using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Security;
using Org.BouncyCastle.Utilities.Date;
namespace Org.BouncyCastle.Bcpg.OpenPgp
{
/// Generator for old style PGP V3 Signatures.
// TODO Should be able to implement ISigner?
public class PgpV3SignatureGenerator
{
private PublicKeyAlgorithmTag keyAlgorithm;
private HashAlgorithmTag hashAlgorithm;
private PgpPrivateKey privKey;
private ISigner sig;
private IDigest dig;
private int signatureType;
private byte lastb;
/// Create a generator for the passed in keyAlgorithm and hashAlgorithm codes.
public PgpV3SignatureGenerator(
PublicKeyAlgorithmTag keyAlgorithm,
HashAlgorithmTag hashAlgorithm)
{
this.keyAlgorithm = keyAlgorithm;
this.hashAlgorithm = hashAlgorithm;
dig = DigestUtilities.GetDigest(PgpUtilities.GetDigestName(hashAlgorithm));
sig = SignerUtilities.GetSigner(PgpUtilities.GetSignatureName(keyAlgorithm, hashAlgorithm));
}
/// Initialise the generator for signing.
public void InitSign(
int sigType,
PgpPrivateKey key)
{
InitSign(sigType, key, null);
}
/// Initialise the generator for signing.
public void InitSign(
int sigType,
PgpPrivateKey key,
SecureRandom random)
{
this.privKey = key;
this.signatureType = sigType;
try
{
ICipherParameters cp = key.Key;
if (random != null)
{
cp = new ParametersWithRandom(key.Key, random);
}
sig.Init(true, cp);
}
catch (InvalidKeyException e)
{
throw new PgpException("invalid key.", e);
}
dig.Reset();
lastb = 0;
}
public void Update(
byte b)
{
if (signatureType == PgpSignature.CanonicalTextDocument)
{
doCanonicalUpdateByte(b);
}
else
{
doUpdateByte(b);
}
}
private void doCanonicalUpdateByte(
byte b)
{
if (b == '\r')
{
doUpdateCRLF();
}
else if (b == '\n')
{
if (lastb != '\r')
{
doUpdateCRLF();
}
}
else
{
doUpdateByte(b);
}
lastb = b;
}
private void doUpdateCRLF()
{
doUpdateByte((byte)'\r');
doUpdateByte((byte)'\n');
}
private void doUpdateByte(
byte b)
{
sig.Update(b);
dig.Update(b);
}
public void Update(
byte[] b)
{
if (signatureType == PgpSignature.CanonicalTextDocument)
{
for (int i = 0; i != b.Length; i++)
{
doCanonicalUpdateByte(b[i]);
}
}
else
{
sig.BlockUpdate(b, 0, b.Length);
dig.BlockUpdate(b, 0, b.Length);
}
}
public void Update(
byte[] b,
int off,
int len)
{
if (signatureType == PgpSignature.CanonicalTextDocument)
{
int finish = off + len;
for (int i = off; i != finish; i++)
{
doCanonicalUpdateByte(b[i]);
}
}
else
{
sig.BlockUpdate(b, off, len);
dig.BlockUpdate(b, off, len);
}
}
/// Return the one pass header associated with the current signature.
public PgpOnePassSignature GenerateOnePassVersion(
bool isNested)
{
return new PgpOnePassSignature(
new OnePassSignaturePacket(signatureType, hashAlgorithm, keyAlgorithm, privKey.KeyId, isNested));
}
/// Return a V3 signature object containing the current signature state.
public PgpSignature Generate()
{
long creationTime = DateTimeUtilities.CurrentUnixMs() / 1000L;
byte[] hData = new byte[]
{
(byte) signatureType,
(byte)(creationTime >> 24),
(byte)(creationTime >> 16),
(byte)(creationTime >> 8),
(byte) creationTime
};
sig.BlockUpdate(hData, 0, hData.Length);
dig.BlockUpdate(hData, 0, hData.Length);
byte[] sigBytes = sig.GenerateSignature();
byte[] digest = DigestUtilities.DoFinal(dig);
byte[] fingerPrint = new byte[]{ digest[0], digest[1] };
// an RSA signature
bool isRsa = keyAlgorithm == PublicKeyAlgorithmTag.RsaSign
|| keyAlgorithm == PublicKeyAlgorithmTag.RsaGeneral;
MPInteger[] sigValues = isRsa
? PgpUtilities.RsaSigToMpi(sigBytes)
: PgpUtilities.DsaSigToMpi(sigBytes);
return new PgpSignature(
new SignaturePacket(3, signatureType, privKey.KeyId, keyAlgorithm,
hashAlgorithm, creationTime * 1000L, fingerPrint, sigValues));
}
}
}