using System; using System.Threading; using Org.BouncyCastle.Crypto; using Org.BouncyCastle.Crypto.Digests; using Org.BouncyCastle.Crypto.Prng; using Org.BouncyCastle.Utilities; namespace Org.BouncyCastle.Security { public class SecureRandom : Random { private static long counter = Times.NanoTime(); #if NETCF_1_0 || PORTABLE private static object counterLock = new object(); private static long NextCounterValue() { lock (counterLock) { return ++counter; } } private static readonly SecureRandom[] master = { null }; private static SecureRandom Master { get { lock (master) { if (master[0] == null) { SecureRandom sr = master[0] = GetInstance("SHA256PRNG", false); // Even though Ticks has at most 8 or 14 bits of entropy, there's no harm in adding it. sr.SetSeed(DateTime.Now.Ticks); // 32 will be enough when ThreadedSeedGenerator is fixed. Until then, ThreadedSeedGenerator returns low // entropy, and this is not sufficient to be secure. http://www.bouncycastle.org/csharpdevmailarchive/msg00814.html sr.SetSeed(new ThreadedSeedGenerator().GenerateSeed(32, true)); } return master[0]; } } } #else private static long NextCounterValue() { return Interlocked.Increment(ref counter); } private static readonly SecureRandom master = new SecureRandom(new CryptoApiRandomGenerator()); private static SecureRandom Master { get { return master; } } #endif private static DigestRandomGenerator CreatePrng(string digestName, bool autoSeed) { IDigest digest = DigestUtilities.GetDigest(digestName); if (digest == null) return null; DigestRandomGenerator prng = new DigestRandomGenerator(digest); if (autoSeed) { prng.AddSeedMaterial(NextCounterValue()); prng.AddSeedMaterial(GetNextBytes(Master, digest.GetDigestSize())); } return prng; } public static byte[] GetNextBytes(SecureRandom secureRandom, int length) { byte[] result = new byte[length]; secureRandom.NextBytes(result); return result; } /// /// Create and auto-seed an instance based on the given algorithm. /// /// Equivalent to GetInstance(algorithm, true) /// e.g. "SHA256PRNG" public static SecureRandom GetInstance(string algorithm) { return GetInstance(algorithm, true); } /// /// Create an instance based on the given algorithm, with optional auto-seeding /// /// e.g. "SHA256PRNG" /// If true, the instance will be auto-seeded. public static SecureRandom GetInstance(string algorithm, bool autoSeed) { string upper = Platform.ToUpperInvariant(algorithm); if (Platform.EndsWith(upper, "PRNG")) { string digestName = upper.Substring(0, upper.Length - "PRNG".Length); DigestRandomGenerator prng = CreatePrng(digestName, autoSeed); if (prng != null) { return new SecureRandom(prng); } } throw new ArgumentException("Unrecognised PRNG algorithm: " + algorithm, "algorithm"); } [Obsolete("Call GenerateSeed() on a SecureRandom instance instead")] public static byte[] GetSeed(int length) { return GetNextBytes(Master, length); } protected readonly IRandomGenerator generator; public SecureRandom() : this(CreatePrng("SHA256", true)) { } /// /// To replicate existing predictable output, replace with GetInstance("SHA1PRNG", false), followed by SetSeed(seed) /// [Obsolete("Use GetInstance/SetSeed instead")] public SecureRandom(byte[] seed) : this(CreatePrng("SHA1", false)) { SetSeed(seed); } /// Use the specified instance of IRandomGenerator as random source. /// /// This constructor performs no seeding of either the IRandomGenerator or the /// constructed SecureRandom. It is the responsibility of the client to provide /// proper seed material as necessary/appropriate for the given IRandomGenerator /// implementation. /// /// The source to generate all random bytes from. public SecureRandom(IRandomGenerator generator) : base(0) { this.generator = generator; } public virtual byte[] GenerateSeed(int length) { return GetNextBytes(Master, length); } public virtual void SetSeed(byte[] seed) { generator.AddSeedMaterial(seed); } public virtual void SetSeed(long seed) { generator.AddSeedMaterial(seed); } public override int Next() { return NextInt() & int.MaxValue; } public override int Next(int maxValue) { if (maxValue < 2) { if (maxValue < 0) throw new ArgumentOutOfRangeException("maxValue", "cannot be negative"); return 0; } int bits; // Test whether maxValue is a power of 2 if ((maxValue & (maxValue - 1)) == 0) { bits = NextInt() & int.MaxValue; return (int)(((long)bits * maxValue) >> 31); } int result; do { bits = NextInt() & int.MaxValue; result = bits % maxValue; } while (bits - result + (maxValue - 1) < 0); // Ignore results near overflow return result; } public override int Next(int minValue, int maxValue) { if (maxValue <= minValue) { if (maxValue == minValue) return minValue; throw new ArgumentException("maxValue cannot be less than minValue"); } int diff = maxValue - minValue; if (diff > 0) return minValue + Next(diff); for (;;) { int i = NextInt(); if (i >= minValue && i < maxValue) return i; } } public override void NextBytes(byte[] buf) { generator.NextBytes(buf); } public virtual void NextBytes(byte[] buf, int off, int len) { generator.NextBytes(buf, off, len); } private static readonly double DoubleScale = System.Math.Pow(2.0, 64.0); public override double NextDouble() { return Convert.ToDouble((ulong) NextLong()) / DoubleScale; } public virtual int NextInt() { byte[] bytes = new byte[4]; NextBytes(bytes); uint result = bytes[0]; result <<= 8; result |= bytes[1]; result <<= 8; result |= bytes[2]; result <<= 8; result |= bytes[3]; return (int)result; } public virtual long NextLong() { return ((long)(uint) NextInt() << 32) | (long)(uint) NextInt(); } } }