1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
using System;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Math.EC;
using Org.BouncyCastle.Security;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Digests;
using Org.BouncyCastle.Crypto.Parameters;
namespace Org.BouncyCastle.Crypto.Signers
{
/**
* EC-DSA as described in X9.62
*/
public class ECDsaSigner
: IDsa
{
private ECKeyParameters key;
private SecureRandom random;
public string AlgorithmName
{
get { return "ECDSA"; }
}
public void Init(
bool forSigning,
ICipherParameters parameters)
{
if (forSigning)
{
if (parameters is ParametersWithRandom)
{
ParametersWithRandom rParam = (ParametersWithRandom) parameters;
this.random = rParam.Random;
parameters = rParam.Parameters;
}
else
{
this.random = new SecureRandom();
}
if (!(parameters is ECPrivateKeyParameters))
throw new InvalidKeyException("EC private key required for signing");
this.key = (ECPrivateKeyParameters) parameters;
}
else
{
if (!(parameters is ECPublicKeyParameters))
throw new InvalidKeyException("EC public key required for verification");
this.key = (ECPublicKeyParameters) parameters;
}
}
// 5.3 pg 28
/**
* Generate a signature for the given message using the key we were
* initialised with. For conventional DSA the message should be a SHA-1
* hash of the message of interest.
*
* @param message the message that will be verified later.
*/
public BigInteger[] GenerateSignature(
byte[] message)
{
BigInteger n = key.Parameters.N;
BigInteger e = calculateE(n, message);
BigInteger r = null;
BigInteger s = null;
// 5.3.2
do // Generate s
{
BigInteger k = null;
do // Generate r
{
do
{
k = new BigInteger(n.BitLength, random);
}
while (k.SignValue == 0 || k.CompareTo(n) >= 0);
ECPoint p = key.Parameters.G.Multiply(k);
// 5.3.3
BigInteger x = p.X.ToBigInteger();
r = x.Mod(n);
}
while (r.SignValue == 0);
BigInteger d = ((ECPrivateKeyParameters)key).D;
s = k.ModInverse(n).Multiply(e.Add(d.Multiply(r).Mod(n))).Mod(n);
}
while (s.SignValue == 0);
return new BigInteger[]{ r, s };
}
// 5.4 pg 29
/**
* return true if the value r and s represent a DSA signature for
* the passed in message (for standard DSA the message should be
* a SHA-1 hash of the real message to be verified).
*/
public bool VerifySignature(
byte[] message,
BigInteger r,
BigInteger s)
{
BigInteger n = key.Parameters.N;
// r and s should both in the range [1,n-1]
if (r.SignValue < 1 || s.SignValue < 1
|| r.CompareTo(n) >= 0 || s.CompareTo(n) >= 0)
{
return false;
}
BigInteger e = calculateE(n, message);
BigInteger c = s.ModInverse(n);
BigInteger u1 = e.Multiply(c).Mod(n);
BigInteger u2 = r.Multiply(c).Mod(n);
ECPoint G = key.Parameters.G;
ECPoint Q = ((ECPublicKeyParameters) key).Q;
ECPoint point = ECAlgorithms.SumOfTwoMultiplies(G, u1, Q, u2);
BigInteger v = point.X.ToBigInteger().Mod(n);
return v.Equals(r);
}
private BigInteger calculateE(
BigInteger n,
byte[] message)
{
int messageBitLength = message.Length * 8;
BigInteger trunc = new BigInteger(1, message);
if (n.BitLength < messageBitLength)
{
trunc = trunc.ShiftRight(messageBitLength - n.BitLength);
}
return trunc;
}
}
}
|