3 ^= wKey[55];
InverseLT(); Ib4(X0, X1, X2, X3);
X0 ^= wKey[48]; X1 ^= wKey[49]; X2 ^= wKey[50]; X3 ^= wKey[51];
InverseLT(); Ib3(X0, X1, X2, X3);
X0 ^= wKey[44]; X1 ^= wKey[45]; X2 ^= wKey[46]; X3 ^= wKey[47];
InverseLT(); Ib2(X0, X1, X2, X3);
X0 ^= wKey[40]; X1 ^= wKey[41]; X2 ^= wKey[42]; X3 ^= wKey[43];
InverseLT(); Ib1(X0, X1, X2, X3);
X0 ^= wKey[36]; X1 ^= wKey[37]; X2 ^= wKey[38]; X3 ^= wKey[39];
InverseLT(); Ib0(X0, X1, X2, X3);
X0 ^= wKey[32]; X1 ^= wKey[33]; X2 ^= wKey[34]; X3 ^= wKey[35];
InverseLT(); Ib7(X0, X1, X2, X3);
X0 ^= wKey[28]; X1 ^= wKey[29]; X2 ^= wKey[30]; X3 ^= wKey[31];
InverseLT(); Ib6(X0, X1, X2, X3);
X0 ^= wKey[24]; X1 ^= wKey[25]; X2 ^= wKey[26]; X3 ^= wKey[27];
InverseLT(); Ib5(X0, X1, X2, X3);
X0 ^= wKey[20]; X1 ^= wKey[21]; X2 ^= wKey[22]; X3 ^= wKey[23];
InverseLT(); Ib4(X0, X1, X2, X3);
X0 ^= wKey[16]; X1 ^= wKey[17]; X2 ^= wKey[18]; X3 ^= wKey[19];
InverseLT(); Ib3(X0, X1, X2, X3);
X0 ^= wKey[12]; X1 ^= wKey[13]; X2 ^= wKey[14]; X3 ^= wKey[15];
InverseLT(); Ib2(X0, X1, X2, X3);
X0 ^= wKey[8]; X1 ^= wKey[9]; X2 ^= wKey[10]; X3 ^= wKey[11];
InverseLT(); Ib1(X0, X1, X2, X3);
X0 ^= wKey[4]; X1 ^= wKey[5]; X2 ^= wKey[6]; X3 ^= wKey[7];
InverseLT(); Ib0(X0, X1, X2, X3);
Pack.UInt32_To_BE((uint)(X3 ^ wKey[3]), output, outOff);
Pack.UInt32_To_BE((uint)(X2 ^ wKey[2]), output, outOff + 4);
Pack.UInt32_To_BE((uint)(X1 ^ wKey[1]), output, outOff + 8);
Pack.UInt32_To_BE((uint)(X0 ^ wKey[0]), output, outOff + 12);
}
}
}
|